Papulacandins and chaetiacandin: a stereoselective route to their basic skeleton by a palladium-mediated arylation of 4,6-*O*-benzylidene-3-*O*-tert-butyldimethylsilyl-1-tributyl-stannyl-D-glucal*

Eric Dubois and Jean-Marie Beau[†]

Laboratoire de Biochimie Structurale, U.R.A. 499, Université d'Orléans, B.P. 6759, 45067 Orléans 2 (France) (Received April 8th, 1991; accepted for publication June 15th, 1991)

ABSTRACT

Palladium(0)-catalysed coupling of 1,5-anhydro-4,6-O-benzylidene-3-O-tert-butyldimethylsilyl-2deoxy-1-tributylstannyl-D-arabino-hex-1-enitol (7) with 3,5-dibenzyloxy-2-bromobenzyl alcohol gave 1,1²anhydro-4,6-O-benzylidene-3-O-tert-butyldimethylsilyl-2-deoxy-1-(4,6-dibenzyloxy-2-hydroxymethylphenyl)- α -D-arabino-hexopyranose (13). The same reaction buffered by sodium carbonate provided 1,5anhydro-4,6-O-benzylidene-3-O-tert-butyldimethylsilyl-2-deoxy-1-(4,6-dibenzyloxy-2-hydroxymethylphenyl)-D-arabino-hex-1-enitol (11). Stereoselective oxidative spiroacetalisation of 11 provided 1,1²-anhydro-4,6-O-benzylidene-3-O-tert-butyldimethylsilyl-1-(4,6-dibenzyloxy-2-hydroxymethyl-phenyl)- α -D-glucopyranose (15), the basic tricyclic structure of papulacandins. In a model study, 15 was converted in three steps into 1,1²-anhydro-1-(4,6-dihydroxy-2-hydroxymethylphenyl)-3-O-octadecanoyl- α -D-glucopyranose (24), a structural analogue of papulacandin D. Morcover, stereoselective hydroboration-oxidation of 11 furnished 2-(4,6-O-benzylidene-3-O-tert-butyldimethylsilyl- β -D-glucopyranosyl)-3,5-dibenzyloxy-1-hydroxymethylbenzene (26), the structural skeleton of the chaetiacandin 3.

INTRODUCTION

Papulacandins A–C (1) and D (2)^{2,3} and the chaetiacandin 3^{4,5} are closely related antifungal antibiotics isolated from strains of *Papularia sphaerosperma* and *Monochaetia dimorphospora*, respectively. Classical chemical and spectroscopic investigations led to the structures 1–3, and the absolute configuration of the spirocentres in 1 and 2 was revealed by an X-ray crystallographic study of a di-*p*-bromobenzyl derivative. These compounds are both β -C-D-glucosyl derivatives of 1,3-dihydroxy-5-hydroxymethylbenzene, the oxygen at the benzylic position being attached at the anomeric carbon in the spirocyclic structure for 1 and 2. Their common features are a 6-O-acyl- β -D-galactopyranosyl residue at O-4 and an acylation with an unusual C₁₈ (papulacandins) or C₁₄ (chaetiacandin) polyunsaturated fatty acid chain at O-3 of the glucosyl moiety.

The substances exhibit strong activities against yeasts, especially *Candida albicans*, that could be related to the inhibition of the $(1\rightarrow 3)$ - β -D-glucan synthase in various

^{*} For a preliminary report, see ref. 1.

[†] To whom correspondence should be addressed.

1 Papulacandin A,B,C, $R = 6 - 0 - \alpha cyl - \beta - D - galactopyranosyl 3 Chaetiacandin, <math>R = 6 - 0 - \alpha cyl - \beta - D - galactopyranosyl 2 Papulacandin D, <math>R = H$

organisms^{7 10}, as shown with papulacandin B, the major component of the antibiotic complex produced by *P. sphaerosperma*. Although essential for inhibiting fungal growth, the 6-*O*-acyl- β -D-galactosyl moiety in papulacandin B is not required for activity against glucan biosynthesis^{2,10}. The long-chain acyl residue at O-3, however, is crucial for biological activity¹⁰. In this respect, the lipophilic *p*-octyloxybenzoyl side chain of cilogungin¹¹, a cyclopeptide antifungal antibiotic related to echinocandin B¹², is also essential for the *in vitro* inhibition of the $(1 \rightarrow 3)$ - β -D-glucan synthase of *Neurospora crassa* and *C. albicans*¹³.

These substances have low acute toxicities^{4,14}, which has stimulated recent work on synthesis; this includes a total synthesis of a racemic spiroacetal unit, using a hetero Diels-Alder reaction as the key step¹⁵ or coupling reactions of aryl nucleophiles with derivatives of methyl D-gluconate¹⁶ or D-gluconolactone^{17,18}. We have shown^{19,20} that 1tributylstannyl-D-glucals can be arylated efficiently with aryl bromides under palladium-(0) catalysis, providing the corresponding 1-aryl-D-glucals that could be transformed stereoselectively into various C-glucosylarenes. Thus, it was anticipated that the basic structural units of both papulacandins 1 and 2 and the chaetiacandin 3 could be synthesised from a suitable 1-aryl-D-glucal derivative 4 by either an oxidative spiroacetalisation (\rightarrow 5) or a hydroboration-oxidation (\rightarrow 6) sequence. Work on model substances^{19,20} and studies of similar compounds²¹⁻²³ suggested that these reactions would occur from the desired α -face.

RESULTS AND DISCUSSION

1,5-Anhydro-4,6-O-benzylidene-3-O-tert-butyldimethylsilyl-2-deoxy-1-tributylstannyl-D-arabino-hex-1-enitol (7) was obtained²⁰ in five steps from methyl 4,6-Obenzylidene-1-thio- β -D-glucopyranoside²⁴. The possibility of a regioselective β -Dgalactosylation at O-4 and acylation at O-3 of the D-glucosyl residue justified the choice of the protecting groups in 7. Furthermore, it was found that a silyl group instead of a benzyl group at O-3 enabled the preparation of 7 in higher yields²⁰ from the correspond-

ing unsaturated sulphone. Regioselective bromination^{26,27} of 3,4-dibenzyloxybenzyl alcohol²⁵ (8) by N-bromosuccinimide at reflux in carbon tetrachloride provided 3,5-dibenzyloxy-2-bromobenzyl alcohol²⁸ (9, 97%).

