June 1990 Papers 485

A Novel, Regioselective One-Pot Synthesis of 3-Aryl-2-chloroimidazo[1,2-a]pyridines and -pyrimidines

Benito Alcaide, ** Gema Domínguez, * Joaquín Plumet, * Miguel A. Sierra, * Angeles Monge, * Virginia Pérez-Garcia *

^a Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, E-28040 Madrid, Spain

b Laboratorio de Difracción de Rayos X, Facultad de Química, Universidad Complutense, E-28040 Madrid. Instituto de Ciencias de los Materiales, Sede D, Serrano 113, E-28006 Madrid, Spain

Derivatives of 3-aryl-2-chloroimidazo[1,2-a]pyridines and -pyrimidines 2 are prepared in high yields from 2-[(2-aryl-1-hydroxy-2-oxoethyl)amino]pyridines and -pyrimidines 1 by reaction with thionyl chloride, followed by saturated sodium carbonate workup.

The synthesis of imidazo[1,2-a]azines has been widely investigated.1,2 A common feature of most of the reported methods is that C-2 and C-3 of the newly formed imidazole ring, along with the corresponding substituents, are contributed by the reagent used for cyclization. A new strategy for building the C-2-C-3 moiety has been reported recently.3 However, procedures for the synthesis of imidazo[1,2-a]azines with halogen substituents in the imidazole ring are scarce.^{4,5} All these methods are based upon electrophilic aromatic substitution on the existing fused imidazole nucleus. Moreover, it is wellknown that aromatic halogenation on the imidazo[1,2a]azines yields exclusively the 3-halo derivatives, and only when position 3 is blocked does halogenation occur at position 5.1,2 To our knowledge only one example of a 2-chloroimidazo[1,2-a]azine, namely 2-chloroimidazo [1,2-a]pyridine prepared by reaction of imidazo[1,2a]pyridin-2-one with phosphoryl chloride, has been reported.⁵ However, it has been reported that 2-chloro-3nitroimidazo[1,2-a]pyridine undergoes, after N-methylation, smooth substitution with appropriate nucleophilic reagents yielding some useful mesoionic derivatives of the imidazo[1,2-a]pyridinium system,6

Recently, we reported that 2-[(2-aryl-1-hydroxy-2-oxo-ethyl)amino]pyridines and pyrimidines 1, readily accessible by reaction of 2-aminoheterocycles and aryl-glyoxals, easily undergo Lewis acid catalyzed intramole-

1. SOCi₂/CCl₄,
$$\triangle$$
, 5-60 h
2. Sat. aq. Na₂CO₃
42-90 %

Ar

2

2	X	Y	Ar
a b c d e f g h	CH CH CH CH CH CH CH CH	Y H 5-CH ₃ 6-CH ₃ 7-CH ₃ 6-Cl 6-CH ₃ 6-Cl 6-CH 6-CH	Ar 4-CH ₃ C ₆ H ₄ 4-CH ₃ OC ₆ H ₄ 4-CH ₃ OC ₆ H ₄ 4-CH ₃ OC ₆ H ₄ Ph 4-ClC ₆ H ₄
j k l	N N N	н Н Н	Ph 4-CH ₃ C ₆ H ₄ 4-ClC ₆ H ₄

Scheme A

cular condensation processes to give bicyclic mesoionic 2-aryl substituted imidazo[1,2-a]azine derivatives in high yield. As a part of a general study on the reactivity and synthetic applications of (2-aryl-1-hydroxy-2-oxoethyl)aminoheteroarenes 1, we report herein a new and totally regioselective one-pot procedure for the preparation of substituted 3-aryl-2-chloroimidazo[1,2-a]azines 2 by intramolecular condensation of compounds 1 in the presence of thionyl chloride. 2-Chloro derivatives 2 are of potential interest as precursors for other 2-substituted derivatives and related mesoionic imidazo[1,2-a]azinium systems.

