Oxidation of 1,1-disubstituted hydrazines with benzeneseleninic acid and selenium dioxide. Facile preparation of tetrazenes

THOMAS G. BACK¹ AND RUSSELL G. KERR

Department of Chemistry, University of Calgary, Calgary, Alta., Canada T2N 1N4 Received March 15, 1982

THOMAS G. BACK and RUSSELL G. KERR. Can. J. Chem. 60, 2711 (1982).

Various 1,1-disubstituted hydrazines were oxidized with benzeneseleninic acid in methanol, generally producing the corresponding tetrazenes in high yield. Studies of the by-products of the reaction, of the effects of protic vs. aprotic solvents, and trapping experiments suggest that N-aminonitrenes are unlikely intermediates in this oxidation. An alternative mechanism involving a Pummerer-like reaction of seleninamides derived from the hydrazines is proposed. Tetrazene formation fails when the hydrazine precursor contains an aryl or p-toluenesulfonyl substituent, or when it is highly hindered. Selenium dioxide may be employed as the oxidant instead of the seleninic acid, but is generally less efficacious in achieving high tetrazene yields.

THOMAS G. BACK et RUSSELL G. KERR. Can. J. Chem. 60, 2711 (1982).

Une variété de hydrazines 1,1-disubstituées a été oxydée par l'acide benzèneséléninique et, en général, de bons rendements des tétrazènes correspondants ont été obtenus. Les études des sous-produits de ces réactions, les effets des solvants protiques et aprotiques, ainsi que le résultat d'une expérience de trappage suggèrent que les N-aminonitrénes sont des intermédiaires improbables dans cette oxydation. Un méchanisme alternatif est proposé, dans lequel un séléninamide dérivé de l'hydrazine de départ subit une réaction de Pummerer. La formation des tétrazènes ne réussit pas quand l'hydrazine contient un substituant aryle ou *p*-toluènesulfonyle et également quand l'hydrazine est très encombrée. Le dioxyde de sélénium peut être employé comme agent d'oxydation au lieu de l'acide séléninique, mais la formation des tétrazènes correspondants est généralement moins efficace.

A number of reagents have been employed in the oxidations of 1,1-disubstituted hydrazines 1 to tetrazenes (diaminodiazenes) 2. Examples include oxides of lead (1, 2), mercury (3-5) and manganese (6), halogens (3, 4), potassium bromate (4), iodate (4) and permanganate (7), lead tetraacetate (8), quinone (2, 9), and *tert*-butyl hypochlorite (10).

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIVERSITY OF PITTSBURGH on 02/10/15 For personal use only.

Recent studies have shown that benzeneseleninic acid (3) and anhydride (4) are efficient oxidants of various hydrazines and hydrazo derivatives (11-13). As an extension of this work, we were prompted to examine the similar oxidation of 1,1-disubstituted hydrazines with 3. Preliminary results indicated that the transformation of compounds 1 to their corresponding tetrazenes 2 could be smoothly achieved in this manner (14). It is the intent of the present article to further delineate the scope and limitations of this method and to comment on its mechanism. We also describe for the first time several experiments in which selenium dioxide was employed as the oxidant.

Results and discussion

The oxidation of hydrazines 1a-1g with benzeneseleninic acid 3 in methanol provides

¹Author to whom correspondence should be addressed.

tetrazenes 2a-2g as the principal products, generally in high yield (see Table 1, entries 1, 6, 10-12, 14, and 16). In most cases the reactions are vigorous and enhanced tetrazene yields were obtained by performing the oxidations at -10° C and by the prompt work-up of the products. The separation of the tetrazenes from diphenyl diselenide and other by-products was readily achieved by preparative tlc. In the case of the relatively insoluble tetrazenes 2e-2g, the products crystallized directly from the reaction mixture. This procedure therefore provides a convenient method for the conversion of a variety of 1,1-disubstituted hydrazines to tetrazenes.

Further experiments revealed that a high concentration of both reactants is necessary for optimum results. Entries 2 and 3 in the table reveal that considerable reductions in product yields occurred when either the hydrazine or the seleninic acid was introduced by slow addition. The use of water as solvent instead of methanol in the preparation of 2a resulted in only a small reduction in yield (entry 4) while aprotic solvents such as chloroform or diglyme afforded significantly lower yields of 2b (entries 7 and 8). Hydrazines 1f and 1gwere oxidized as their sulfates (entries 14-16); an attempt to react the free base of 1g with seleninic acid 3 resulted in the recovery of starting material. The low reactivity of the latter compound is in part attributed to its poor solubility in methanol, and may to a large extent be circumvented by employment of the sulfate salt.

