Photoisomerization of Hindered Poly-cis Isomers of Retinal. Regioselectivity And One-Photon-Multiple-Bond Isomerization.#

Srinivasan Ganapathy & Robert S. H. Liu* Department of Chemistry, University of Hawaii Honolulu, HI 96822 U. S. A.

Abstract. Direct irradiation of five dicis (7,9, 7,11, 7,13, 9,11 and 9,13) and one tricis (7,9,11) isomers of retinal led to regioselective isomerization at the 13,14 bond as well as multiple-bond isomerization.

Previous studies on the photoisomerization of retinal isomers emphasize the use of the all-trans and more readily available mono-cis isomers (9-cis, 11-cis and 13cis).¹ Recent completion of the syntheses of all sixteen possible geometric isomers of retinal² allows us to investigate the photochemistry of other poly-cis isomers. In this paper, we report results on several hindered isomers, which exhibit unusual regioselectivity and one-photon-multiple-bond isomerization.

The retinal isomers used in this study included five containing the dicis geometry (7,9, 7,11, 7,13, 9,11, and 9,13), and one with a tricis geometry (7,9,11). Regioselectivity in photoisomerization was examined by determining the distribution of initial products during early stages (from 2 to 6% conversion) of direct irradiation of these isomers in hexane solution. Hplc was employed for analyses, and products

[#]Photochemistry of polyenes 27. For previous paper in the series see: X. Y. Li, A. E. Asato & R. S. H. Liu, Tetrahedron Lett., <u>31</u>, 4841 (1990).

were characterized by their ¹H-nmr spectra, comparison of retention times of authentic samples or in cases of the thermally labile isomers by on-line recording on a diode array detector of their characteristically blue-shifted uv-vis spectra.³ The cases of 7,9,11-tricis (Figure 1a) and 7,9-dicis (1b) are shown as representative examples.

Figure 1a. Hplc chromatograms (solvent: 6% diethyl ether in hexane) for product analysis from direct irradiation of 7,9,11-tricis retinal with detecting beam set at 287 (lower) and 360 nm (upper). The insert is the uv-vis absorption spectrum corresponding to the isomer with the shortest retention time, recorded on a diode-array detector. It agrees with that of all-cis retinal (see text).

يحصوني واحتلوه المتحد

Figure 1b. Product isomer distribution during early stages of direct irradiation of 7,9-dicis retinal in hexane, determined by hplc analyses (360nm detecting beam; data corrected for different absorptivities of isomers²).

Results for all six isomers are summarized in Table 1. The following observations are evident. First, in contrast to the photochemical properties of the alltrans and mono-cis isomers,¹ the dicis isomers gave substantial amounts of two-bond isomerized⁴ primary photoproducts. Such products appear to be favored when the hindered 11-cis geometry is present or when two cis linkages are adjacent to each other (83% for 7,9-dicis and only 18% for 7,13-dicis). Three-bond isomerized products were also detected from some of the dicis isomers (appeared to be favored under degassed conditions, i.e., in the absence of a triplet quencher) and in particular from the 7,9,11-tricis isomer where even a small amount of the four-bond isomerized product (13-cis) was also detected. That these products are not due to two photon excitation was revealed by the insensitivity of the ratio of multiple-bond to one-bond isomerized products upon a 64 fold variation of light intensity (entries 14-17).

While formation of the two-bond isomerized products are consistent with involvement of the bicycle pedal mechanism,⁵ we do not believe the current result demands postulation of such a concerted process. In fact, considering the known high triplet yield of retinal isomers in non-polar solvents (approx. 0.5)^{1a} and preference for such processes under conditions favored for triplet processes, we are inclined to believe that a mechanistic pathway involving cascade of isomeric triplets with the initial loss of the sterically crowded 11-cis or 7-cis geometry is more likely.

