SYNTHESIS OF (2*R*,4*S*,5*S*)-5-ACETAMIDO-4-HYDROXY-PIPECOLINIC ACID AS A POTENTIAL INHIBITOR OF SIALIDASES

Keith Clinch and Andrea Vasella*

Organisch-Chemisches Institut der Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich

R. Schauer

Biochemisches Institut, Christian-Albrechts-Universität, Kiel, West Germany

Summary: (2R, 4S, 5S)-5-Acetamido-4-hydroxy-pipecolinic acid (2), a weak inhibitor of sialidases, was synthesized from N-BOC-D-glucosamine.

Sialidases¹ play important roles in human and animal metabolism² and during viral infections by orthomyxoviruses³. Selective inhibition of sialidases might prove useful both for biochemical studies and for clinical applications. One of the structurally simplest inhibitors may be 2, possessing a basic nitrogen (similarly to nojirimycin⁴ and analogous piperidine derivatives⁵ which are strong competitive inhibitors of α -and/or β -glycosidases) and - in the ${}^{2}C_{5}$ conformation - an axial carboxy group as it is present in the naturally occurring α -D-glycosides 1 of N-acetyl-neuraminic acid². The piperidine 2 appeared to be accessible from 2-amino-2-deoxy-D-glucose via an intramolecular substitution at C(6) by the C(2)-amino group and the introduction of an acetamido group with inversion of the configuration at C(5).

Benzylidenation⁶ and selective benzoylation at -78° of the easily accessible, protected glucosamine 3^7 (see Scheme) gave a mixture of the anomers 5α and $5\beta^8$ which were separated by MPLC (5α : m.p. 218-219°, $[\alpha]_D = +114.3°$; 5β : m.p. 198-199°, $[\alpha]_D = -60.7°$)⁹. The alcohols 5α and 5β were deoxygenated¹⁰ at C(3) via the thio-

a) PhCHO/ZnCl₂, 4 h r.t. (62%); b) 1 eq. LDA in THF/HMPT, -78°, 1 eq. PhCOCl, -78° -> r.t. (76%); c) 2 eq. TCDI in CH₂ClCH₂Cl, 2.5 h reflux (96%); d) Bu₃SnH in toluene, 2.5 h reflux (93%); e) 1.5 eq. NaOMe in MeOH, 0.5 h 0° (86%); f) NaBH₄ in THF/MeOH, 0.5 h 0° (95%); g) BnBr and BaO/Ba(OH)₂·8H₂O in DMF, 40 h r.t. (78%); h) 0.05M HCl in MeOH, 40 min. r.t. (88%); i) 2.4 eq. P(Ph)₃/1.4 eq. CBr₄ in pyridine, 3 d r.t. (81%); k) C1CH₂OMe/(Me₂CH)₂NH in CH₂Cl₂/AcOEt, $-10^{\circ} ->$ r.t., 68 h r.t. (93%); l) 1.5 eq. KOC(CH₃)₃ in THF, 3 h 0° (quant.); m) cat. H₂/Pd (10% on C) in EtOH, r.t. (quant.); n) 1.2 eq. TBDPSCl and 3 eq. imidazole in.DMF, 16 h r.t. (94%); o) 1.5 eq. P(Ph)₃/1.5 eq. DEAD/1.5 eq. HN₃ in benzene, 1 h r.t. (95%); p) 1.2 eq. TBAF:3H₂O in THF, 2 h r.t. (92%); q) cat. H₂/Pd (black) in EtOH, then 1.2 eq. Ac₂O, 20 min. r.t. (79%); r) RuO₂·H₂O/NaIO₄ in CH₃CN/CCl₄/H₂O, 1 h r.t. (98%); s) TFA, 45 min. r.t., then Amberlite IRA-93 (85%).