0008-4042/82/212711-08\$01.00/0

©1982 National Research Council of Canada/Conseil national de recherches du Canada

2711

CAN. J. CHEM. VOL. 60, 1982

Entry	Hydrazine 1, R ₂ N	Oxidant	Yield of $2(\%)^a$	Conditions ^b
1	1a N	3	74	Standard
2	1a	3	39	Slow addition of 3
3	1 <i>a</i>	3	7	Slow addition of 1a
4	1 <i>a</i>	3	60	H ₂ O solvent, RT
5	1 <i>a</i>	SeO_2	73	Standard
6		3	78	Standard
7	1 <i>b</i>	3	40	CHCl ₃ solvent
8	1 <i>b</i>	3	43	Diglyme solvent, RT
9	16	SeO_2	32	Standard
10	1c _N	3	75	Standard
11	$1d \text{ Me}_2 N$	3	28 ^c	Standard
12	le (PhCH ₂) ₂ N	3	75	Standard
13	1 e	SeO_2	39 ^d	RT
14		3	96	Standard
15	1f ^e	SeO_2	Trace	RT
16		3	86	RT

TABLE 1. Preparation of tetrazenes

^a Isolated yield unless otherwise noted. ^bStandard conditions are described in the experimental section. Any deviations with respect to the mode of addition, solvent, or temperature are indicated in the table. RT = room temperature. ^cDetermined by uv. ^dIsolated as a mixture with hydrazone 8; yield determined by integration of the nmr spectrum. ^cEmployed as the sulfate salt.

The use of selenium dioxide in lieu of seleninic acid 3 (entries 5, 9, 13, and 15) was found to give capricious results. For example, N-aminopiperidine (1a) gave comparable yields of 2a with the two oxidants, while the similar morpholine derivative 1b afforded a much lower yield of 2b with selenium dioxide. Furthermore, the latter oxidant provided a poor yield of tetrazene 2e from 1e and failed to react significantly with hydrazine 1f even after a longer than normal reaction time at room temperature instead of at -10° C. The use of selenium dioxide also results in the formation of finely divided red selenium as a by-product, which poses additional difficulties during work-up. Consequently, the use of the dioxide in place of seleninic acid 3 is generally not recommended.

Compelling evidence exists for the formation of

intermediate N-aminonitrenes (1,1-diazenes) 5 in the oxidations of 1,1-disubstituted hydrazines with certain other reagents such as lead tetraacetate (15). Trapping experiments employing olefins (16, 17) or sulfoxides (16, 18) have resulted in the formation of high yields of N-aminoaziridines and sulfoximines, respectively. In the case of the highly hindered and persistent N-(2,2,6,6-tetramethylpiperidyl)nitrene (6), direct characterization by spectroscopic methods was achieved at low temperatures (19-21). Tetrazene formation may result from the further reaction of the aminonitrenes with their precursor hydrazines to produce tetrazanes 7, which in turn are further oxidized to the final products. In several instances, the tetrazanes have been successfully isolated (22). The direct dimerization of aminonitrenes appears

2712

=

BACK AND KERR

to be a less common source of tetrazenes, but evidence for such a process has been provided for the dimerization of 6 to tetrazene 2h (20). These processes are illustrated in Scheme 1.

Several of our results indicate that a different mechanism is involved in the present oxidations of hydrazines 1 with 3. First, the fragmentation of N-(dibenzylamino)nitrene to bibenzyl and nitrogen is known to compete favourably with tetrazene formation, frequently providing the major product (6, 9, 10, 23, 24). In contrast, the oxidation of 1e with 3 affords no significant amount of bibenzyl, producing instead the tetrazene 2e (75%) and hydrazone 8 (22%) as the principal products. Furthermore, aminonitrenes bearing a-hydrogens are capable of tautomerization to the dipolar species 9 (24, 25), a process which is favoured in protic solvents (24). Under such conditions, N-piperidino and N-morpholinonitrenes are reported to produce cyclic dimers 10, to the nearly complete exclusion of the corresponding tetrazenes (24). Again, these results contrast with the present system wherein higher yields of tetrazenes 2a and 2b were produced in protic solvents such as methanol or water than in aprotic solvents such as chloroform or diglyme (see Table 1, entries 1, 4, and 6-8). The trapping of N-phthalimidonitrene with dimethyl sulfoxide during the oxidation of 1gwith 3 was also studied. The sulfoximine 11 had previously been obtained in 74% yield when hydrazine 1g was treated with lead tetraacetate in dimethyl sulfoxide (18). However, the present

$$\begin{array}{ccc} R_2 N - N H_2 & \xrightarrow{OX.} & [R_2 N - \overset{}{N} \leftrightarrow R_2 \overset{+}{N} = \tilde{N}] \\ 1 & 5 \end{array}$$

$$1 + 5 \rightarrow R_2 N - NH - NH - NR_2 \xrightarrow{OX.} R_2 N - N = N - NR_2$$

