[Contribution from the Department of Research in Pure Chemistry, Mellon Institute of Industrial Research]

Cinchona Alkaloids in Pneumonia. VII. Amyl and Hydroxyalkyl Apocupreine Ethers

By Mary Hostler Green,¹ Alice G. Renfrew and C. L. Butler²

Recent work in the apocupreine ether series³ has shown that on ascending in the series of alkyl ethers, a high pneumococcicidal activity is maintained through the C_4 derivatives. The situation is somewhat complicated by variations in the structure of the butyl group; however, isobutyl apocupreine dihydrochloride was shown to be as active in vitro as the very potent ethyl derivative. This is in marked contrast with the behavior of the corresponding hydrocupreine ethers.⁴ It was also shown that hydroxyethylapocupreine,⁵ which has found clinical application, has much stronger antipneumococcic activity than the corresponding hydrocupreine derivative. Further, hydroxypropyl ethers of apocupreine have very strong bacteriostatic action and much lower toxicity than the alkyl derivatives.6 This higher activity in the apocupreine ether series is not surprising in view of the fact that apocupreine itself meric hydroxybutyl and isomeric amyl apocupreine ethers was undertaken in order to study further the influence of the size and structure of the ether group on antipneumococcic activity in this series. The amyl ethers were prepared readily by alkylation of apocupreine with the desired amyl p-toluenesulfonates. The preparation of the hydroxybutyl derivatives by alkylation with benzyloxybutyl p-toluenesulfonates and subsequent hydrolysis of the benzyl group offered no difficulty. Alkylations were also carried out with β -hydroxy-*n*-propyl and β -methyl- β -hydroxy-*n*propyl *p*-toluenesulfonates. These reagents gave only very low yields of hydroxyalkyl ethers. The results are entirely in agreement with earlier data on the use of glycol monoesters in alkylations of basic phenolic substances.^{5,7}

Some biological properties of the apocupreine ethers prepared in the course of the work are

Apocupreine ether dihydrochloride	In vitro prevents growth of pneumococcus in concn. of	2	Toxicity 3	(20 g. mice 4	raperitoneal deaths at mg 5	. dosages of 6	7 8	
β-Hydroxy- <i>n</i> -propyl	1:300,000				0/30	1/30	10/30	
β-Methyl-β-hydroxy-n-propyl	1:50,000				1/30	19/30		
δ-Hydroxy- <i>n</i> -butyl	1:50,000				7/30	25/30		
α-Methylol n-propyl	1:400,000				10/30	14/30		
α-Methyl-β-hydroxy-n-propyl	1:400,000				6/30	20/30	30/30	
n-Amyl	1:800,000	7/30	27/30		10/10			
<i>i</i> -Amyl ⁸	1:300,000	6/30	20/30					
s-Butylcarbinyl	1:400,000	3/30	20/30		10/10			
α -Methyl- <i>n</i> -propylcarbinyl	1:400,000	2/30	12/30	29/30				
Diethylcarbinyl	1:400,000		4/30	28/30				

 $\label{eq:Table I^a} {\ensuremath{\mathsf{Bacteriostatic}}}\ {\ensuremath{\mathsf{Power}}\ and \ensuremath{\mathsf{Toxicity}}\ of \ensuremath{\mathsf{Apocupreine}\ Ethers}\ {\ensuremath{\mathsf{Ethers}}\ }$

^a The experimental testing of these alkaloids was carried out by Drs. Maclachlan, Bracken and Patrick of the Mercy Hospital, Pittsburgh, Penna.

shows considerable activity, whereas hydrocupreine is quite low in bacteriostatic action.

The present work on β -hydroxypropyl, iso-

(1) Present address, American Products Company, Cincinnati, Ohio.

(2) Present address, Bennington College, Bennington, Vermont.
(3) Butler, Hostler and Cretcher, THIS JOURNAL, 59, 2354 (1937).

(4) Morgenroth and Bumke, Deut. Med. Wochschr., 40, 539 (1914); 44, 729 (1918); Morgenroth and Tugendreich, Berlin. klin. Wochschr., 53, 794 (1916); Biochem. Z., 79, 257 (1917).

(5) Maclachlan, Johnston, Bracken and Crum, Am. J. Med. Sci., 197, 31 (1939); Butler, Nelson, Renfrew and Cretcher, THIS JOURNAL, 57, 575 (1935).

(6) Butler and Renfrew, THIS JOURNAL, 60, 1473 (1938).

shown in Table I. A decided lowering in the toxicity of butyl apocupreine ethers was accomplished by introduction of the hydroxyl group into the butyl radical. This effect was accompanied by a decrease in the *in vitro* bacteriostatic activity, a decrease which was very marked in the β -methyl- β -hydroxy-*n*-propyl and the δ -hydroxy-*n*-butyl ethers. The suitability of the more active α -methylol *n*-propyl and α -methyl β -hydroxy-*n*-propyl ethers for trial in human pneumonia will

(7) Butler and Renfrew, ibid., 60, 1582 (1938).

(8) Miura and Okamoto, Jap. J. Med. Sci., V, 1, 1 (1930),

depend on the results (not yet available) of tests for visual disturbance.