In a model study, tetrakis(triphenylphosphine)palladium(0)-catalysed (0.05 equiv.) coupling of 7 with o-bromobenzyl alcohol furnished, after several hours at reflux, a mixture of the 1-arylglycal 10 and the spiroacetal 12 which, upon prolonged heating, led to 12 as the only stereoisomer (73%) together with the dimer 14 (20%). This behaviour was not observed when a benzyl protecting group was used instead of the *tert*-butyldimethylsilyl group at O-3 of the stannane^{19,20}. Likewise, coupling of 7 with 9 provided, after boiling under reflux for 12 h, 71% of the bicycloacetal 13 as a single isomer and 15% of the homocoupling product 14. This one-step construction of a 2deoxy analogue of the tricyclic skeleton of papulacandins may be explained by an acidcatalysed acetalisation of 11, the initial product of the reaction, as in the conversion of 10 into 12. Acidic species that catalyse the spiroacetalisation may be provided by slow degradation of the initially formed tributyltin bromide. When the Pd(0)-catalysed reaction was carried out in the presence of sodium carbonate, the expected glycals 10 and 11 were obtained (76 and 78%, respectively) together with the dimer 14. The 1 Hn.m.r. spectra of the 1-aryl-D-glucals 10 and 11 and the dimer 14 showed the expected doublets at δ 4.92–5.51 p.p.m. ($J_{2,3}$ 2.0–2.5 Hz). The J values for 12 and 13 were similar for the tetrahydropyran ring $(J_{2ax,3}, J_{2ea,3}, J_{3,4}, \text{ and } J_{4,5} \text{ values: } 10.4, 5.9, 8.9, \text{ and } 9.8 \text{ Hz for}$ 12, 11.0, 5.3, 8.9, and 9.9 Hz for 13, respectively), suggesting the same equatorial (β) orientation of the 1-aryl bond in a ${}^{4}C_{1}(D)$ conformation for each compound. Irradiation of the aromatic proton H-6 in 12 ($\delta \sim 7.2$) caused n.O.e. of the resonance of H-2ax but not that of H-2eq, a result which was compatible only with an S configuration at the spirocentre.

Treatment of glycal 11 with *m*-chloroperoxybenzoic acid in the presence of sodium hydrogencarbonate at low temperature provided 82% of a 6:1 mixture of the *D*-gluco isomers 15 and 16. This stereoselective oxidative spiroacetalisation occurred without a detectable intermediate (*e.g.*, epoxide), which suggested that the intramolecular nucleophilic attack of the benzylic oxygen might be concerted with the oxygen transfer from *m*-chloroperoxybenzoic acid to the olefinic substrate in a peroxy acid–olefin transition structure^{29,30}. In this respect, it is well known that treatment of glycals

with peroxy acids does not lead to 1,2-anhydro sugars, but rather to the corresponding cis- or trans-opened products by reaction with the solvent or the corresponding acid³¹. The favoured α -attack of a transient oxocarbonium ion at the anomeric centre explains the selective formation of isomer 15. At this stage, the isomer 16 could not be converted, by any acid-catalysed isomerisation, into the spirocyclic isomer 15 having the configuration of the natural substances. However, after fluoride-promoted desilylation, catalytic hydrogenolysis, and acetylation, 15 and 16 each gave the same hexa-acetate 19. identical with that obtained from the natural antibiotics¹⁶. Anomerisation of 16 in the course of its transformation into 18 occurred most probably during hydrogenolysis. However it was not possible, even using buffered reaction mixtures, to isolate the sensitive tetraol 20. In the same deprotection sequence, hydrogenolysis in methanolethyl acetate in the presence of hydrochloric acid or prolonged hydrogenolysis on either 15 or 16 provided, after acetylation, the same reductively opened hepta-acetate 21 with undefined configuration at C-1. The D-gluco configuration of the isomers 15 and 16, demonstrated by their chemical transformation into 19, was also confirmed by the 'Hn.m.r. data (C_6D_6). Thus, the J values for 15 ($J_{23} = J_{34} = 9.0, J_{45}$ 10 Hz) indicated H-2,3,4,5 to be axial and the conformation to be ${}^{4}C_{1}(D)$. The highly strained isomer 16 gave similar data $(J_{2,3}, 7.5, J_{3,4}, 8.5, and J_{4,5}, 9.8 Hz)$, which reflected the rigidity imposed by the benzylidene ring. The configuration at the spirocentres of 15 and 16 was indicated by the deshielding effect of the phenolic oxygen O-6 on H-2 in 15 (δ 4.87, cf. δ 4.28 for H-2 in 16) and on H-3 in 16 (δ 4.79, cf. δ 4.32 for H-3 in 15) due to the steric proximities. A similar effect was observed on H-2ax in the 2-deoxy analogue 13 of 15, in which the quartets for H-2ax and H-2eq occurred at δ 3.33 and 2.55, respectively.

Regioselective 3-O-acylation of the tricyclic skeleton found in papulacandins was unexpectedly difficult by the application of a standard protection-deprotection sequence to 15, due to a $3 \rightarrow 2$ silyl migration. The mixture could be forced towards the 2-O-silylated product 22 by treatment of an oxolane solution of 15 with sodium hydride at room temperature. Acylation of 22 with stearic acid in the presence of 1,3dicyclohexylcarbodi-imide and 4-dimethylaminopyridine, followed by treatment with trifluoroacetic acid and hydrogenolysis, yielded the papulacandin D analogue 24, characterised as the penta-acetate 25.

The stereoselective hydration of the 1-arylglucal 11 would also provide an entry to the C- β -D-glucopyranosylarene moiety of the chaetiacandin. Hydroboration of 11 by the borane-oxolane complex followed by treatment with basic hydrogen peroxide gave 75% of 2-(4,6-O-benzylidene-3-O-tert-butyldimethylsilyl- β -D-glucopyranosyl)-3,5-dibenzyloxy-1-hydroxymethylbenzene (26) as the only detectable isomer that represents the skeleton of the chaetiacandin 3. Compund 26 was characterised as the penta-acetate 27.