The treatment of 1 with an excess of thionyl chloride in carbon tetrachloride as cosolvent at reflux afforded compounds 2 as their hydrochlorides, the free bases being obtained upon reaction with aqueous sodium carbonate (Scheme A). Reaction conditions, yields, and physical and spectroscopic data are collected in Tables 1-3.

Table 1. Imidazo[1,2-a]pyridines and -pyrimidines 2 Prepared

Prod- uct	Reaction Time	Yield ^a (%)	mp ^b (°C)	Molecular Formula°
	(min)			
2a	5	76°	oil	C ₁₄ H ₁₁ ClN ₂ (242.7)
2 b	5	42°	oil	$C_{15}H_{13}CIN_2$ (256.7)
2c	7	68°	132–134	$C_{15}H_{13}ClN_2$ (256.7)
2d	5	62e	110-112	(256.7)
2e	5	60°	146–148	$C_{14}H_{10}Cl_2N_2$ (277.1)
2f -	10	90ª	135–136	$C_{15}H_{13}CIN_2O$ (272.7)
2g	10	80 ^d	172–174	$C_{14}H_{10}Cl_2N_2O$ (293.1)
2h	5	84 ^d	134–135	$C_{13}H_8Cl_2N_2$ (263.1)
2i 	5	90°	129–130	$C_{14}H_{10}Cl_2N_2$ (277.1)
2j 	20	73 ^d	211–213	$C_{12}H_8ClN_3$ (229.6)
	20	85°	227–228	$C_{13}H_{10}CIN_3$ (243.7)
21	60	90°	178–180	$C_{12}H_7Cl_2N_3$ (264.1)

^a Yield of isolated product 2 based on 1. All compounds 2 were recrystallized from MeOH.

^b Uncorrected, measured with a Büchi 512 apparatus.

d Purified by crystallization.

[°] Satisfactory microanalyses obtained: $C \pm 0.29$, $H \pm 0.07$, $N \pm 0.13$, $Cl \pm 0.30$.

Purified by flash chromatography using silica gel 60 (230-400 mesh ASTM).

486 Papers Synthesis

Table 2. ¹H-NMR Data of Imidazo[1,2-a] pyridines and -pyrimidines 2^a

Product	δ				$J(\mathrm{Hz})$					
	H-5	H-6	H-7	H-8	J_{5-6}	J_{5-7}	J_{5-8}	J_{6-7}	J_{6-8}	J_{7-8}
2a	8.09	6.78	7.19	7.54	6.80	1.10	≤ 0.5	6.80	0.92	9.01
2b		6.50	7.12	7.47				6.96	≤ 0.5	9.03
2c	7.89		7.06	7. 4 6		1.60	≤ 0.5			9.18
2d	8.00	6.63		7.31	7.02		0.73		1.83	
2e	8.14		7.19	7.52		1.95	0.85			9.52
2f	7.84		7.06	7. 4 6		1.71	1.10			9.15
2g	8.09		7.18	7.51		1.95	0.85			9.52
2g 2h	8.16		7.19	7.52		1.94	≤ 0.5			9.60
2i	7.87		7.11	7.48		1.71	0.49			9.15
2j	8.49	6.95	8.56		6.96	2.01		4.15		
2k	8.47	6.95	8.53		6.84	2.07		4.15		
21	8.43	6.96	8.60		6.90	1.71		4.15		

^a 300 MHz, CDCl₃/TMS. Recorded on a Varian XL-300 and on a Bruker ACE-300.

