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Regioselectivity And One-Photon-Multiple-Bond Isomerization.# 
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Abstract. Direct irradiation of five dicis (7,9, 7,ll. 7,13, 9,II and 9,13) and 
one trick (7,9,11) isomers of retinal led to regioselective isomerization at the 
13.14 bond as well as multiple-bond isomerization. 

Previous studies on the photoisomerization of retinal isomers emphasize the use 

of the all-trans and more readily available mono-cis isomers (9-cis, 1 I-cis and 13- 

cis).l Recent completion of the syntheses of all sixteen possible geometric isomers of 

retinal2 allows us to investigate the photochemistry of other poly-cis isomers. In this 

paper, we report results on several hindered isomers, which exhibit unusual 
regioselectivity and one-photon-multiple-bond isomerization. 

The retinal isomers used in this study included five containing the dicis 

geometry (7,9, 7,11, 7.13, 9,11, and 9,13), and one with a tricis geometry (7,9,11). 
Regioselectivity in photoisomerization was examined by determining the distribution 

of initial products during early stages (from 2 to 6% conversion) of direct irradiation 

of these isomers in hexane solution. Hplc was employed for analyses, and products 

-- 
#Photochemistry of polyenes 27. For previous paper in the series see: X. Y. Li, A. E. 
Asato & R. S. H. Liu, Tetrahedron Lett., 31. 4841 (1990). 
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were characterized by their IH-nmr spectra, comparison of retention times of authen- 

tic samples or in cases of the thermally labile isomers by on-line recording on a diode 

array detector of their characteristically blue-shifted uv-vis spectra.3 The cases of 

7,9,1 l-tricis (Figure la) and 7,9-dicis (lb) are shown as representative examples. 
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Figure la. Hplc chromstograms (solvent: 6% dicthyl ether in 
herane) lot ptoduct analysis from direct irradiation of 7.9.11~tricir 
retinal with detecting beam set at 287 (lower) and 360 nm (upper). 
The insert ir the uv-vis absorption spectrum corresponding to the 
isomer with the shortest retention time, recorded on a diode-array 
detector. It agreea with that of all& rAina (SW text). 

Results for all six isomers are 
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Figure lb. Product isomer distribution during early stages of direct 
irradiation of 7.9-dicis retinal in hcranc. determined by hplc 
analyses (360nm detecting beam; data corrected for different 
ahsorptiritics of isomers2). 

summarized in Table 1. The following 

observations are evident. First, in contrast to the photochemical properties of the all- 

trans and mono-cis isomers,1 the dicis isomers gave substantial amounts of two-bond 

isomerized4 primary photoproducts. Such products appear to be favored when the 

hindered 11-cis geometry is present or when two cis linkages are adjacent to each 

other (83% for 7,9-dicis and only 18% for 7,13-dicis). Three-bond isomerized products 

were also detected from some of the dicis isomers (appeared to be favored under 

degassed conditions, i.e., in the absence of a triplet quencher) and in particular from 

the 7,9,11-tricis isomer where even a small amount of the four-bond isomerized 

product (13-cis) was also detected. That these products are not due to two photon 

excitation was revealed by the insensitivity of the ratio of multiple-bond to one-bond 

isomerized products upon a 64 fold variation of light intensity (entries 14-17). 

While formation of the two-bond isomerized products are consistent with 

involvement of the bicycle pedal mechanism,5 we do not believe the current result 

demands postulation of such a concerted process. In fact, considering the known high 

triplet yield of retinal isomers in non-polar solvents (approx. O.S)Ia and preference 

for such processes under conditions favored for triplet processes, we are inclined to 

believe that a mechanistic pathway involving cascade of isomeric triplets with the 

initial loss of the sterically crowded 11-cis or 7-cis geometry is more likely. 



