Deacylation of Amides: Removal of the Acyl Side-chain from Cephamycin Derivatives

By Harold E. Applegate, Christopher M. Cimarusti, and William A. Slusarchyk* (The Squibb Institute for Medical Research, Princeton, N. J. 08540)

Summary Diphenylmethyl (6R,7S)-7-amino-7-methoxy-3- $\{[(1\text{-methyl-}1H\text{-tetrazol-5-yl})\text{thio}]\text{methyl}\}-\Delta^3\text{-cephem-4-carboxylate}$ (9) is obtained from a cephamycin C derivative by treatment of an imino chloride intermediate with o-aminobenzenethiol

Application to cephamycin derivatives of methodology that is well established for removal of the N-acyl side-chain at C-6(7) in penicillins (cephalosporins), $i\ e$ imino chloride solvolysis, results in epimerization at C-7,¹ although a recent report in the patent literature claims that this

epimerization is reduced substantially when the solvolysis is performed at temperatures near $-70~^{\circ}\mathrm{C}$ 2 The imino chloride-methyl cuprate method of Karady et al 3 maintains the chirality at C-7 but is accompanied by $\Delta^{3}\text{-}\Delta^{2}$ isomerization. The oxalyl chloride method, mentioned only briefly in an application to penicillins but applied by Shiozaki et al 5 to cephamycins, is the only one that avoids both epimerization and isomerization. We now report a novel method for deacylation of cephamycin derivatives that proceeds without epimerization at C-7 or $\Delta^{3}\text{-}\Delta^{2}$ isomerization.

It was reasoned that reaction of an imino chloride (2). derived from the corresponding amide, with o-aminobenzenethiol (3) in the presence of a suitable base should give an imino sulphide (4) that could undergo cyclization to the benzothiazoline (5). Subsequent base-catalysed elimination would provide the 2-substituted benzothiazole (6) and the desired amine (7).

Treatment of the N-butyramide (8a) sequentially with phosgene-pyridine in CH₂Cl₂ (3 h; room temp.) and aqueous NaHCO3 provided, after drying and solvent removal, the corresponding imino chloride [>90%; CDCl₃ & 2.75 (2H, t, $-CH_2-CCl=N$), 3.58 (3H, s, OMe), and 5.03 (1H, s, C-6)]. Reaction of this product in CH₂Cl₂ with 2 equiv. each of (3) and pyridine (1.5 h; room temp.) followed by work-up with aqueous NaHCO3 and preparative t.l.c. on silica gel (Quantum PQ1F or Whatman PK1F) using CH₂Cl₂-EtOAc (9:1) afforded the 7α -methoxy amine (9)6 (15%), the benzothiazole $(6a)^7$ (45%), and (8a) (23%).† Similar treatment of the cephamycin derivative (8b)8 provided the corresponding isolated imino chloride [>90%, CD2Cl2 δ 2.73 (2H, t, $-CH_2-CCl=N-$), 3·48 (3H, s, OMe), and 5·00 (1H, s, C-6)] and subsequently (9) (20-25%) and (6b) $\{30-35\%$, m.p. 113—114 °C, $[\alpha]_D$ +4° (c 0.205, CHCl₃)}. In both examples, no products derived by epimerization at C-7 or isomerization of the Δ^3 double bond were observed. Substitution of o-aminophenol or o-phenylenediamine for (3) provided little, if any, of the desired products.

This sequence represents a novel, alternative method for N-deacylation of cephamycin derivatives. The yields given here do not represent optimized ones for these reactions.

 $a; R = Pr^n$ \mathbf{b} ; R = Ph₂CHO₂CCH(NHCO₂Bu^t)[CH₂]₃

(Received, 20th December 1979; Com. 1327.)

† Compounds (6a) and (9) were identified by comparisons (1H n.m.r., i.r., t.l.c.) with authentic samples.

‡ Compound (6b) gave satisfactory spectral data and elemental analysis.

- ¹ W. H. W. Lunn, R. W. Burchfield, T. K. Elzey, and E. V. Mason, Tetrahedron Letters, 1974, 1307.
- ² K. Tamarawa, T. Fujikura, T. Kojima, and M. Iwanami (Yamanouchi), Br. P. 2,002,379A.
 ³ S. Karady, J. S. Amato, L. M. Weinstock, and M. Sletzinger, *Tetrahedron Letters*, 1978, 407
- 4 J. C. Sheehan, Pure Appl. Chem., 1963, 6, 297.
- M. Shiozaki, N. Ishida, K. Iino, and T. Hiraoka, Tetrahedron Letters, 1977, 4059; J.C.S. Chem. Comm., 1978, 517.
 H. Nakao, H. Yanagisawa, B. Shimizu, M. Kaneko, M. Nagano, and S. Sugawara, J. Antibiotics, 1976, 29, 554.
 J. Metzger and H. Plank, Bull. Soc. chim. France, 1956, 1692; D. L. Boger, J. Org. Chem., 1978, 43, 2296.
- ⁸ B. Shimizu, M. Kaneko, M. Kimura, and S. Sugawara, Chem. and Pharm. Bull. (Japan), 1976, 24, 2629.