Compounds 26 and 27 gave ¹H-n.m.r. spectra which, under the usual conditions (CDCl₃ or C₆D₆ at 25°), could not be interpreted, due to hindered rotation around the C-1 \rightarrow C-aryl bond. The configurations at C-1,2 in 27 were revealed by a spectrum recorded in methyl sulfoxide- d_6 at 140°, which showed the coupling constants expected for the β -gluco configuration in the usual 4C_1 conformation ($J_{1,2}, J_{2,3}, J_{3,4}$, and $J_{4,5}$ values of 9.9, 8.9, 8.9, and 9.5 Hz, respectively)*.

EXPERIMENTAL

General methods. — Melting points were determined with a Büchi apparatus and are uncorrected. $[\alpha]_{D}$ Values were measured on solutions in CHCl₃ at 22 ± 2° with a Perkin–Elmer Model 141 polarimeter. ¹H-N.m.r. spectra (internal Me₄Si) were recorded with a Bruker AM-300 WB (300 MHz) spectrometer. Desorption c.i.(ammonia)-mass spectra were recorded with a Ribermag R-10-10 instrument. All solvents and reagents were purified and dried according to standard procedures³⁴. Tetrakis(triphenylphosphine)palladium(0) was prepared as described in ref. 35. T.l.c. was performed on Silica Gel 60-F₂₅₄ (Merck) with detection by quenching of fluorescence and by charring with H₂SO₄–EtOH (ratio 10:1). Products were purified by flash-column chromatography on Silica Gel 60 (Merck, 3–63 μ m). Elemental analyses were performed by the Service Central de Micro-Analyse du Centre National de la Recherche Scientifique.

1,5-Anhydro-4,6-O-benzylidene-3-O-tert-butyldimethylsilyl-2-deoxy-1-(2-hy-droxymethylphenyl)-D-arabino-hex-1-enitol (10). — To a stirred solution of 7^{20} (100 mg,

^{*} While this work was being written¹, a similar investigation appeared in the literature^{32,33}.

0.15 mmol) in anhydrous toluene (2 mL) under Ar were added successively *o*-bromobenzyl alcohol (43 mg, 0.23 mmol, 1.5 equiv.), sodium carbonate (122 mg, 1.15 mmol), and Pd(PPh₃)₄ (17 mg, 15 μ mol, 0.1 equiv.). The mixture was boiled under reflux overnight, then filtered through Celite, and the solvent was evaporated. Column chromatography (10:1 hexane–ethyl acetate containing 0.1% of triethylamine) of the residue gave dimer **14** (11 mg, 20%). Further elution provided **10** (53 mg, 76%) which, after crystallisation from ethyl ether–hexane, had m.p. 119°, [α]₀ – 28° (*c* 1.0). ¹H-N.m.r. data (CDCl₃): δ 0.01 and 0.03 (2 s, 6 H, 2 Me), 0.91 (s, 9 H, 'Bu), 3.90 (t, 1 H, J_{5,6ax} = $J_{6ax,6eq}$ = 10.5 Hz, H-6ax), 3.94 (dd, 1 H, $J_{3,4}$ 7.5, $J_{4,5}$ 10.1 Hz, H-4), 4.13 (ddd, $J_{5,6eq}$ 5.0, Hz, H-5), 4.42 (dd, 1 H, H-6eq), 4.64–4.69 (m, 3 H, H-3 and OCH₂Ar), 4.97 (d, 1 H, $J_{2,3}$ 2.0 Hz, H-2), 5.65 (s, 1 H, CHPh), and 7.27–7.58 (m, 9 H, aromatic).

Anal. Calc. for C₂₆H₃₄O₅Si: C, 68.69; H, 7.54. Found: C, 68.76; H, 7.28.

1,5-Anhydro-4,6-O-benzylidene-3-O-tert-butyldimethylsilyl-2-deoxy-1-(4,6-dibenzyloxy-2-hydroxymethylphenyl)-D-arabino-hex-1-enitol (11) and 1,1'bis(1,5-anhydro-4,6-O-benzylidene-3-O-tert-butyldimethylsilyl-2-deoxy-D-arabino-hex-1-enitol) (14). — Reaction of 7 (500 mg, 0.77 mmol) in anhydrous toluene (10 mL) with 3,5dibenzyloxy-2-bromobenzyl alcohol²⁸ (9; 384 mg, 0.96 mmol, 1.2 equiv.), sodium carbonate (612 mg), and Pd(PPh₃)₄ (45 mg, 38 μ mol, 0.05 equiv.) at reflux temperature for 4 h, as described for 10, gave, after column chromatography (20:1 toluene-ethyl acetate containing 0.1% of triethylamine), 14 (44 mg, 16%), m.p. 206–208° (from etherhexane), [α]_D = 43° (c 1.1). 'H-N.m.r. data (C₆D₆): δ 0.14 and 0.18 (2 s, 12 H, 4 Me), 1.05 (s, 18 H, 2 'Bu), 3.42 (dd, 2 H, J_{5,6ax} 9.5, J_{6ax,6eq} 10.5 Hz, 2 H-6ax), 3.75 (dd, 2 H, J_{3,4} 7.0, J_{4,5} 9.5 Hz, 2 H-4), 3.81 (dt, 2 H, J_{5,6ax} 5.0 Hz, 2 H-5), 4.11 (dd, 2 H, 2 H-6eq), 4.65 (dd, 2 H, J_{2,3} 2.1 Hz, 2 H-3), 5.23 (s, 2 H, 2 CHPh), 5.51 (d, 2 H, 2 H-2), and 7.10–7.62 (m, 10 H, 2 Ph). Mass spectrum: m/z 563 (M⁺ – 'BuMe₂SiO, 100%), 695 (M⁺ + 1, 69).

Anal. Calc. for C₃₈H₅₄O₈Si₂: C, 65.67; H, 7.83. Found: C, 65.49; H, 8.11.