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIVERSITY OF PITTSBURGH on 02/10/15 For personal use only.

reaction with 3 afforded the far lower yield of 18% of adduct 11. These experiments suggest that pathways other than those displayed in Scheme 1 occur in the present oxidations, and that aminonitrene intermediates do not account for a substantial portion of the products obtained.²

An attempt was also made to detect the formation of aminonitrene 6 in the oxidation of hydrazine 1h with 3. Since intermediate 6 is known to be stable at -78° C and to possess a deep purple colour (21), its direct observation should be possible if it is produced in the present oxidation at similar temperatures. Unfortunately, the highly hindered parent hydrazine 1h failed to react with the seleninic acid below -5° C. At higher temperatures, nitrogen evolution occurred, accompanied by decomposition to a complex mixture of unidentified products. Conclusions regarding the intermediacy of aminonitrene 6 in the present oxidation of 1h are therefore precluded.

A plausible mechanism for tetrazene formation which circumvents the need for aminonitrene intermediates is shown in path a of Scheme 2. Seleninylation of 1 with 3 produces seleninamide 12, resulting in a Pummerer-type reaction catalyzed by the seleninic acid. The Pummerer intermediate 14

2713

²A referee has commented that the evidence for aminonitrene intermediates is not compelling for all reported cases where 1,1-disubstituted hydrazines are oxidized to tetrazenes. We agree that the mechanisms of such oxidations may not be identical in all situations. However, solid evidence for the formation of aminonitrenes has been demonstrated in many of the oxidations cited above, and such species are widely accepted as being common intermediates in these processes. We therefore feel that it is not unreasonable to attribute the observed differences between our results and those in the literature to the fact that the latter reactions involve aminonitrenes as their authors suggest, whereas ours do not.

2714

• •

CAN. J. CHEM. VOL. 60, 1982

is thus generated via species $13.^3$ The further reaction of 14 with hydrazine 1 then affords the product tetrazene with concomitant formation of benzeneselenol, which is readily oxidized to diphenyl diselenide by the seleninic acid. Related Pummerer reactions of selenoxides have been previously reported (26–32) and seleninic acid 3 is known to be an effective catalyst in these processes (26, 27). The use of polar solvents such as methanol or water may facilitate these transformations by solvation of the ionic intermediates shown in the

³The conversion of **12** to **14** could also be achieved by seleninylation rather than protonation of the seleninamide oxygen atom by **3**, resulting in the formation of intermediate i in lieu of **13**. Similarly, oxidations performed with methanolic selenium dioxide (dimethyl selenite) could proceed via intermediates **ii** or **iii**.

above scheme. The formation of hydrazone 8 in the oxidation of N,N-dibenzylhydrazine 1e is also consistent with the Pummerer reaction in Scheme 2. The Pummerer intermediate 14 may undergo attack by hydrazine 1e at one of the benzylic positions instead of at the N'-nitrogen atom (path b), resulting in the formation of tribenzylhydrazine and diazene 15. Further oxidation of the hydrazine by 3 leads to the observed product 8, while nitrogen extrusion from 15 provides benzyl phenyl selenide, a small amount of which was also isolated from the reaction mixture. Additional support for these steps derives from literature precedents. The formation of 8 from tribenzylhydrazine closely resembles the oxidation of certain amines with the related oxidants benzeneseleninyl chloride (33) and anhydride 4 (34) to produce imine intermediates. Also, nitrogen extrusions from aryl or acyl analogues of 15 have previously been postulated to account for the observed formation of aryl phenyl selenides and selenoesters in the oxidations of arylhydrazines or hydrazides with 3 (11). The transformations depicted in Scheme 2 are therefore entirely consistent with both the present and previous observations.

BACK AND KERR

We also report that certain 1,1-disubstituted hydrazines undergo anomalous oxidations with seleninic acid 3. Thus, N-methyl-N-phenylhydrazine (1*i*) afforded a complex mixture which provided N-methyl-*p*-(phenylseleno)aniline (16) as the only recognizable component. Similarly, the oxidation of N,N-diphenylhydrazine (1*j*) produced a mixture containing at least ten components, whose identification was not attempted. It therefore appears that this method is unsuitable for the preparation of tetrazenes bearing aryl substituents.

