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Summary: A stereocontrolled synthesis of (f)-pumiliotoxin C was achieved 
from I-methoxypyridine in seven steps. 

We have been exploring the synthetic utility of N-acyl-2-alkyl-2,3-dihydro-4-pyridones. These readily 
available heterocycles have proven to be useful building blocks for the preparation of quinolizidine’, 
indolizidine* and piperidine3 alkaloids. In this communication we report a synthesis of a 

cis-decahydroquinoline alkaloid, pumiliotoxin @, via intermediate N-acyldihydropyridone 4. 
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Dihydropyridone 4 was prepared in one step and in 86% yield from 4-methoxypyridine (2), Grignard 
reagent 3, and phenyl chloroformate (THF, -23’C). Copper-mediated conjugate addition of 
n-propylmagnesium bromide to 4 in the presence of boron trifluoride etherate gave piperidone 5 in 71% yield. 
The stereoselectivity of this reaction was 11: 1 in favor of the cis diastereomer K5 This selectivity was obtained 

by slow addition (2 h) of the Grignard reagent to a mixture of 4, cuprous bromide, and boron trifluoride 
etherate in THF at -78OC. The stereochemical outcome of the cuprate reaction likely arises from a 

stereoelectronic effect. Due to A(t*3) strain between the C-2 substituent and the N-acyl group of 4, the alkyl 
group at C-2 occupies the axial position. Stereoelectronically preferred6 axial attack by the organocuprate on 

the a$-enone function of 4 leads to the cis product. ’ Oxidative cleavage of the terminal olefin with 
0s04/NaI04 provided aldehyde 6, which on treatment with p-toluenesulfonic acid gave enone 7 in near 
quantitative yield. 

The synthetic plan called for introducing the C-5 methyl group via a conjugate addition to enone 7. We 

anticipated a high degree of the desired stereoselectivity based on the premise that the conformation of 7 is 
restricted due to the presence of A( ts3) strain. Examination of the molecular mechanics derived structure 7 
(MMX) shown in Figure l7 suggested that stereoelectronically preferred6 axial attack of a methyl nucleophile 
at C-S would lead to the desired stereochemical result. This analysis proved to be correct, as reaction of 7 with 
lithium dimethylcuprate and boron trifluoride etherate (THF, -78’C) gave enolate 8 in situ.’ The last 
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Fig. 1. structure 7 (MMX) Fig. 2. Axlet protonation of 6 



stereogenic center at C-4a was introduced by protonation of enolate 8. Stereoelectronically controlled6 axial 
protonation at C-4a (relative to C-2) of 8 leads to the desired diastemomer 9a (see Figure 2). On quenching 8 
with aqueous NH&I, an 85:15 mixture of ketones 9a and 9b was formed. The stereoselectivity of the 
protonation step was increased to 97:3 by quenching with anhydrous methanol at -23’C. An 84% yield of pure 
9a was isolated by radial PLC (silica gel, EtOAc/hexane).9 To convert 9a to pumiliotoxin C, the 
N-phenoxycarbonyl group and the oxygen of the keto carbonyl had to be removed. The ketone 9a was 
converted to vinyl triflate 10 in 73% yield using McMurry’s conditions. lo Catalytic hydrogenation of 10 over 
PtOz in ethanol gave (f)-pumiliotoxin C in 80% yield. The reduction of vinyl triflates to alkanes under these 
conditions has been reported,” however, to our knowledge the reductive removal of an N-phenoxycarbonyl 
group via hydrogenation is novel. l2 Our synthetic (*)-pumiliotoxin C (1) showed spectral properties identical 
with those reported for natural material. 13-15 The hydrochloride of 1 was crystallized from 2-propanol/ether 
(3:l) and exhibited the same melting point range (mp 231- 233’) as described in the literature for the racemate 
(mp 231-233°).*3a 

By incorporating our recently developed asymmetric synthesis of 2-alkyl-2,3-dihydro-4-pyridones,16 
the above racemic synthesis will be modified to provide natural (-)-pumiliotoxin C. Reaction of 
4-methoxy-3-(triisopropylsilyl)pyridine, l6 the chloroformate of (-)-8-phenylmenthol,16 and Grignard reagent 3 
in THP/toluene at -78°C gave the dihydropyridone 12 in 99% crude yield and 91% de. Purification by radial 
PLC (silica gel, EtOAcihexane) gave an 85% yield of pure diastexeomer 12. Treatment of 12 with sodium 
methoxide/methanol, followed by oxalic acid/methanol via a one-pot reaction, provided dihydropyridone 13 
[[a]= + 373 (c 0.74, CHCl,)] in 78% yield. Conversion of 13 to enantiopure 4 [[a]25 - 137 (c 2.14, CHCl,)] 
was carried out in 94% yield on treatment with n-BuLi and phenyl chloroformate. The enantioselective 
synthesis of (-)-pumiliotoxin C from enantiopure 4 is in progress and will be reported in due course. 
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