Further elution provided **11** (397 mg, 78%), m.p. $98-99^{\circ}$ (from pentane), $[\alpha]_{D} - 11^{\circ}$ (*c* 1.2). ¹H-N.m.r. data (C₆D₆): δ 0.10 and 0.18 (2 s, 6 H, 2 Me), 1.01 (s, 9 H, 'Bu), 3.55 (dd, 1 H, $J_{5,6ax}$ 9.5, $J_{6ax,6eq}$ 10.5 Hz, H-6*ax*), 3.97 (dd, 1 H, $J_{3,4}$ 7.1, $J_{4,5}$ 10.0 Hz, H-4), 4.05 (ddd, 1 H, $J_{5,6eq}$ 5.0 Hz, H-5), 4.17 (dd, 1 H, H-6*eq*), 4.69 (s, 4 H, OCH₂Ph), 4.70 (dd, 1 H, $J_{2,3}$ 2.5 Hz, H-3), 4.77 (s, 2 H, CH_2 OH), 4.99 (d, 1 H, H-2), 5.32 (s, 1 H, CHPh), 6.50 and 6.88 (2 d, 2 H, $J_{2.5}$ Hz, H-3,5), and 7.0–7.7 (m, 15 H, 3 Ph). Mass spectrum: *m/z* 535 (M⁺ - 'BuMe₂SiO, 24%), 667 (M⁺ + 1, 100).

Anal. Calc. for C₄₀H₄₆O₇Si: C, 72.04; H, 6.95. Found: C, 72.20; H, 6.89.

l, *l*²-Anhydro-4,6-O-benzylidene-3-O-tert-butyldimethylsilyl-2-deoxy-1-(2-hydroxymethylphenyl)-α-D-arabino-hexopyranose (**12**). — Reaction of 7 (100 mg, 0.15 mmol) in toluene (2 mL) with o-bromobenzyl alcohol (43 mg, 0.23 mmol, 1.5 equiv.) and Pd(PPh₃)₄ (17 mg, 15 µmol, 0.1 equiv.) at reflux temperature for 24 h provided, after column chromatography (15:1 hexane-ethyl acetate containing 0.1% of triethylamine), **14** (10 mg, 20%) and **12** (52 mg, 73%) isolated as a colourless syrup, $[\alpha]_{\rm b}$ + 1.5° (c 0.9). ¹H-N.m.r. data (C₆D₆): δ 0.12 and 0.18 (2 s, 6 H, 2 Me), 1.0 (s, 9 H, ¹Bu), 2.37 (dd, 1 H, J_{2eq,3} 5.9, J_{2eq,2ax} 13.0 Hz, H-2eq), 2.45 (dd, 1 H, J_{2ax,3} 10.4 Hz, H-2ax), 3.58 (dd, 1 H, J_{5,6ax} 10.2, J_{6ax,6eq} 10.5 Hz, H-6ax), 3.64 (dd, 1 H, J_{3,4} 8.9, J_{4,5} 9.8 Hz, H-4), 4.20 (dd, 1 H, J_{5,6ex} 5.0 Hz, H-6eq), 4.35 (ddd, 1 H, H-5), 4.63 (ddd, 1 H, H-3), 4.68 and 4.86 (2 d, 2 H, J13 Hz, OCH₂Ar), 5.47 (s, 1 H, CHPh), and 6.76–7.71 (m, 9 H, aromatic H).

Anal. Calc. for C₂₆H₃₄O₅Si: C, 68.69; H, 7.54. Found: C, 68.91; H, 7.47.

 $1, 1^2$ -Anhydro-4,6-O-benzylidene-3-O-tert-butyldimethylsilyl-2-deoxy-1-(4,6-dibenzyloxy-2-hydroxymethylphenyl)- α -D-arabino-hexopyranose (13). — Reaction of 7 (383 mg, 0.59 mmol) in toluene (10 mL) with 9 (282 mg, 0.70 mmol, 1.2 equiv.) and Pd(PPh₃)₄ (69 mg, 59 μ mol, 0.1 equiv.) at reflux temperature for 24h provided, after column chromatography (dichloromethane containing 0.1% of triethylamine), 13 (288 mg, 72%), m.p. 141–142° (from ethyl acetate–hexane), [α]_p = 2.5° (c, 1.0). ¹H-N.m.r. data (C₆D₆): δ 0.14 and 0.19 (2 s, 6 H, 2 Me), 1.03 (s, 9 H, ¹Bu), 2.55 (dd, 1 H, $J_{2eq,3}$ 5.3, $J_{2eq,2ax}$ 13.1 Hz, H-2eq), 3.33 (dd, 1 H, $J_{2ax,3}$ 11.0 Hz, H-2ax), 3.66 (t, 1 H, $J_{5,6ax} = J_{6ax,6eq} = 10.5$ Hz, H-6ax), 3.77 (dd, 1 H, $J_{3,4}$ 8.9, $J_{4,5}$ 9.9 Hz, H-4), 4.27 (dd, 1 H, $J_{5,6eq}$ 5.0 Hz, H-6eq), 4.42 (ddd, 1 H, H-5), 4.67 and 4.69 (2 s, 4 H, 2 CH₂Ph), 4.72 (d, 1 H, J 12.5 Hz, OCHAr), 4.73 (m, 1 H, H-3), 4.90 (d, 1 H, J 12.5 Hz, OCHAr), 5.38 (s, 1 H, CHPh), 6.09 (d, 1 H, J2.0 Hz, H-5), 6.46 (d, 1 H, J2.0 Hz, H-3), and 7.03–7.70 (m, 15 H, 3 Ph).

Anal. Calc. for C₄₀H₄₆O₇Si: C, 72.04; H, 6.95. Found: C, 72.27; H, 6.97.