The oxidation of N-benzyl-N-p-toluenesulfonylhydrazine (1k) with 3 also proved to be anomalous. When the reaction was performed in chloroform, the principal products were the sulfone 17, the sulfinate ester 18, and the selenosulfonate 19, isolated in yields of 38%, 25%, and 30%respectively, along with diphenyl diselenide. These results suggest that the ambident p-toluenesulfinate anion is formed as an intermediate and undergoes either S- or O-benzylation, or selenenyl-

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIVERSITY OF PITTSBURGH on 02/10/15 For personal use only.

ation to afford the respective products 17-19. Scheme 3 illustrates a possible mechanism in which the elimination of *p*-toluenesulfinic acid from the initially formed intermediate 20 (analogous to 12 in Scheme 2) simultaneously generates the putative benzylating species 21. The alkylation of the sulfinate anion with the latter (or with benzyldiazonium ion derived from its decomposition) affords the observed products 17 and 18 as well as benzeneselenenic acid (22). Any sulfinic acid which escapes benzylation can react with the selenenic acid to furnish the selenosulfonate 19. A similar reaction has been previously employed by Gancarz and Kice (35) to prepare this selenosulfonate from its corresponding sulfinic acid. The known disproportionation (36, 37) of unreacted selenenic acid accounts for the formation of diphenyl diselenide. A small amount of benzyl phenyl selenide was also produced. Finally, additional evidence for the presence of an electrophilic benzylating agent such as 21 (or the related diazonium species) derives from an analogous experiment performed in methanol. In this case, the nucleophilic solvent effectively competes with the sulfinic acid to produce benzyl methyl ether in 70% yield. The previous benzylation of the sulfinic acid is thus suppressed and it is free to react instead with selenenic acid 22. Consequently, an enhanced

 $^{a}Ar = p$ -tolyl.

2715

yield of 71% of selenosulfonate **19** is obtained under these conditions.⁴

It is evident that the oxidation of 1,1-disubstituted hydrazines with benzeneseleninic acid, and less reliably with selenium dioxide, provides facile access to a variety of tetrazenes. Anomalous results are expected in those cases where the hydrazine contains aryl substituents, leaving groups such as the sulfonyl moiety, or where it is highly hindered.

Experimental

General

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIVERSITY OF PITTSBURGH on 02/10/15 For personal use only.

Melting points were determined on an A. H. Thomas hot stage apparatus. Ultraviolet and ir spectra were recorded on a Varian-Cary 219 and a Perkin-Elmer 467 spectrometer, respectively. The nmr spectra were obtained on a Hitachi Perkin-Elmer R24B instrument at 60 MHz or on a Varian XL-200 spectrometer at 200 MHz. All nmr spectra were taken in CDCl₃ solution and are reported in ppm (δ) downfield from TMS as the internal standard. Mass spectra were recorded on a Varian MAT CH5 instrument. Elemental analyses were obtained by Mr. L. Malek. Preparative tlc was performed on Analtech 20 \times 20 cm glass plates coated with 1 mm of silica gel GF. The gc analyses were carried out on a Varian 3700 instrument equipped with a flame ionization detector and a Varian CDS-111 electronic integrator. Stainless steel columns $(1.8 \text{ m} \times 0.3 \text{ cm})$ packed with 10% OV-101 on Chromosorb WHP were used. Benzeneseleninic acid was either purchased from the Aldrich Chemical Co. or prepared from the nitric acid oxidation of diphenyl diselenide according to the method of Barton et al. (38). In the latter case, the initially formed nitrate salt was neutralized in situ with aqueous NaOH and reprecipitated with concentrated HCl. Literature methods were employed in the preparation of hydrazines 1e (39), 1h (3), and 1k(40). All other reagents were obtained from commercial sources. Diphenyl diselenide was produced in all of the hydrazine oxidations involving 3, but was only isolated in a few representative examples.

Preparation of Tetrazenes (see Table 1)

N,N'-Bis(piperidino)diazene (2a)

Under standard conditions

A solution of N-aminopiperidine (1a) (100 mg, 1.00 mmol) in 3 mL of MeOH was cooled to -10° C. Seleninic acid 3 (189 mg, 1.00 mmol) was added in a single portion and the solution rapidly

⁴The formation of 19 in methanol solution could also arise from the diazene v, in turn derived from the methanolysis of iv. However, the formation of 17 and 18 in chloroform solution would be difficult to rationalize from species iv. A free radical mechanism for the oxidation of 1k cannot be entirely ruled out, but again would not readily explain the formation of benzyl methyl ether in methanol solution.

turned yellow from the formation of diphenyl diselenide. After 5–10 min, the reaction mixture was allowed to warm to room temperature and the solvent was promptly removed *in vacuo*. The residue was separated by preparative tlc (20% EtOAc-hexane) to afford 72 mg (74%) of 2a; mp 42–43°C (lit. (6) mp 44°C) from EtOH-H₂O; identified by its ir and uv spectra (6); mass spectrum, m/e 196 (M⁺).