carbonyl imidazolides 6 (m.p. 203-205°, $[\alpha]_D = +107.2°$). Crystallization of the reduction product from CHCl₃/MeOH afforded the pure α -D-ribo pyranose 7α (m.p. 208°, $[\alpha]_D = +111.9°$). The esters 7 were transesterified to give a 2:1 mixture of 8α and 8β . Reduction of the hemiacetal, benzylation¹¹ of both hydroxyl groups, and hydrolysis gave the diol 11 ($[\alpha]_D = -11.1^\circ$) which, upon treatment with P(Ph)₃ and CBr₄¹², led to the primary bromide 12 (m.p. $81-82^{\circ}$, $[\alpha]_{D} = -19.8^{\circ}$). Under mildly basic conditions (Huenig's base), the bromoalcohol 12 was transformed¹³ into the acetal 13 (m.p. 62-63°, $[\alpha]_D = +7.4^\circ$) and hence, under strongly basic conditions (KOC(CH₃)₃ in THF) into the fully protected piperidine 14 (m.p. 42° , $[\alpha]_{D} = -31.1^{\circ}$). The secondary alcohol 16 ($[\alpha]_D = +14.4^\circ$) was obtained by hydrogenolysis and selective silulation. Mitsunobu reaction¹⁴ gave the azide 17 ($[\alpha]_D = -1.3^\circ$) with complete inversion of configuration. Deprotection of the primary hydroxyl group and reduction of the azide (H₂, Pd) followed by N-acetylation gave the hydroxyamide 19 (m.p. 138-140^o, $[\alpha]_{D}$ = $+76.0^{\circ}$) which was oxidized (RuO₄)¹⁵ to the acid 20 (m.p. 118-120°, $[\alpha]_D = +74.1^{\circ}$). After cleavage of the protective groups by TFA, the aminoacid 2^{16} (overall yield from 3: 9.5%) was purified by ion exchange chromatography on Amberlite IRA-93.

The conformation of the zwitterionic salt 2 was deduced from 1 H-NMR spectroscopy¹⁶. The coupling constants $J_{3ax,4}$, $J_{4,5}$, and $J_{5,6ax}$ suggest a 2:1 equilibrium between the desired ${}^{2}C_{5}$ and the ${}^{5}C_{2}$ conformation, assuming J = 11.5 Hz for a 1,2-diaxial and J =1.5 Hz for a 1,2-diequatorial arrangement. The pipecolinic acid 2 is indeed a weak competitive inhibitor of bacterial sialidases, inhibiting the enzyme from Vibrio cholerae (purchased from Behringwerke) by 50% at 10⁻²M and 29% at 10⁻³M concentrations, and the sialidase from Arthrobacter ureafaciens (CalBiochem) by 84% at 10⁻²M and 37% at 10⁻³M. In contrast, sialidase from Fowl plague virus, kindly donated by Prof. R. Rott, Giessen, is not inhibited, and the same applies to sialidases from animal origin (e.g. from the starfish Asterias rubens¹⁷ and bovine testis¹⁸). The enzyme assays were performed in 0.1 ml of 100 mM acetate buffer, pH 5.5 (starfish enzyme), pH 4.9 (A. ureafaciens and virus enzymes), and pH 4.5 (testis sialidase), containing 0.1 mU sialidase, various concentrations of the inhibitor and 0.2 mM 4methylumbelliferyl α -glycoside of 1 as substrate, at 37° for 15 min¹⁸. In the case of V. cholerae sialidase, the incubation buffer consisted of 50 mM acetate, 154 mM NaCl and 9 mM CaCl₂ (pH 5.5). At 2.5 mM CaCl₂ and 8 mM 2 the inhibition of V. cholerae sialidase increases from 8% to 33% between pH 5.5 and pH 7.4 in acetate-maleate buffer (50 mM each).

Acknowledgment: We thank Sandoz AG, Basel, for generous support.

References and Notes:

1 a) A. P. Corfield, J.-C. Michalski, R. Schauer in G. Tettamanti, P. Durand, S. DiDonato (Eds.), Sialidases and Sialidoses, Perspectives in Inherited Diseases, Vol. 4, Edi

Ermes, Milan, 1981, pp. 3-70. b) A. Rosenberg, C.-L. Schengrund, Biological Role of Sialic Acid, Plenum, New York, 1976, pp. 295-359.