Table 1. Photoisomerization of poly-cis isomers of retinal

in hexane: initial product distribution^a

Entry	Isomer	Conditions	Initial products (% among all products)
1	7,9c	aerated	13c(2); 9c(5); 7,9,13c(11); t(83)
2	••	deoxygenated	13c(17); 9c(5); 7.9.13c(8); t(69)
3	7.11c	aerated	11c(2); $7c(5)$; $7.11.13c(42)$; $t(51)$
4	**	deoxygenated	11c(3); 7c(3); 7, 11, 13c(51); t(43)
5	7,13c	aerated	13c(23); 7c(69); t(8)
6	**	deoxygenated	13c(15); 7c(67); t(19)
7	9.11c	aerated	11c(-); 9c(10); 9, 13c(5); 9, 11, 13c(39); t(45)
8		deoxygenated	13c(7); 11c(-); 9c(12); 9, 13c(7); 9, 11, 13c(36); t(38)
9	9.13c	aerated ^b	13c(17); 9c(72); t(10)
10	**	deoxygenated	13c(10); 9c(70); t(21)
11	7.9.11c	aerated	7.9c(4); all-c(61); 9c(3); 7.9.13c(1); $t(31)$; 13c(-)
12		deoxygenated	7.9c(4); all-c(62); 9c(3); 7.9.13c(1); $t(25)$; 13c(5)
13	**	sensitized	7.9c(-); all-c(-); 9c(4); 7.9.13c(-); $t(90)$; 13c(7)
14	7.9c	aerated.88cm ^C	13c(-); $9c(3)$; 7.9.13(10); t(86)
15		aerated.llcm ^C	13c(-); $9c(3)$; 7.9, $13(12)$; $t(85)$
16	7.9.11c	aerated.88cm ^C	7.9 $c(4)$; all- $c(58)$; 9 $c(2)$; 7.9.13 $c(2)$; t(34)
17		aerated, llcm ^C	7,9c(3); all-c(60); 9c(2); 7,9,13c(1); t(33)

a. $\sim 1 \times 10^{-4}$ M, 365 ± 4nm with monochromator or 366nm band with 0-52, 7-60 filter plates, 24°C, 2-6% conversion. Deoxygenated samples: argon saturated. Sensitized: 5 cycles of free-pump-thaw, then sealing under vacuum. b. Waddell et al. reported at 350nm and $\sim 25\%$ conversion: 13c(49); 9c(49) and t(2). c. Distance from focal point of condensed beam.

To confirm possible participation of the triplet state in the multiple-bond isomerization process, we carried out porphyrin sensitized¹c isomerization of the 7,9,11-tricis isomer (entries 13). The altered product composition suggests in this case little involvement of the triplets in the isomerization process during direct irradiation. Also, the multiple-bond isomerized products are indeed more favored (90%) under sensitized than in direct irradiation (25-31%). It should be noted that possible involvement of triplets was recently invoked to account for the quantum chain process observed in 7-cis and 11-cis-retinal.⁶ Time resolved spectroscopic studies of these retinal triplets, as were done with the all-trans and the mono-cis isomers,⁷ could clarify the exact pathway for the multiple-bond isomerization process.

For one-bond isomerized products, the most favored position of isomerization appeared to be the 13,14 bond (51% of 7,11,13-tricis from 7,11-dicis and 67% of 7-cis from 7,13-dicis). While consistent with that of the all-trans isomer,¹ the result is somewhat surprising when one considers the fact that the hindered 11-cis isomer was reported to give exclusively the all-trans isomer.⁸ One might expect that these hindered polycis isomer would similarly prefer to lose first the hindered 7-cis or the 11-cis geometry. Instead, isomerization at the unhindered 13,14-bond is preferred. To test the generality of this observation and its synthetic value, we irradiated 7,9,11tricis retinal.^{2c,8} Indeed, among the initial products, we found that the novel all-cis isomer was the major product (~60%) with the three-bond isomerized all-trans isomer being the second (~31%). Since the all-cis isomer is known to have a much blueshifted absorption spectrum,^{2b} secondary photochemical reactions could be minimized by employing a long wavelength cut-off filter. Therefore, when carried to >90% conversion with light >350nm (Corning 0-52 filter), this highly strained isomer was found to be present in 46%. We have also reinvestigated the direct irradiation of 11cis retinal. Instead of the earlier reported regiospecific isomerization to the all-trans isomer,⁹ we found that the unstable 11,13-dicis and the all-trans isomers were formed in a ratio of 1 : 2. The blue-shifted absorption spectrum and low thermal stability of the 11,13-dicis isomer perhaps complicated earlier studies.