By slow addition

When the seleninic acid in 5 mL of MeOH was added over 40 min (by a mechanically driven syringe pump) to the hydrazine in 3 mL of MeOH at -10° C and worked up as above, the yield of 2*a* was 38 mg (39%). Similarly, slow addition of 1*a* to 3 afforded 7 mg (7%) of 2*a*.

In H_2O

The reactants were stirred 2h in 5 mL of H_2O at room temperature. The solution was then extracted with 3×5 mL of CHCl₃, the combined organic layers were dried (MgSO₄) and chromatographed in the usual manner to provide 59 mg (60%) of 2a. Gas chromatographic analysis prior to work-up revealed no detectable *N*-nitrosopiperidine.

With SeO₂ as oxidant

A solution of SeO₂ (111 mg, 1.00 mmol) in 1 mL of MeOH was added in one portion to hydrazine 1*a* in 2 mL of MeOH at -10° C. A red precipitate (selenium) rapidly formed. After 5–10 min, the reaction mixture was evaporated to dryness *in vacuo*, triturated with CHCl₃, filtered through Celite, and chromatographed in the usual manner. The yield of 2*a* was 72 mg (73%).

N,N'-Bis(morpholino)diazene (2b)

Under standard conditions

N-Aminomorpholine (1b) (102 mg, 1.00 mmol) was oxidized with 3 (189 mg, 1.00 mmol) as in the case of 1a. Preparative tlc (40% EtOAc – hexane) afforded 78 mg (78%) of 2b; mp 153–155°C (lit. (6) mp 157°C) from MeOH; identified by its ir and uv spectra (6); mass spectrum, m/e 200 (M⁺). A more mobile component provided 88 mg of diphenyl diselenide, identified by comparison with an authentic sample (mp, tlc). Attempts to crystallize 2b directly from the reaction mixture resulted in contamination with diphenyl diselenide.

In aprotic solvents

When the above reaction was repeated in chloroform at -10° C or in diglyme at room temperature, the yield of 2b was 40% and 43% respectively.

With SeO₂ as oxidant

Hydrazine 1b (102 mg, 1.00 mmol) was oxidized with SeO_2 (111 mg, 1.00 mmol) as described for 1a. The yield of 2b was 32 mg (32%).

N,N'-Bis(2,6-dimethylpiperidino)diazene (2c)

N-Amino-2,6-dimethylpiperidine (1*c*) (128 mg, 1.00 mmol) was oxidized with **3** (189 mg, 1.00 mmol) under the standard conditions described for 1*a*. Preparative tlc (25% EtOAc – hexane) afforded 95 mg (75%) of 2*c*, which solidified upon cooling; mp 36–40°C (lit. (5) mp 44–45°C); uv (MeCN), λ_{max} : 249 nm (ϵ 9800), 284 nm (sh, ϵ 2500); ir (film): 1455, 1370, 1320, 1282, 1212, 1110, 1054 cm⁻¹; Raman spectrum, 1445 cm⁻¹ (N=N); nmr (200 MHz) &: 3.52 (m, 4H, CH), 1.85–1.4 (complex, 12H, CH₂), 1.05 (d, J = 6.6 Hz, 12H, CH₃); mass spectrum, m/e 252 (M⁺).

N,N'-Bis(dimethylamino)diazene (2d)

N,*N*-Dimethylhydrazine (1*d*) (60 mg, 1.00 mmol) was oxidized with 3 (95 mg, 0.50 mmol) under the standard conditions described for 1*a*. Volatile material was distilled, first at 20 Torr then at 0.05 Torr pressure, into a cold trap maintained at -78° C. Ultraviolet analysis of the distillate (lit. (25) uv (MeOH) λ_{max} : 277 nm, log \approx 3.92) indicated the presence of 16 mg

(28%) of 2*d*. A slightly lower yield was obtained when an equimolar amount of **3** was employed.