6959 

Entry 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

Table 1. Photoisomeriwation of poly-cis isomers of retinal 

in hexane: initial product distribution8 

Isomer Conditions Initial products (X among all products) 

7.9c aerated 13c(2); 9c(5); 7,9,13c(ll); t(83) 
,. 

deoxygenated 13c(17); 9c(5): 7,9,13c(S); t(69) 
7, Ilc aerated llc(2); 7c(5); 7,11,13c(42): t(51) 

*. 
deoxygenated llc(3); 7c(3); 7,11,13c(51); t(43) 

7,13c aerated 13c(23); 7c(69): t(8) 
.* deoxygenated 13c(15); 7c(67); t(19) 

9.11c aerated llc(-): 9c(lO); 9,13c(5); 9,11,13c(39); t(45) 
*1 

deoxygenated 13c(7); llc(-); 9c(12); 9,13c(7); 9,11,13c(36); t(38) 
9.13c aeratedb 13c(17): 9c(72); t(l0) 

*. deoxygenated 13c(lO): k(70); t(21) 
7.9. llc aerated 7.9c(4): all-c(61); 9c(3); 7.9.13c(l): t(31): 13c(-) 

1. deoxygenated 7.9~(4); all-c(62); 9c(3): 7.9.13c(l); t(25); 13~(5) 
11 sensitized 7.9c(-); all-c(-); 9c(4): 7.9.13c(-); t(90); l*(7) 

7.9c aerated.&mC 13c(-); 9c(3); 7.9,13(10): t(S6) 
-1 aerated.llcmC 13c(-); 9c(3): 7,9.13(12): t(85) 

7.9. llc aerated.@3cmC 7,9c(4): all-c(58); 9c(2): 7,9,13c(2); t(34) 
*1 

aerated.llcmC 7,9c(3): all-c(60); 9c(2); 7.9.13c(l); t(33) 

a. -1 x lo-’ g. 365 + 4nm with monochromator or 366nm band with O-52, 7-60 filter 
plates. 24°C. 2-6% conversion. Deoxygenated samples: argon saturated. Sensitized: 5 
cycles of free-pump-thaw, then sealing under vacuum. b. Waddell et al. reported at 
35Onm and -25% conversion: 13c(49); 9c(49) and t(2). c. Distance from focal point of 
condensed beam. 

To confirm possible participation of the triplet state in the multiple-bond 

isomerization process, we carried out porphyrin sensitizedlc isomerization of the 

7,9,11-tricis isomer (entries 13). The altered product composition suggests in this 

case little involvement of the triplets in the isomerization process during direct 

irradiation. Also, the multiple-bond isomerized products are indeed more favored 

(90%) under sensitized than in direct irradiation (25-31%). It should be noted that 

possible involvement of triplets was recently invoked to account for the quantum 

chain process observed in 7-cis and 11-cis-retinal.6 Time resolved spectroscopic 

studies of these retinal triplets, as were done with the all-trans and the mono-cis 

isomers,7 could clarify the exact pathway for the multiple-bond isomerization process. 
For one-bond isomerized products, the most favored position of isomerization 

appeared to be the 13,14 bond (51% of 7,11,13-tricis from 7,11-dicis and 67% of 7-cis 

from 7,13-dicis). While consistent with that of the all-trans isomer,1 the result is 

somewhat surprising when one considers the fact that the hindered 11-cis isomer was 

reported to give exclusively the all-trans isomer.8 One might expect that these 

hindered polycis isomer would similarly prefer to lose first the hindered 7-cis or the 

1 1-cis geometry. Instead, isomerization at the unhindered 13,14-bond is preferred. 



To test the generality of this observation and its synthetic value, we irradiated 7,9,11- 

tricis retinal.2cvs Indeed, among the initial products, we found that the novel all-cis 

isomer was the major product (-60%) with the three-bond isomerized all-trans isomer 

being the second (-31%). Since the all-cis isomer is known to have a much blue- 

shifted absorption spectrum,2b secondary photochemical reactions could be minimized 

by employing a long wavelength cut-off filter. Therefore, when carried to >90% 

conversion with light >350nm (Corning O-52 filter), this highly strained isomer was 

found to be present in 46%. We have also reinvestigated the direct irradiation of 1 l- 

cis retinal. Instead of the earlier reported regiospecific isomerization to the all-trans 

isomer,9 we found that the unstable 11,13-dicis and the all-trans isomers were 

formed in a ratio of 1 : 2. The blue-shifted absorption spectrum and low thermal 

stability of the 11,13-dicis isomer perhaps complicated earlier studies. 

Investigation of other poly-cis isomers, including those with the unstable 11,13- 

dicis geometry,zc are currently in progress in our laboratories. 
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