Investigation of other poly-cis isomers, including those with the unstable 11,13dicis geometry,^{2c} are currently in progress in our laboratories.

<u>Acknowledgment</u>. The work was supported by a grant from the National Science Foundation (CHE-16500). Many of the poly-cis isomers of retinal were prepared by Dr. A. Trehan.^{2b,c}

References:

- 1. (a) For a recent review see: R. Becker, Photochem. Photobiol., <u>48</u>, 369 (1986), and other representative papers see: (a) A. Kropf & R. Hubbard, Photochem. Photobiol., <u>12</u>, 249 (1970); (c) N. Jensen, R. Wilbrandt & R. Bensasson, J. Am. Chem. Soc., <u>111</u>, 7877 (1989).
- R. S. H. Liu & A. E. Asato, Tetrahedron, <u>40</u>, 1931 (1984); (b) A. Trehan & R. S. H. Liu, Tetrahedron Lett., <u>29</u>, 419 (1988); (c) A. Trehan, T. Mirzadegan & R. S. H. Liu, Tetrahedron, <u>46</u>, 3769 (1990).
- 3. C. G. Knudsen, R. H. S. Chandraratna, L. P. Walkeapaa, Y. P. Chauhen, S. C. Carey, T. M. Cooper, R. R. Birge & W. H. Okamura, J. Am. Chem. Soc., 105, 1626 (1983).
- Literature examples of one-photon-multiple-bond isomerization examples are limited to simple dienes, trienes (J. Saltiel, J. Am. Chem. Soc., <u>95</u>, 5968 (1973): R. S. H. Liu & Y. Butt, J. Am. Chem. Soc., <u>93</u>, 1532 (1971) or systems with accumulated crowded cis linkages (A. Yee, S. J. Hug & D. Kliger, J. Am. Chem. Soc., <u>110</u>, 2164 (1988); M. Sundahl, O. Wennerstrom, K. Sandros & U. Norinder, Tetrahedron Lett., <u>27</u>, 1063 (1986) and the crowded 11-cis retinal (ref 1a). The reported case of two bond isomerization of 9,13-dicis-rhodopsin (R. Crouch, T. Ebrey, K. Nakanishi, Biochemistry, <u>72</u>, 1538 (1972)) has recently been shown to be incorrect (Y. Shichida, K. Nakamura, T. Yoshizawa, A. Trehan, M. Denny & R. S. H. Liu, Biochemistry, <u>27</u>, 6495 (1988).
- 5. A. Warshel, Nature, 260, 679 (1976).
- 6. S. Ganapathy, A. Trehan & R. S. H. Liu, Chem. Comm., 199 (1990); (b) Y. Mukai, H. Hashimoto & Y. Koyama, J. Phys. Chem., <u>94</u>, 4042 (1990).
- 7. Y. Mukai, Y. Koyama, Y. Hirata & N. Nataga, J. Phys. Chem., <u>92.</u> 4649 (1988)
- 8. A. E. Asato, A. Kini, M. Denny & R. S. H. Liu, J. Am. Chem. Soc., 105, 2923 (1983).
- 9. W. H. Waddell & A. West, J. Phys. Chem., <u>84</u>, 134 (1980).