N,N'-Bis(dibenzylamino)diazene (2e)

Under standard conditions

N,N-Dibenzylhydrazine (1e) (212 mg, 1.00 mmol) was oxidized with 3 (189 mg, 1.00 mmol) as in the case of 1a. A white, crystalline precipitate formed within several seconds and was filtered after 10 min to afford 158 mg (75%) of 2e; mp 95–98°C (lit. (9) mp 95–96°C); uv (MeOH) λ_{max} : 287 nm (ϵ 12000); ir (CHCl₃): 1607, 1497, 1457, 1352, 957, 700 cm⁻¹; nmr (60 MH2) & 7.12 s, 20H, Ph), 4.30 (s, 8H, CH₂); mass spectrum, *m/e* 420 (M⁺). The filtrate was concentrated and separated by preparative tlc (50% C₆H₆ – hexane) to give 33 mg (22%) of hydrazone 8, mp 81–82°C (from MeOH), identical (mp, ir, nmr) to an authentic sample prepared from 1e and benzaldehyde. A more mobile band was rechromatographed (20% CCl₄ – hexane) to afford 100 mg of diphenyl diselenide and 6 mg of benzyl phenyl selenide, identified by its nmr and mass spectra.

With SeO₂ as oxidant

Hydrazine 1e (106 mg, 0.50 mmol) and SeO₂ (56 mg, 0.50 mmol) were stirred in 3 mL of MeOH at room temperature. A red precipitate (selenium) gradually appeared. After 10 min, the solution was worked up as in the case of 1a. Preparative tlc (50% C_6H_6 – hexane) afforded 77 mg of an unseparated mixture of 2e and 8, whose respective yields of 39% and 47% were determined from the integrated intensities of their nmr signals.

trans-3,3'-Bis(2-oxazolidinonyl)diazene (2f)

Under standard conditions

3-Amino-2-oxazolidinone sulfate (1f) (100 mg, 0.50 mmol) was oxidized with 3 (95 mg, 0.50 mmol) as in the case of 1a. The reaction mixture was allowed to warm to room temperature and an insoluble white solid was filtered to afford 48 mg (96%) of 2f; mp 295-300°C dec. (lit. (4) mp 298-299°C); identified by its uv and ir spectra (4).

With SeO₂ as oxidant

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIVERSITY OF PITTSBURGH on 02/10/15 For personal use only.

When SeO_2 was employed instead of 3 in the above procedure, the filtered solid consisted of starting material 1fcontaminated by a trace of tetrazene 2f (detected by tlc) even after a reaction time of 43 h at room temperature.

trans-N,N'-Bis(phthalimido)diazene (2g)

N-Aminophthalimide (1g) (162 mg, 1.00 mmol), seleninic acid 3 (189 mg, 1.00 mmol), and sulfuric acid (98 mg, 1.00 mmol) were stirred 45 min in 3 mL of MeOH at room temperature. An insoluble white solid was then filtered to afford 137 mg (86%) of 2g; mp 295°C dec. (lit. (8) mp 294–299°C dec.); identified by its ir and mass spectra (8). When the experiment was performed without sulfuric acid, only unreacted 1g was recovered.

Trapping of N-phthalimidonitrene from Ig and 3 with DMSO

Hydrazine 1g (81 mg, 0.50 mmol) and seleninic acid 3 (95 mg, 0.50 mmol) were stirred in 1 mL of dry DMSO at room temperature. After 10 min, DMSO was removed from the yellow solution *in vacuo* and the residue was separated by preparative tlc (10% MeOH – CHCl₃) to provide, in decreasing order of mobility, 74 mg of diphenyl diselenide, 11 mg (15%) of phthalimide, identical to an authentic sample (mp, tlc, ir), and 21 mg (18%) of *S*,*S*-dimethyl-*N*-phthalimidosulfoximine (11); mp 208–210°C (lit. (18) mp 208–210°C); nmr (60 MHz) δ : 7.75 (m, 4H, aromatic), 3.28 (s, 6H, CH₃), with ir and mass spectra as reported in the literature (18). More polar components were poorly separated and were not further investigated.

Oxidation of N-amino-2,2,6,6-tetramethylpiperidine (1h) with 3 Hydrazine 1h (70 mg, 0.45 mmol) and seleninic acid 3 (85 mg, 0.45 mmol) were added to 5 mL of MeOH at -70°C. No reaction

was evident and the mixture was slowly permitted to warm to room temperature. At ca. -5° C, a yellow colour appeared and gas evolution commenced, becoming increasingly vigorous as warming continued. No significant amount of tetrazene 2h could be isolated from the mixture. When the reaction was repeated in CDCl₃ solution at room temperature, copious gas evolution occurred and the nmr spectrum of the remaining solution revealed a complex mixture of products.

Oxidation of N-methyl-N-phenylhydrazine (1i) and N,Ndiphenylhydrazine (1j) with 3

Hydrazine 1i (122 mg, 1.00 mmol) was oxidized with 3 (189 mg, 1.00 mmol) under the standard conditions described for 1a. Separation by preparative tlc (20% EtOAc – hexane) afforded 75 mg (29%) of N-methyl-p-phenylselenoaniline (16) as an oil, identical to an authentic sample (*vide infra*) in all respects, as well as a large number of unidentified products. The similar oxidation of 1j produced an extremely complex mixture containing at least ten components (tlc), which was not further investigated.