1,1²-Anhydro-4,6-O-benzylidene-3-O-tert-butyldimethylsilyl-1-(4,6-dibenzyloxy-2-hydroxymethylphenyl)- α - (15) and - β -D-qlucopyranose (16). — To a solution of 11 (380 mg, 0.57 mmol) in anhydrous dichloromethane (6 mL) in the presence of sodium hydrogencarbonate (359 mg, 4.27 mmol) under Ar at -78° was added 85% mchloroperoxybenzoic acid (109 mg, 0.85 mmol, 1.5 equiv.). The mixture was stirred for 5 h, then diluted with dichloromethane. The organic layer was washed with aqueous 15% sodium hydrogensulfite, saturated aqueous sodium hydrogencarbonate, and water, dried (Na, SO_4), and filtered, and the solvent was evaporated. Column chromatography (6:1 hexane-ethyl acetate) of the residue gave 15 (251 mg, 70%), m.p. 132-133° (from ether-hexane), $[\alpha]_{p} + 9.5^{\circ} (c \ 1.7)$. ¹H-N.m.r. data (C₆D₆): $\delta 0.24$ and 0.29 (2 s, 6 H, 2 Me), 1.08 (s, 9 H, ¹Bu), 1.85 (bs, 1 H, OH), 3.59 (dd, 1 H, J_{5.6ax} 10.0, J_{6ax,6ea} 11.0 Hz, H-6ax), 3.70 (dd, 1 H, J_{3,4} 9.0, J_{4,5} 10.0 Hz, H-4), 4.26 (dd, 1 H, J_{5,6eq} 5.0 Hz, H-6eq), 4.32 (t, 1 H, J₂₃9.0 Hz, H-3), 4.33 (dt, 1 H, H-5), 4.66 (s, 4 H, 2 CH₂Ph), 4.67 and 4.87 (2 d, 2 H, J 13.0 Hz, OCH, Ar), 4.87 (bd, 1 H, H-2), 5.28 (s, 1 H, CHPh), 6.09 (d, 1 H, J 2.0 Hz, H-5), 6.44 (d, 1 H, J 2.0 Hz, H-3), and 7.00-7.70 (m, 15 H, 3 Ph). Mass spectrum: m/z 683 $(M^+ + 1, 100\%).$

Anal. Calc. for C₄₀H₄₆O₈Si: C, 70.35; H, 6.79. Found: C, 70.64; H, 6.98.

Further elution provided **16** (45 mg, 11.5%), isolated as a colourless syrup, $[\alpha]_{\rm o}$ + 25° (*c* 1.2). ¹H-N.m.r. data (C₆D₆): δ 0.08 and 0.12 (2 s, 6 H, 2 Me), 1.07 (s, 9 H, ¹Bu), 2.30 (d, 1 H, J_{2,0H} 3.9 Hz, OH), 3.57 (dd, 1 H, J_{5,6ax} 10.0, J_{6ax,6eq} 10.5 Hz, H-6ax), 3.81 (dd, 1 H, J_{3,4} 8.5, J_{4,5} 9.8 Hz, H-4), 4.17 (dd, 1 H, J_{5,6eq} 5.0 Hz, H-6eq), 4.28 (dd, 1 H, J_{2,3} 7.5 Hz, H-2), 4.41 (ddd, H-5), 4.60 (d, 1 H, J 12.0 Hz, CHPh), 4.65 (d, 1 H, J 13.0 Hz, OCHAr), 4.71 (d, 1 H, J 12.0 Hz, CHPh), 4.79 (dd, 1 H, H-3), 5.07 (d, 1 H, J 13.0 Hz, OCHAr), 5.33 (s, 1 H, CHPh), 6.10 (d, 1 H, J 2.0 Hz, H-3), 6.44 (d, 1 H, J 2.0 Hz, H-5), and 6.90–7.70 (m, 15 H, 3 Ph). Mass spectrum: *m*/*z* 683 (M⁺ + 1, 100%), 700 (M⁺ + 18, 22). *Anal.* Calc. for C₄₀H₄₆O₈Si: C, 70.35; H, 6.79. Found: C, 70.42; H, 6.84.

1,2²-Anhydro-4,6-O-benzylidene-l-(4,6-dibenzyloxy-2-hydroxymethylphenyl)-α-D-glucopyranose (17). — To a stirred solution of 15 (30 mg, 44 μmol) in dry oxolane (2 mL) was added tetrabutylammonium fluoride (23 mg, 88 μmol, 2 equiv.) at 0° under Ar. The mixture was stirred at room temperature for 4 h, the solvent was evaporated, and a solution of the residue in dichloromethane was washed with saturated aqueous ammonium chloride and water, dried (Na₂SO₄), and filtered, and the solvent was evaporated. Column chromatography (1:1 hexane–ethyl acetate) of the residue gave 17 (22 mg, 85%), m.p. 91–95° (from ether–hexane), $[\alpha]_{\rm b} + 27°$ (c 1.5). ¹H-N.m.r. data (C₆D₆ with one drop of D₂O): δ 3.58 (t, 1 H, J_{5.6ax} = J_{6ax,6eq} = 10 Hz, H-6ax), 3.73 (t, 1 H, J_{3,4} = J_{4.5} = 9.5 Hz, H-4), 4.24 (dd, 1 H, J_{5.6ax} 5.0 Hz, H-6eq), 4.28 (t, J_{2,3} 9.5 Hz, H-3), 4.34 (dd, 1 H, H-5), 4.64–4.75 (m, 4 H, 2 CH₂Ph), 4.80 (d, 1 H, J 13.0 Hz, OCHAr), 4.84 (d, 1 H, H-2), 4.91 (d, 1 H, J 12.2 Hz, OCHAr), 5.32 (s, 1 H, CHPh), 6.07 and 6.43 (2 d, 2 H, J 1.5 Hz, H-3,5), and 7.03–7.66 (m, 15 H, 3 Ph). Mass spectrum: *m*/z 569 (M⁺ + 1, 47%).

Anal. Calc. for C₃₄H₃₂O₈·0.5H₂O: C, 70.70; H, 5.76. Found: C, 70.90; H, 5.68.

2,3,4,6-Tetra-O-acetyl-1,1²-anhydro-1-(4,6-diacetoxy-2-hydroxymethylphenyl)- α -D-glucopyranose (19). — (a) From 15. As described above, treatment of 15 (30 mg. 44 μ mol) gave crude 17, a solution of which in ethyl acetate-methanol (2:1, 4 mL) was stirred under H_2 in the presence of 10% Pd/C (~ 5 mg) for the appropriate time (usually several hours) at room temperature. The mixture was filtered through Celite, the insoluble material was washed several times with methanol, and the combined filtrate and washings were concentrated to give crude 18 which was treated with pyridine-acetic anhydride (4:1, 3 mL) at room temperature. After 12 h, ice was added, the mixture was extracted with ether, the extract was washed with saturated aqueous potassium hydrogensulfate, aqueous 20% sodium hydrogencarbonate, and water, then dried (Na₃SO₄), and the solvent was evaporated. Column chromatography (20:1 dichloromethaneacetone) of the residue provided 19 (20 mg, 80%), m.p. 197° (from light petroleumhexane), $[\alpha]_{p} = 9^{\circ} (c \ 1.1)$; lit.²³ m.p. 199°, $[\alpha]_{p} = 7.5^{\circ}$. ¹H-N.m.r. data (CDCl₃): $\delta 1.79$, 2.01, 2.05, 2.06, 2.28, and 2.40 (6 s, 18 H, 6 OAc), 4.02 (m, 1 H, H-6a), 4.24 - 4.33 (m, 2 H, H-5,6b), 5.16 and 5.22 (2 d, 2 H, J 14 Hz, OCH₂Ar), 5.25 (dd, 1 H, $J_{3,4} = J_{4,5} = 10.0$ Hz, H-4), 5.59 (dd, 1 H, J_{2,3} 10.0 Hz, H-3), 5.70 (d, 1 H, H-2), 6.92 and 7.00 (2 d, 2 H, J 1.8 Hz, Ph). Mass spectrum: m/z 570 (M⁺ + 18, 100%).