- 2 a) R. Schauer, Sialic Acids, Chemistry, Metabolism and Functions, Cell Biology Monographs, Springer Verlag, Wien/New York, Vol. 10, 1982. b) R. J. Schauer, Adv. Carbohydr. Chem. Biochem. 40, 131 (1982).
- 3 a) R. T. C. Huang, R. Rott, K. Wahn, H. D. Klenk, T. Kohama, Virology 107, 313 (1980).
 b) E. S. Isaeva, Tr. Inst. Mikrobiol. Virusol., Akad. Nauk Kaz. SSR 24, 17 (1979); Chem. Abs. 93, 65466w.
- 4 S. Inouye, T. Tsuruoka, T. Ito, T. Niida, Tetrahedron 24, 2125 (1968).
- 5 a) A. Vasella, R. Voeffray, Helv. Chim. Acta 65, 1134 (1982). b) G. W. J. Fleet, L. E. Fellows, P.W. Smith, Tetrahedron 43, 979 (1987). c) B. P. Bashyal, H.-F. Chow, L. E. Fellows, G. W. J. Fleet, Tetrahedron 43, 415 (1987). d) G. Legler, S. Pohl, Carbohydr. Res. 155, 119 (1986). e) J. Kuszmann, L. Kiss, Carbohydr. Res. 153, 45 (1986). f) R. C. Bernotas, B. Ganem, Tetrahedron Lett. 26, 1123 (1985). g) H. Paulsen, K. Todt, Adv. Carbohydr. Chem. 23, 115 (1968).
- 6 D. M. Hall, Carbohydr. Res. 86, 158 (1980).
- 7 V. F. Poznev, Khim. Prir. Soedin, 408 (1980); Chem. Abs. 93, 186700b.
- 8 All new products gave satisfactory spectroscopical and analytical data.
- 9 If not otherwise stated, the optical rotations were measured at 25° (CHCl₃, c = 0.8-1.2).
- 10 J. R. Rasmussen, C. J. Slinger, R. J. Kordish, D. D. Newman-Evans, J. Org. Chem. 46, 4843 (1981).
- 11 J. R. Plimmer, N. Pravdic, H. G. Fletcher, jr., J. Org. Chem. 46, 4843 (1981).
- 12 A. K. M. Anisuzzaman, R. L. Whistler, Carbohydr. Res. 61, 511 (1978).
- 13 J. S. Amato, S. Karady, M. Sletzinger, L. M. Weinstock, Synthesis, 970 (1979).
- 14 O. Mitsunobu, Synthesis, 1 (1981).
- 15 P.H. Carlsen, T. Katsuki, V.S. Martin, K.B. Sharpless, J. Org. Chem. 46, 3936 (1981).
- 16 M.p. 267-269°, $[\alpha]_{D} = +34.6^{\circ}$ (H₂O), R_{F} 0.15 (BuOH/H₂O/AcOH 4:1:1). ¹H-NMR (400 MHz, D₂O): 4.09 (dd, H-C(2)), 3.97 (br. td, H-C(5)), 3.81 (br. td, H-C(4)), 3.44 (dd, H_{eq}-C(6)), 3.26 (dd, H_{ax}-C(6)), 2.44 (ddd, H_{eq}-C(3)), 2.06 (ddd, H_{ax}-C(3)); $J_{2,3ax} = 4.9$, $J_{2,3eq} = 6.1$, $J_{3ax,3eq} = 14.6$, $J_{3ax,4} = 8.5$, $J_{3eq,4} = 3.6$, $J_{4,5} = 8.0$, $J_{5,6ax} = 8.2$, $J_{5,6eq} = 4.0$, $J_{6ax,6eq} = 13.2$ Hz. ¹³C-NMR (50 MHz, D₂O): 174.72 (s, NHAc), 172.88 (s, COO), 65.49 (d, C(4)), 54.96 (d, C(2)), 49.03 (d, C(5)), 42.45 (t, C(6)), 31.03 (t, C(3)), 22.38 (q, NHAc). IR (KBr): 3600-2010, 1660, 1635, 1555, 1450, 1395, 1310 cm⁻¹. CI-MS: 203 (M⁺ + 1).
- 17 R. Schauer, M. Wember in E. A. Davidson, J.C. Williams, N. M. Di Ferrante (Eds.), *Glycoconjugates, Proc. 8th Int. Symposium*, Vol. 1, Praeger, New York, 1985, pp. 266-267.
- 18 W. Berg and R. Schauer, Biol. Chem. Hoppe-Seyler 367 (Suppl.), 361 (1986).
- 19 M. Potier, L. Mameli, M. Bélisle, L. Dallaire, S. B. Melançon, Anal. Biochem. 94, 287 (1979).

(Received in Germany 14 September 1987)