Table 3. ¹³C-NMR Data of Imidazo[1,2-a]pyridines and -pyrimidines **2**^a

Product	C-2	C-3	C-5	C-6	C-7	C-8	C-9
2a	133.2	119.4	124.8	112.7	122.9	116.8	142.8
2b	134.3	120.0	136.1	113.6	124.8	115.0	144.1
2c	133.0	119.2	120.7	122.5	128.0	116.3	141.9
2d	132.8	118.8	122.3	115.3	136.1	115.3	143.3
2e	134.2	120.1	120.8	121.2	126.0	117.2	141.0
2f	133.0	119.0	120.7	122.4	127.8	116.3	141.8
2g	134.2	120.1	120.9	121.2	126.1	117.4	141.0
2h	134.5	120.2	120.9	121.4	126.4	117.5	141.3
2i	133.6	118.0	120.5	122.9	128.4	116.6	142.2
2j	135.6	118.3	130.5	109.4	150.9		145.8
2k	135.2	118.3	130.5	109.2	149.7		145.5
21	136.1	117.3	130.4	109.6	150.2		146.0

^a 75 MHz, CDCl₃/TMS. Recorded on a Varian XL-300 and on a Bruker ACE-300.

Spectroscopic and analytical data are in accordance with the structures of fused imidazole 2 proposed. Thus, the chemical shifts are the most significant coupling constants are generally in good agreement with those described for related imidazo[1,2-a]azines.8 However, with the available data, it was not possible to distinguish between the two expected regioisomers 2 and 5, whose formation would have occurred through chloroamine 3 as shown in Scheme B. Formation of 5 from 3 would involve previous isomerization to 4 in a process related to some isomerization equilibria of the Chapman-type9 prior to cyclization. Although less likely, this later possibility could not be discarded a priori. It is known that intermediates related to 4 cyclize with ease, while those related to 3 cyclize only with difficulty. ¹⁰ An X-ray crystallographic analysis ¹¹ of compound **2h** confirmed unambiguously the structure and regiochemistry as 3aryl-2-chloro- and not 2-aryl-3-chloro-substitution and hence the structure as 2 (Figure). Bond distances and angles are given in Table 4.

Derivatives of 3-aryl-2-chloroimidazo[1,2-a]pyridines 2a-i and 3-aryl-2-chloroimidazo[1,2-a]pyrimidines 2j-l were prepared in a simple and regiospecific fashion

Scheme B

in good to excellent yields. The method represents a new one-pot synthesis of 2-aryl-3-chloroimidazo-[1,2-a]-pyridines and -pyrimidines. The reaction fails with 2-(2-aryl-1-hydroxy-2-oxoethyl)amino derivatives of pyrazines and azoles. In these later cases, only the corresponding intermediate chloroamines 3 were obtained (as their hydrochlorides), and these did not cyclize to the imidazo[1,2-a]derivatives even after prolonged reaction times, only decomposition products were obtained.

Table 4. Selected Bond Distances (Å) and Angles (deg) for Compound 2h.

1.723 (3)	C(9)-N(1)-C(2)	104.6 (3)	Cl(2)-C(6)-C(5)	119.2 (2)
1.714 (2)	C(9)-N(4)-C(3)	107.2 (2)	C(7)-C(6)-C(5)	122.6 (3)
1.327 (4)	C(5)-N(4)-C(3)	131.0 (2)	CI(2)-C(6)-C(5)	118.3 (2)
1.346 (4)	C(5)-N(4)-C(9)	121.6 (2)	C(8) - C(7) - C(6)	119.3 (3)
1.377 (3)	Cl(1)-C(2)-N(1)	119.3 (2)	C(7)-C(8)-C(9)	120.1 (3)
1.400 (3)	Cl(1)-C(2)-C(3)	126.4 (2)	N(4)-C(9)-C(8)	118.7 (3)
1.392 (3)	N(1)-C(2)-C(3)	114.2 (3)	N(1)-C(9)-C(8)	130.4 (3)
1.346 (5)		103.1 (2)	() () ()	110.9 (3)
1.407 (4)		()		120.2 (2)
1.409 (4)		` '		121.1 (2)
1.359 (4)	* * * * * * * * * * * * * * * * * * * *	` '		
` '	- () - (-) - (-)	(-)		
1.460 (3)				
	1.714 (2) 1.327 (4) 1.346 (4) 1.377 (3) 1.400 (3) 1.392 (3) 1.346 (5) 1.407 (4) 1.409 (4) 1.359 (4) 1.376 (4)	1.714 (2)	1.714 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Figure. X-ray crystallographic structure of 2h