Anal. Calc. for C₂₅H₂₈O₁₄: C, 54.35; H, 5.11. Found: C, 54.33; H, 5.12.

(b) From 16. Treatment of 16 (43 mg, $64 \mu mol$), under the conditions described above, gave, after chromatography, 19 (24 mg, 69%).

2,3,4,5,6-Penta-O-acetyl-1,1²-anhydro-1-(4,6-diacetoxy-2-hydroxymethylphenyl)-D-glucitol (21). — A solution of 15 (27 mg, 40 μ mol) in methanol-ethyl acetate-M hydrochloric acid (4:4:1, 2.25 mL) was stirred in the presence of 10% Pd/C (~5 mg) under H₂(3 atm.) for 2 h. The mixture was filtered through Celite, the insoluble material was washed several times with methanol, the combined filtrate and washings were neutralised with Dowex 1 (HO⁻) resin and filtered, and the solvent was evaporated. Acetylation of the residue overnight with pyridine-acetic anhydride (2:1, 3 mL) and the usual work-up gave, after column chromatography (1:1 hexane-ethyl acetate), 21 (14 mg, 60%), isolated as a colourless syrup, $[\alpha]_{D} - 8^{\circ}$ (*c* 1.0). ¹H-N.m.r. data (CDCl₃): δ 1.68, 2.02, 2.06, 2.11, 2.21, 2.27, and 2.31 (7 s, 21 H, 7 OAc), 4.16 (dd, 1 H, $J_{5,6a}$ 5.0, $J_{6a,6b}$ 12.5 Hz, H-6a), 4.25 (dd, 1 H, $J_{5,6b}$ 2.9 Hz, H-6b), 5.07 (m, 1 H, J 12.4 Hz, OCHAr), 5.16 (ddd, 1 H, $J_{4,5}$ 8.7 Hz, H-5), 5.22 (m, 1 H, J 12.4 Hz, OCHAr), 5.38 (dd, 1 H, $J_{1,2}$ 1.9, $J_{2,3}$ 9.0 Hz, H-2), 5.53 (dd, 1 H, $J_{3,4}$ 2.1, H-4), ~ 5.54 (m, 1 H, H-1), 5.73 (dd, 1 H, H-3), 6.85 and 6.93 (2 m, 2 H, Ph). Mass spectrum: m/z 614 (M⁺ + 18, 100%).

1,1²-Anhydro-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-1-(4,6-dibenzyloxy-2-hydroxymethylphenyl)- α -D-glucopyranose (22). — To a solution of 15 (270 mg, 0.39 mmol) in anhydrous oxolane (5 mL) under Ar was added sodium hydride (24 mg of a 60% suspension in oil, 0.59 mmol, 1.5 equiv.) at 0°. After stirring at room temperature for 1 h, the mixture was cooled to 0° and 2-methyl-2-propanol was added. The mixture was concentrated, then diluted with dichloromethane. The organic phase was washed with saturated aqueous ammonium chloride and water, then dried (Na_2SO_4) , and the solvent was evaporated. Column chromatography (6:1 hexane-ethyl acetate) of the residue gave, first, 22 (129 mg), isolated as a colourless syrup, and 15 (125 mg). Repetition of the treatment on the recovered 15 gave 22 (59 mg; total yield, 70%) and 15 (55 mg, 20%). Compound **22** had $[\alpha]_{p} = 18^{\circ} (c \, 1.3)$. ¹H-N.m.r. data $(C_{6}D_{6})$: $\delta = 0.04$ (s, 3 H, Me), 0.26 (s, 3 H, Me), 0.83 (s, 9 H, 'Bu), 2.05 (bs, 1 H, OH), 3.61 (t, 1 H, $J_{34} = J_{45} =$ 9.4 Hz, H-4), 3.64 (t, 1 H, $J_{5,6ax} = J_{6ax,6eq} = 10.4$ Hz, H-6ax), 4.28 (bt, $J_{2,3} = J_{3,4} = 9.4$ Hz, H-3), 4.29 (dd, 1 H, J5 6eg 5.0 Hz, H-6eg), 4.45 (ddd, 1 H, H-5), 4.70 (s, 2 H, CH2Ph), 4.71 and 4.77 (2d, 2H, J 11.3 Hz, CH₂Ph), 4.73 (d, 1H, H-2), 4.99 and 5.04 (2d, 2H, J 12.3 Hz, OCH,Ar), 5.35 (s, 1 H, CHPh), 6.10 and 6.48 (2 d, 2 H, J 2.0 Hz, H-3,5), and 7.10-7.60 (m, 15 H, 3 Ph).

Anal. Calc. for C₄₀H₄₆O₈Si: C, 70.35; H, 6.79. Found: 70.40; H, 6.83.