N-Methyl-p-phenylselenoaniline (16)

Freshly redistilled N-methylaniline (107 mg, 1.00 mmol) and benzeneselenenyl chloride (191.5 mg, 1.00 mmol) were stirred 3 min in 3 mL of MeOH at room temperature. The reaction mixture was evaporated *in vacuo* and separated as in the preceding procedure to provide 73 mg (28%) of **16**; ir (film): 3425, 1595, 1577, 1500, 1475, 1435, 1318, 1290, 1260, 1180, 1019, 810, 730, 685 cm⁻¹; nmr (200 MHz) δ : 7.44 (d, J = 8.5 Hz, 2H, C₆H₄), 7.35–7.10 (m, 5H, Ph), 6.55 (d, J = 8.5 Hz, 2H, C₆H₄), 3.86 (br s, exchanged, 1H, NH), 2.84 (s, 3H, CH₃); mass spectrum, *m/e* 263 (M⁺, ⁸⁰Se), 261 (M⁺, ⁷⁸Se). *Anal*. calcd. for C₁₃H₁₃NSe: C 59.54, H 5.01, N 5.34; found: C 59.51, H 5.02, N 5.36.

Oxidation of N-benzyl-N-p-toluenesulfonylhydrazine (1k) with 3 In CHCl₃

Hydrazine 1k (138 mg, 0.50 mmol) and seleninic acid 3 (95 mg, 0.50 mmol) were stirred 10 min in 5 mL of CHCl₃ at room temperature. A vigorous reaction with gas evolution was observed. The reaction mixture was concentrated in vacuo and separated by preparative tlc (20% EtOAc - hexane) to afford three main components. The top band provided 30 mg of a yellow oil consisting of diphenyl diselenide and benzyl phenyl selenide in a molar ratio of 57:43 (yield of selenide: 9%), as determined by integration of the nmr spectrum of the mixture. The identities of these two products was confirmed by gc - mass spectral analysis. The second band was further separated by preparative tlc (CH2Cl2) to give 46 mg (30%) of selenosulfonate 19, identical to an authentic sample (12) (mp, ir, nmr), and 31 mg (25%) of benzyl p-toluenesulfinate (18) obtained as an oil (lit. (41) mp 22–24°C); ir (film): 1596, 1499, 1455, 1132 cm⁻¹; nmr spectrum as reported in the literature (42). The bottom component afforded 47 mg (38%) of sulfone 17, mp 140-144°C (lit. (43) mp 144-145°C), identified by its ir and nmr spectra (44).

In MeOH

The above reaction was repeated in 5 mL of MeOH. The solution slowly turned clear and yellow. An internal standard (p-xylene) was added after 45 min at room temperature and gc analysis revealed the presence of 43 mg (70%) of benzyl methyl ether, further identified by gc – mass spectrometry. The mixture was then separated by preparative tlc (CH_2CI_2) to afford 16 mg of diphenyl diselenide containing a trace of benzyl phenyl selenide, 111 mg (71%) of selenosulfonate 19, and 25 mg (20%) of sulfinate ester 18.

Acknowledgements

We thank the Natural Sciences and Engineering

Am. Chem. Soc. 88, 1079 (1966).

Chem. 28, 3275 (1963).

BYRD. J. Am. Chem. Soc. 77, 4100 (1955).

- 21. W. D. HINSBERG III and P. B. DERVAN. J. Am. Chem. Soc. 100, 1608 (1978). and Dr. R. A. Kydd for the Raman spectrum of D. J. ANDERSON, T. L. GILCHRIST, and C. W. REES. Chem.
 - Commun. 800 (1971). M. BUSCH and B. WEISS. Ber. 33, 2701 (1900). 23
 - 24. D. M. LEMAL and T. W. RAVE. J. Am. Chem. Soc. 87, 393
- 1. D.-H. BAE and H. J. SHINE. J. Org. Chem. 45, 4448 (1980). 2. S. F. NELSEN and D. H. HEATH. J. Am. Chem. Soc. 91, (1965).
 - 25. D. M. LEMAL, F. MENGER, and E. COATS. J. Am. Chem. Soc. 86, 2395 (1964).
 - T. G. BACK, N. IBRAHIM, and D. J. MCPHEE. J. Org. Chem. 26. In press.
 - 27. T. G. BACK and N. IBRAHIM. Tetrahedron Lett. 4931 (1979).
 - 28. B. E. NORCROSS, J. M. LANSINGER and R. L. MARTIN. J. Org. Chem. 42, 369 (1977).
 - H. J. REICH and S. K. SHAH. J. Org. Chem. 42, 1773 (1977). 29.
 - 30. K. B. SHARPLESS and K. M. GORDON. J. Am. Chem. Soc. 98, 300 (1976).
 - 31. H. J. REICH, J. M. RENGA, and I. L. REICH. J. Am. Chem.
 - Chem. 38, 3172 (1973).
 - M. R. CZARNY. Synth. Commun. 6, 285 (1976). 33
 - T. G. BACK, S. COLLINS, and R. G. KERR. J. Org. Chem. 46, 1564 (1981).
- T. G. BACK and S. COLLINS. Tetrahedron Lett. 2213 (1980). 12.