3-Aryl-2-chloroimidazo[1,2-a]pyridines and -pyrimidines 2; General Procedure:

SOCl₂ (10 mL) is added in one portion to a vigorously stirred suspension of 1⁷ (0.5 g) in CCl₄ (6 mL) at r.t. The solution thus obtained is heated under reflux for the time indicated in Table 1. The solvent is evaporated under reduced pressure and the residue is taken up in CCl₄. The solvent is evaporated again and the resulting residue (solid or oil) is throughly dried *in vacuo* to eliminate traces of SOCl₂. The residue is taken up in CH₂Cl₂ (20 mL) and extracted with sat. Na₂CO₃ solution (20 mL). The aqueous phase is extracted with CH₂Cl₂ (3×15 mL). The combined organic extracts are washed with brine (20 mL) and dried (MgSO₄). The solvent is evaporated and the crude product is purified by crystallization (MeOH) or flash column chromatography (silica gel, hexane/EtOAc, 3:1) (Table 1).

2h: orthorombic, space group Pbca, Z=8, a=11.1958(9), b=7.737(1), c=26.978(2) Å, V=2336(4) Å³, 4002 reflections were collected in a Euraf-Nonius CAD4 diffractometer using graphite monochromated Mo-k α (0.71069 Å) radiation. The structure was solved by direct and Fourier methods. The final refinements led to R=0.048.

Support for this research under Grant PB87-0064-CO3-00 from the DGICYT (M. E. C., Spain) is gratefully acknowledged. One of us (M. A. S.) thanks Ministerio de Educación y Ciencia (Spain) for a grant.

Received: 31 July 1969; revised: 31 October 1989

- Paolini, J.P., in: Special Topics in Heterocyclic Chemistry, Weissberger, A.; Taylor, E.C. (eds.), John Wiley and Sons, New York, 1977, p. 1.
- (2) Montgomery, J.A.; Secrist III, J.A., in: Katritzky and Rees Comprehensive Heterocyclic Chemistry, Vol 5, Potts, K.T. (ed.), Pergamon Press, Oxford 1984, p. 607.
- (3) Podergajs, S.; Stanovnik, B.; Tisler, M. Synthesis 1984, 263.
- (4) Paudler, W. W. J. Org. Chem. 1976, 41, 3549 and references therein.
- (5) Paolini, J.P.; Robins, R.K. J. Heterocyclic Chem. 1965, 2, 53.
- (6) Newton, Ch.G.; Ollis, W.D.; Wrigth, D.E. J. Chem. Soc., Perkin Trans 1 1984, 69.
- (7) Alcaide, B.; Pérez-Ossorio, R.; Plumet, J.; Sierra, M.A. Tetrahedron Lett. 1986, 27, 1627. Alcaide, B.; Plumet, J.; Sierra, M.A.; Vicent, C. J. Org. Chem. 1989, 54, 5763.
- (8) Blewitt, H.L., in: Special Topics in Heterocyclic Chemistry, Weissberger, A.; Taylor, E.C. (eds.), John Wiley and Sons, New York, 1977, Chap. II, p. 126.
- (9) Stevens, T.S.; Watts, W.E., in: Selected Molecular Rearrangements, Van Nostrand Reinhold, New York, 1973, p. 67.
- (10) Elliot, A.J.; Guzik, H.; Soler, R. J. Heterocyclic Chem. 1982, 19, 1437.
- (11) The atomic coordinates for this work are available from the Gesellschaft für wissenschaftlich-technische Information mbH. Eckenstein-Leopoldshafen 2. D-7514 Karlsruhe.