1, 1²-Anhydro-4,6-O-benzylidene-2-O-tert-butyldimethylsilyl-1-(4,6-dibenzyloxy-2-hydroxymethylphenyl)-3-O-octadecanoyl- α -D-glucopyranose (23). — To a solution of 22 (100 mg, 0.15 mmol) in anhydrous dichloromethane (3 mL) under Ar were added 4dimethylaminopyridine (18 mg, 19 µmol, 0.13 equiv.), stearic acid (58 mg, 0.23 mmol, 1.5 equiv.), and 1,3-dicyclohexylcarbodi-imide (48 mg, 0.23 mmol, 1.5 equiv.). The mixture was stirred overnight at room temperature, then filtered, and diluted with dichloromethane, and the organic phase was washed with iced 0.1M hydrochloric acid, saturated aqueous sodium hydrogencarbonate, and water, dried (Na₂SO₄), and concentrated to dryness. Column chromatography (6:1 hexane-ethyl acetate) of the residue provided 23 (101 mg, 73%), isolated as a colourless syrup, $[\alpha]_{p} = 27^{\circ} (c \, 3.1)$. ¹H-N.m.r. data (C_sD_s): δ - 0.24 (s, 3 H, Me), 0.16 (s, 3 H, Me), 0.84 (s, 9 H, 'Bu), ~0.9-1.9 (m, 33 H), 2.32–2.44 (m, 2 H, CH₂CO), 3.67 (t, 1 H, $J_{5,6ax} = J_{6ax,6eg} = 10.5$ Hz, H-6ax), 3.82 (t, 1 H, $J_{3,4} = J_{4,5} = 9.5$ Hz, H-4), 4.26 (dd, 1 H, $J_{5,6eq}$ 5.0 Hz, H-6eq), 4.57 (ddd, 1 H, H-5), 4.71 (s, 2 H, CH₂Ph), 4.74 and 4.79 (2 d, 2 H, J 11.5 Hz, CH₂Ph), 4.93 (d, 1 H, J_{2.3} 9.5 Hz, H-2), 4.94 and 5.01 (2 d, 2 H, J.12.7 Hz, OCH2Ar), 5.45 (s, 1 H, CHPh), 6.09 (d, 1 H, J 1.8 Hz, H-3 or H-5), 6.22 (t, 1 H, H-3), 6.48 (d, 1 H, J 1.8 Hz, H-3 or H-5), and 7.05–7.20 (m, 15 H, 3 Ph). Mass spectrum: m/z 949 (M⁺ + 1, 100%).

Anal. Calc. for $C_{58}H_{80}O_9Si$: C, 73.54; H, 8.51. Found: C, 73.21; H, 8.62. 2,4,6-Tri-O-acetyl-1,1²-anhydro-1-(4,6-diacetoxy-2-hydroxymethylphenyl)-3-O- octadecano yl- α -D-glucopyranose (25). — A solution of 23 (40 mg, 42 μ mol) in trifluoroacetic acid-water (10:1, 0.15 mL) was stirred at room temperature for 1 h. Water was added (0.02 mL) and the solution was concentrated. Toluene was evaporated several times from the residue, a solution of which in ethyl acetate-methanol (1:1, 1 mL) was treated by 10% Pd/C (~ 5 mg) under H₂ for 1 h. Work-up and acetylation, as described for the preparation of 19, gave, after column chromatography (5:2 hexane-ethyl acetate), 25 (20 mg, 61%), isolated as a colourless syrup, $[\alpha]_{\rm D} = 9^{\circ} (c \, 0.5)$. ¹H-N.m.r. data (C_6D_6) : $\delta 0.91$ (t, 3 H, J 6.8 Hz, CH₃CH₂, ~ 1.1–1.4 (m, 30 H, CH₂), 1.48, 1.64, 1.69, 1.78, and 1.92 (5 s, 15 H, 5 OAc), 2.25 (t, 2 H, J 7.5 Hz, CH₂CO), 4.01 (dd, 1 H, J_{5 6a} 2.2, J_{6a 6b} 12.5 Hz, H-6a), 4.36 (ddd, 1 H, J_{5 6b} 4.0, J_{4 5} 10.0 Hz, H-5), 4.48 (dd, 1 H, H-6b), 4.70 and 4.79 (2 d, 2 H, J 13.1 Hz, OCH₂Ar), 5.68 (t, 1 H, $J_{34} \sim 10.0$ Hz, H-4), 6.11 (t, 1 H, $J_{33} \sim 10.0$ Hz, H-4), 6.11 (t, 1 H, J_{33} \sim 10.0 Hz, H_{33} \sim 10.0 Hz, ~10.0 Hz, H-3), 6.20 (d, 1 H, H-2), 6.52 and 7.11 (2 d, J 2.0 Hz, H-3,5). Mass spectrum: m/z 794 (M⁺ + 18, 100%).

Anal. Calc. for C₄₁H₆₀O₁₄: C, 63.39; H, 7.78. Found: C, 63.71; H, 7.96.

2-(4,6-O-Benzylidene-3-O-tert-butyldimethylsilyl-\beta-D-glucopyranosyl)-3,5-dibenzyloxy-1-hydroxymethylbenzene (26). — To a stirred solution of 11 (75 mg, 0.11 mmol) in anhydrous oxolane (1 mL) at 0° under Ar was added borane-oxolane complex (м in oxolane, 0.45 mL, 0.45 mmol, 4.0 equiv.). The mixture was stirred at room temperature for 5 h, and 3M sodium hydroxide (4.0 equiv.), 10M hydrogen peroxide (12.0 equiv.), and ethanol (0.2 mL) were added at 0°. Stirring was continued at room temperature overnight. The mixture was concentrated and then diluted with dichloromethane, the organic phase was washed with aqueous 20% sodium hydrogensulfite, saturated aqueous ammonium chloride, and water, then dried (Na₂SO₄), and the solvent was evaporated. Column chromatography (3:1 hexane-ethyl acetate) of the residue gave 26 (58 mg, 75%), isolated as a colourless syrup, $[\alpha]_n = 15^\circ$ (c 0.6). The ¹H-n.m.r. spectrum was unassignable at 25°. Mass spectrum: m/z 529 (M⁺ - 155, 100%), 685 (M⁺ + 1, 33), 702 $(M^+ + 18, 87).$

Anal. Calc. for C₄₀H₄₈O₈Si: C, 70.15; H, 7.06. Found: C, 70.03; H, 6.96.