10. C. G. OVERBERGER and B. S. MARKS. J. Am. Chem. Soc.

J. R. ROBERTS and K. U. INGOLD. J. Am. Chem. Soc. 95,

C. G. OVERBERGER, L. C. PALMER, B. S. MARKS, and N. R.

I. BHATNAGAR and M. V. GEORGE. J. Org. Chem. 33, 2407

G. S. HAMMOND, B. SEIDEL, and R. E. PINCOCK. J. Org.

D. W. JONES, J. Chem. Soc. Perkin Trans. I. 1150 (1976).

R. L. HINMAN and K. L. HAMM. J. Am. Chem. Soc. 81,

4. P. S. FORGIONE, G. S. SPRAGUE, and H. J. TROFFKIN. J.

- 13. D. H. R. BARTON, D. J. LESTER, and S. V. LEY. J. Chem. Soc. Perkin Trans. I, 1212 (1980).
- T. G. BACK. J. Chem. Soc. Chem. Commun. 530 (1981). T. L. GILCHRIST and C. W. REES. In Carbenes, nitrenes 14.
- 15. and arynes. Studies in modern chemistry. Thomas Nelson and Sons, London. 1969. pp. 36-40.
- 16. D. J. ANDERSON, T. L. GILCHRIST, D. C. HORWELL, and C. W. REES. Chem. Commun. 146 (1969).
- 17. R. S. ATKINSON and C. W. REES. Chem. Commun. 1230 (1967).
- 18. D. J. ANDERSON, D. C. HORWELL, E. STANTON, T. L. GILCHRIST, and C. W. REES. J. Chem. Soc. Perkin Trans. I, 1317 (1972).
- 19. P. B. DERVAN, M. E. SQUILLACOTE, P. M. LAHTI, A. P. SYLWESTER, and J. D. ROBERTS. J. Am. Chem. Soc. 103, 1120 (1981).
- 20. W. D. HINSBERG III and P. B. DERVAN, J. Am. Chem. Soc. 101, 6142 (1979).

- Soc. 97, 5434 (1975) Y. OKAMOTO, K. L. CHELLAPPA, and R. HOMSANY. J. Org. 32.
- 34. M. R. CZARNY. J. Chem. Soc. Chem. Commun. 81 (1976).
- 35. R. A. GANCARZ and J. L. KICE. J. Org. Chem. 46, 4899 (1981).
- 36. T. HORI and K. B. SHARPLESS. J. Org. Chem. 43, 1689 (1978).
- 37. H. J. REICH, S. WOLLOWITZ, J. E. TREND, F. CHOW, and D. F. WENDELBORN. J. Org. Chem. 43, 1697 (1978).
- D. H. R. BARTON, S. V. LEY, P. D. MAGNUS, and M. N. 38. ROSENFELD. J. Chem. Soc. Perkin Trans. I, 567 (1977).
- M. J. S. DEWAR and W. B. JENNINGS. J. Am. Chem. Soc. 39. 95, 1562 (1973).
- 40. C. S. ROONEY, E. J. CRAGOE, JR., C. C. PORTER, and J. M. SPRAGUE. J. Med. Chem. Chim. Ther. 5, 155 (1962).
- A. H. WRAGG, J. S. McFadyen, and T. S. Stevens. J. 41 Chem. Soc. 3603 (1958).
- 42. J. W. WILT and W. J. WAGNER. Chem. Ind. 1389 (1964). R. C. WEAST (Editor). CRC handbook of chemistry and 43.
- physics. 58th ed. CRC Press, Cleveland. 1977. p. C-506. 44.
- W. W. SIMONS (Editor). The Sadtler handbook of infrared spectra and The Sadtler handbook of proton nmr spectra. Sadtler-Heyden, Philadelphia. 1978.

2718

6.

7.

8.

9.

11.

compound 2c.

6452 (1969).

3228 (1973).

(1968).

3294 (1959).

77, 4104 (1955).