
REDUCTION OF OXIMES WITH HYDROSILANE/H⁺ REAGENT

Makoto FUJITA, Haruhito OISHI, and Tamejiro HIYAMA^{*} Sagami Chemical Research Center, 4-4-1 Nishiohnuma, Sagamihara, Kanagawa 229

Hydrosilane/H⁺ reagent reduced oximes in good yields. Stereospecific reduction of (2-acetoxy-1-phenylpropylidene)benzyloxyazane (3) was observed: the (E)-isomer gave erythro-1-phenyl-1-benzyloxyamino-2-propanol (4) in 99% selectivity, whereas (Z)-3 afforded the threo isomer of 4 in 76% selectivity.

Reduction of ketones with hydrosilane/H⁺ reagent is shown to be a powerful and reliable method for the synthesis of *erythro*-isomers of 2-amino alcohols, 1,2diols, and 3-hydroxyalkanoic acid derivatives.¹⁾ Reported herein is the reduction of oximes^{2,3)} with the same reagent, in which amines, particularly 2-amino alcohols of biological interest, are readily produced under high stereocontrol.

When benzylidenebenzyloxyazane (1a) was treated with dimethylphenylsilane (1.2 mol-equiv) in trifluoroacetic acid (TFA) at room temperature, the reduction proceeded smoothly and *N*-benzyloxybenzylamine (2a) was isolated in 75% yield after workup and purification. *O*-Protected oximes of benzaldehyde, acetophenone, and cyclohexanone (1a-d) were easily reduced, whereas an acyclic aliphatic derivative 1e was reduced only in 23% yield even under forcing conditions (50 °C, 5 d, with 2 mol of HSiMe₂Ph), as summarized in Table 1.

Table 1. Reduction of Oximes with PhMe ₂ SiH/H ⁺ Reagent ²	Table	1.	Reduction	of	Oximes	with	PhMe ₂ SiH/H ⁺	Reagent ^a
---	-------	----	-----------	----	--------	------	--------------------------------------	----------------------

Oxime	R ¹	R ²	R ³	Conditions	Yield/%
1a	Ph	Н	CH ₂ Ph	rt, overnight	75
1Ь	Ph	Me	COMe	rt, overnight	67
1c	Ph	Me	COPh	rt, overnight	78
1d	-(CH ₂) ₅ -		CH ₂ Ph	rt, 24 h ^{b)}	65
le	C ₇ H ₁₅	Me	CH ₂ Ph	50 °C, 5 d ^{c)}	23

a) Carried out with HSiMe₂Ph (1.2 mol) in TFA or TFA-CH₂Cl₂ (1:1)(1-2 cm³/mmol).
b) KF (1 mol) was added. c) HSiMe₂Ph (2 mol) was employed.

It is noteworthy that stereospecificity was observed in the hydrosilane/H⁺ reduction of (2-acetoxy-1-phenylpropylidene)benzyloxyazane (3). When the (E)-isomer^{4,5}) **3a** was allowed to react with PhMe₂SiH in CF₃COOH (rt, overnight), erythro-1-phenyl-1-benzyloxyamino-2-propanol (**4a**) was obtained in 99% selectivity⁶ (77% yield). In contrast, the (Z)-isomer^{4,5}) **3b** gave the threo isomer **4b** preferentially⁶ (**4a** : **4b** = 24 : 76). These results contrast to lithium aluminum hydride reduction⁹ wherein no stereospecificity was observed. Lithium aluminum hydride reduction of **4a** affords naturally occurring erythro-1-phenyl-1-amino-2-propanol (norisoephedrine).

PhCH ₂ O _N Ph HOAc Me 3a	or Ph	, OCH₂Ph YOAc Me Sb	rt overnight	NHOCH ₂ F Ph Me 4a		NHOCH ₂ Ph h Me 4b
Starting	material	Reducin	g agent (solvent)	Yield/%	4a : 4	lb
3	a	HS	iMe ₂ Ph/TFA	73	99 : 1	
3	a	Li	A1H ₄ (Et ₂ 0)	46	82 : 1	8
3	Ь	HS	iMe2Ph/TFA	77	24 : 7	6
31	Ь		$A1H_4$ (Et ₂ 0)	39	58:4	2

References

- M. Fujita and T. Hiyama, J. Am. Chem. Soc., <u>106</u>, 4629 (1984); M. Fujita and T. Hiyama, ibid., <u>107</u>, 8294 (1985).
- 2) Loim reported imines of the formula ArCH=NAr' only were reduced with Et₃SiH/CF₃COOH: N. M. Loim, Izv. Akad. Nauk. SSSR, Ser. Khim., <u>1968</u>, 1418.
- Hydrosilylation of imines catalyzed by RhCl(PPh₃)₃ or PdCl₂: I. Ojima and T. Kogure, Tetrahedron Lett., <u>1973</u>, 2475.
- Stereochemical assignment of oximes by ¹H NMR spectroscopy: G. J. Karabatsos and N. Hsi, Tetrahedron, <u>23</u>, 1079 (1967).
- 5) A mixture of **3a** and **3b** was prepared from 2-acetoxy-1-phenyl-1-propanone and *O*-benzylhydroxylamine by a conventional method. Both isomers were easily separated by silica gel column chromatography.
- 6) The high erythro selectivity obtained in the reduction of (E)-isomer **3a** should be ascribed to the proton bridged Cram's cyclic model⁷⁾ like the reduction of α -acyloxy ketones.¹⁾ On the other hand, the same transition state model is not applicable to the (Z)-isomer **3b**. The three selectivity for **3b** may be attributed to nucleophilic attack of the hydrosilane molecule to $>C=N^{\pm}OCH_{2}Ph$ moiety through the Felkin transition state model.⁸⁾
- 7) D. J. Cram and D. R. Wilson, J. Am. Chem. Soc., <u>85</u>, 1245 (1963).
- M. Chérest, H. Felkin, and N. Prudent, Tetrahedron Lett., <u>1968</u>, 2199; N. T. Ahn and O. Eisenstein, Nouv. J. Chim., <u>1</u>, 61 (1977).
- 9) LiAlH₄ reduction of β -hydroxy oximes: K. Narasaka, Y. Ukaji, and S. Yamazaki, Bull. Chem. Soc. Jpn., <u>59</u>, 525 (1986).

(Received March 4, 1986)