Experimental⁹

Butylene Glycol Monobenzyl Ethers.—Isomeric monobenzyl ethers were prepared by a method which has already been described.¹⁰

	TABLE II		
Substance, ether	B. p. at 6 mm, °C.	Anal. (Calcd. H ₁₆ O ₂ : C, 73.3; C	for C ₁₁ - H, 8.9) H
1,2-Butylene glycol 1-monobenzyl	128-132	73.9	9.1
2,3-Butylene glycol monobenzyl	122-125	73.0	9.0
nonobenzyl	146-149	73.2	9.3

Various *p*-Toluenesulfonyl Esters.—Hydroxypropyl, hydroxybutyl, benzyloxybutyl and amyl *p*-toluenesul-

Calcd. for $C_{10}H_{14}O_4S$: S, 13.9. Found: S, 13.7. α -Methyl- β -benzyloxypropyl p-toluenesulfonate, m. p. 47°. *Anal.* Calcd. for $C_{18}H_{22}O_4S$: S, 9.7. Found: S, 10.1.

Alkylation of Apocupreine.—Alkylations according to the previously described methods proceeded smoothly and gave good yields of final products except, as noted above, when glycol monoesters were used as reagents. In these experiments, yields of 4-8% were obtained. δ -Benzyloxybutyl apocupreine was obtained in crystalline condition from ether; m. p. 104° ; specific rotation -152° .¹² Anal. Caled. for C₃₀H₃₆O₃N₂: N, 5.9. Found: N, δ -benzyloxybutylapocupreine, 5.7; α -benzyloxymethyl *n*-propylapocupreine, 5.9; α -methyl- β -benzyloxy-*n*-propylapocupreine, 5.9.

Hydrolysis of the benzyloxybutyl ethers in 1:1 hydrochloric acid proceeded smoothly⁸ and good yields of the corresponding hydroxybutyl derivatives were obtained. Some physical properties and analyses of the various ethers which were prepared are shown in Table III.

TABLE III

	BasesBases				~	Dihydrochlorides					
Apocupreine ether	М. р., °С.	Sp. rot.	Formula	Nitrog Calcd.	en, % Foun	d rot.	Formula	Chlorin Caled.	e, % Found	Mois Caled.	sture Found
β-Hydroxy-n-propyl	170	-180°	C22H28O3N2	7.6	7.7	-216°	C22H28O3N2·2HCl	16.1			
β-Methyl-β-hydroxy-n-propyl	102	— 169°	C23H37O3N2	7.3	7.3	-218°	C23H30O3N2·2HCl	15.5	14.7		
δ-Hydroxy-n-butyl	178	— 179°	C28H3)O3N2	7.3	7.2	-213°	C23H20O3N2·2HCi	15.5	15.2		
α-Methylol n-propyl	Amor-	-165°	C28H30O3N2	7.3	7.4	-202°	C23H30O3N2·2HCl	15.5	13.8		
α-Methyl-β-hydroxy-n-propyl	phous	—163°	$C_{23}H_{31}O_3N_2$	7.3	7.3	-212°	C28H80O3N2·2HCI	15.5	14.0		
n-Amyl ¹³	146	178°	$C_{24}H_{\delta 2}O_2N_2$	7.4	7.4	-230°	C24H32O2N2·2HCl·1.5 aq.	15.2	15.8	5.8	5.2
i-Amyl	175	∽181°	$C_{24}H_{32}O_{2}N_{2}$	7.4	7.3	-206°	$C_{24}H_{32}O_2N_2\cdot 2HCl\cdot 2aq$.	14.9	14.8	7.3	7.1
s-Butylcarbinyl	169	-172°	$C_{24}H_{32}O_{2}N_{2}$	7.4	7.3	~225°	$C_{24}H_{32}O_2N_2 \cdot 2HCl \cdot aq.$	15.5	14.8	3.8	3.4
Methyl-n-propylcarbinyl	Amor-	— 163°	C24H32O2N2	7.4	7.1	-212°	$C_{24}H_{32}O_2N_2 \cdot 2HCl \cdot 2aq.$	14.9	15.2	7.3	7.7
Diethylcarbinyl	phous	-150°	$C_{24}H_{32}O_2N_2$	7.4	6.7	-213°	$C_{24}H_{32}O_2B_2 \cdot 2H_2O \cdot 1.5aq.$	15.2	14.6	5.8	5.5

fonates were prepared in good yields from propylene glycol, isobutylene glycol, isomeric butylene glycol, monobenzyl ethers and isomeric amyl alcohols by methods described in previous papers in this series. Suitable alkylating reagents were obtained without extensive purification. Three of the esters were crystallized from ether.

Diethylcarbinyl-p-toluenesulfonate, m. p. $37^{\circ,11}$ β -Hydroxy-n-propyl-p-toluenesulfonate, m. p. 46° . Anal.

Summary

Hydroxypropyl, isomeric hydroxybutyl and isomeric amyl apocupreine ethers have been prepared. Some biological properties of these substances, of interest in the chemotherapeutic study of pneumonia, have been presented briefly.

RECEIVED MAY 15, 1939

⁽⁹⁾ The preparation of many of the reagents used in this work was carried out by Miss Mary Clapp.

⁽¹⁰⁾ Butler, Renfrew and Clapp, THIS JOURNAL, 60, 1472 (1938).
(11) Tabern and Volweiler, *ibid.*, 56, 1141 (1934).

⁽¹²⁾ Rotations of bases were measured in alcoholic solution; salts were measured in aqueous solution; l = 1, c = 1.

⁽¹³⁾ Buttle, Henry, Solomon, Trevan and Gibbs, *Biochem. J.*, **32**, **47** (1938).