1-Acetoxymethyl-3,5-dibenzyloxy-2-(2,3,4,6-tetra-O-acetyl-\beta-D-glucopyranosyl)benzene (27). — A solution of 26 (40 mg, 58 µmol) in methanol-M hydrochloric acid (4:1, 2.5 mL) was stirred overnight at room temperature, then neutralised with Dowex 1 (HO⁻) resin, filtered, and concentrated. Toluene was evaporated several times from the residue which was then acetylated as described for the preparation of 19. Column chromatography of the product gave 27 (27 mg, 67%), isolated as a colourless syrup, $[\alpha]_{p} = 23^{\circ} (c 1.7)$. ¹H-N.m.r. data [(CD₃)₂SO, 140°]: δ 1.66, 1.89, 1.91, 1.97, and 2.05 (5 s, 15 H, 5 OAc), 3.88 (ddd, J_{5.6a} 3.7, J_{5.6b} 4.3, J_{4.5} 9.9 Hz, H-5), 4.08 (m, 2 H, H-6a,6b), 4.96 (dd, 1 H, J₃₄8.9 Hz, H-4), 5.02 (d, 1 H, J₁₂9.9 Hz, H-1), 5.02–5.22 (m, 6 H, CH₂Ph), 5.24 (t, 1 H, J_{2,3} 8.9 Hz, H-3), 5.57 (dd, 1 H, 9.9 Hz, H-2), 6.63 and 6.71 (2 d, 2 H, J 2.3 Hz, H-4,6), and 7.26–7.52 (m, 10 H, 2 Ph). Mass spectrum: m/2 710 (M⁺ + 18, 100%).

Anal. Calc. for C₃₇H₄₀O₁₃; C, 64.15; H, 5.88. Found: C, 64.07; H, 5.88.

ACKNOWLEDGMENTS

We thank Dr. K. Scheibli and Dr. J. Szeszak (Ciba-Geigy Limited, Basel) for providing a sample of papulacandin B, and Dr. G. Keravis (Centre de Mesures Physiques, Université d'Orléans) for the mass-spectrometric data.

REFERENCES

- 1 E. Dubois and J.-M. Beau, Tetrahedron Lett., 31 (1990) 5165-5168.
- 2 P. Traxler, W. Tosch, and O. Zak, J. Antibiot., 40 (1987) 1146-1164, and references therein.
- 3 P. Traxler, H. Fritz, H. Fuhrer, and W. J. Richter, J. Antibiot., 33 (1980) 967-978.
- 4 T. Komori, M. Yamashita, Y. Tsurumi, and M. Kohsaka, J. Antibiot., 38 (1985) 455-459.
- 5 T. Komori and Y. Itoh, J. Antibiot., 38 (1985) 544-546.
- 6 G. Rihs and P. Traxler, Helv. Chim. Acta, 64 (1981) 1533-1539.
- 7 B. C. Bajuley, G. Römmele, J. Gruner, and W. Wehrli, Eur. J. Biochem., 97 (1979) 345-351.
- 8 P. Pérez, R. Varona, I. Garcia-Acha, and A. Duran, FEBS Lett., 129 (1981) 249-252.
- 9 R. Varona, P. Pérez, and A. Duran, FEMS Microbiol. Lett., 20 (1983) 243-247.
- 10 G. Römmele, P. Traxler, and W. Wehrli, J. Antibiot., 36 (1983) 1539-1542.
- 11 M. Debono, B. J. Abbott, J. R. Turner, L. C. Howard, R. S. Gordee, A. H. Hunt, M. Barnhart, R. M. Molloy, K. E. Willard, D. S. Fukuda, T. F. Butler, and D. J. Zeckner, Ann. N. Y. Acad. Sci., 544 (1988) 152–167.
- 12 F. Benz, F. Knüsel, J. Nüesch, H. Treichler, V. Voser, R. Nyfeler, and W. Keller-Schierlein, Helv. Chim. Acta, 57 (1974) 2459–2477.
- 13 C. F. Taft and C. P. Selitrennikoff, J. Antibiot., 43 (1990) 433-437.
- 14 P. Traxler, J. Gruner, and J. A. L. Auden, J. Antibiot., 30 (1977) 289-296.
- 15 S. Danishefsky, G. Phillips, and M. Ciufolini, Carbohydr. Res., 171 (1987) 317-327.
- 16 R. R. Schmidt and W. Frick, Tetrahedron, 44 (1988) 7163-7169.
- 17 S. B. Rosenblum and R. Bihovsky, J. Am. Chem. Soc., 112 (1990) 2746-2748.
- 18 S. Czernecki and M.-C. Perlat, J. Carbohydr. Chem., 9 (1990) 915-918.
- 19 E. Dubois and J.-M. Beau, J. Chem. Soc., Chem. Commun., (1990) 1191-1192.
- 20 E. Dubois and J.-M. Beau, Carbohydr. Res., in press.
- 21 K. C. Nicolaou, C.-K. Hwang, and M. E. Duggan, J. Chem. Soc., Chem. Commun., (1986) 925-926.
- 22 S. Hanessian, M. Martin, and R. C. Desai, J. Chem. Soc., Chem. Commun., (1986) 926-927.
- 23 R. R. Schmidt, R. Preuss, and R. Betz, Tetrahedron Lett., 28 (1987) 6591-6594.
- 24 A. Liptak, I. Iodal, J. Harangi, and P. Nanasi, Acta Chim. Acad. Sci. Hung., (1983) 415-422.
- 25 F. G. H. Lee, D. E. Dickson, J. Suzuki, A. Zirnis, and A. A. Manian, J. Heterocycl. Chem., 10 (1973) 649-654.
- 26 P. D. Noire and R. W. Franck, Synthesis, (1980) 882-883.
- 27 H. Newman and R. B. Angier, J. Org. Chem., 31 (1966) 1462-1464.
- 28 A. K. Sinhababu and R. T. Borchardt, J. Org. Chem., 48 (1983) 2356-2360.
- 29 V. G. Dryuk, Tetrahedron, 24 (1976) 1-12.
- 30 H. Mimoun, Angew. Chem., Int. Ed. Engl., 21 (1982) 734-750.
- 31 H. B. Wood, Jr., and H. G. Fletcher, Jr., J. Am. Chem. Soc., 79 (1957) 3234-3236.
- 32 R. W. Friesen and C. F. Sturino, J. Org. Chem., 55 (1990) 5808-5810.
- 33 R. W. Friesen and A. K. Dalijeet, Tetrahedron Lett., 31 (1990) 6133-6136.
- 34 D. D. Perrin, W. L. Armarego, and D. R. Perrin, *Purification of Laboratory Chemicals*, 2nd edn., Pergamon, Oxford, 1980.
- 35 D. R. Coulson, L. C. Satek, and S. O. Grim, Inorg. Synth., 13 (1972) 121-123.