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Abstract: B-Keto esters 6a-e are transformed into R-keto
alcohcls 7a-e, which are homologated to phosphonates 9a-e.
Intramolecular Horner-Wadsworth-Emnons reaction affords
d-lactones 10a~-d in excellent overall yields.

The occurrence of lactonic functicnality is a ubiguitous structural
element in natural products possessing a wide range of biological
activity.1 In particular, lactones fused to a carbocyclic ring are
commen in biologically active natural products and as synthetically
versatile precursors. For example, iridomyrmecin (1a)2a is a natural
insecticide, isoiridomyrmecin (1b)2b is a constituent of defense
secretion in ants, pyroangolensolide (2)2c is formed by pyrolysis of
methyl angolensate, and bicyclic §&-lactone 32d is an advanced
intermediate in Jacobi’s synthesis of ligularone and petasalbine.
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A number of synthetic methods and approaches have been reported for
the synthesis of mono- and bicyclic lactones.> We were interested in
developing a general and flexible sequence for the synthesis of
o,8-unsaturated d-lactones from B-keto esters (such as 4 =---> 5) with
the objective of applying it to the synthesis of lactones of type 1-3.
We report in this Letter an expeditious, highly efficient and adaptable
annulation protocol fof the transformation of pA-keto esters to
o,B-unsaturated é&-lactones employing intramolecular Horner-Wadsworth-
Emmons (IMHWE) reaction as the key step.

Acylation of alcohol 7a (obtained from ketoc ester 6a under standard
conditions) with a~bromoacetyl bromide (8a, 96%) followed by Arbuzov
reaction with (Eto)3P afforded phosphonate 9a (96%) (Scheme 1). The
seemingly trivial IMHWE reaction of phosphonate 9a to
anhydromevalonolactone (10a)4 was problematic. Exposure of 9a to
standard olefination condition55 (t-BuOK, THF or t-BuOH; NaH, THF;
K,CO,, MeOH; Cs,CO

2 27737
provided none of the expected lactone; either the SM was recovered

i-PrOH) at temperatures varying from 0 ®c to reflux

unchanged or consumed in a deleterious side reaction.

Closer inspection of the acidic¢ sites a to éarbonyl in phosphonate
9a revealed that a plethora of reactions can ensue upon treatment with
base (Scheme 2). In order to circumvent the possibility of g-elimination
(path d) we attempted Masamune and Roush’s6 Licl/amine conditions for
effecting HWE reaction in base-sensitive systems. To our gratification,
subjecting a solution of phosphonate 9%a in CH3CN to LiCl/DBU for 1h
afforded an easily separable mixture of anhydromevalonolactone (10a)4
(57%) and unreacted phosphonate (21%). The use of weaker amine/salt
systems, e.g. (i-Pr)zNEt/Licl6 and Et3N/LiBr7 also yielded a mixture of
lactone and SM.B This result is presumably a consequence of competetion
between olefination (path a) and enolate exchange followed by
protonation (paths b+c) in Scheme 2. We reasoned that sluggish enolate
exchange in a more congested system (9b, R=Bn) should overcome this
complication.

Indeed, treatment of phosphonate 9b derived from
3-benzyl-4-hydroxy-2-butanone (Tb)9 under optimal conditions afforded
benzyl lactone 10b in 89% yield;10 no unreacted SM was detected in the
crude residue. In a similar manner bicyclic &-lactones 10c and 10at?
were synthesised from ethyl 2-oxocyclopentane carboxylate (6c) and
methyl 2-oxocyclohexane carboxylate (6d) in 53% and 47% overall yields,
respectively.

a-Tetralone was elaborated to phosphonate 9e without event.
Cyclisation under IMHWE conditions afforded none of the expected
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Reaction conditions: i) p-TsOH, (CH,OH),, PhH, 80 %c; ii) csa,
(CH,OH),, PhH, 80 ®c; iii) LaH, ether, o0 °c; iv) p-TsOH,

acetone, rt; v) 10% aq. (COOH)z, silica gel CH C1 rt;

vi)

BrCH C(O)Br, pyridine, o0 C, vii) (Eto) P, PhMe, 100 C; viii)

DBU, LiCl, MeCN, rt.
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Path a: IMHWE reaction; Path b: Enolate exchange;
Path c¢: Protonation; Path 4: g-Elimination.
SCHEME 2
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tricyclic lactone, Instead, g-methylene-a~tetralone (10e)12 was isoclated
in 69% yield after silica gel chromatography. It is likely that slower
IMHWE reaction (path a) and facile enolisation (path b) in enones
compared to ketones leads to exclusive B-elimination (path d) product
(Scheme 2).

In conclusion, the method works best for a-substituted pB-keto
esters 6b-~d which bodes well for the eventual application in the
synthesis of lactones 1-3. Studies are currently under way in this
direction and to synthesise d-lactones of a different structural type.
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