

Subscriber access provided by University of Newcastle, Australia

Oxidation of #-Ketoamides: The Synthesis of Vicinal Tricarbonyl Amides

Yueyang Liu, Zhiguo Zhang, Yameng Wan, Guisheng Zhang, Zhonglian Li, Jingjing Bi, Nana Ma, Tong-Xin Liu, and Qingfeng Liu

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.6b03062 • Publication Date (Web): 23 Feb 2017

Downloaded from http://pubs.acs.org on February 23, 2017

Just Accepted

Note

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Oxidation of β-Ketoamides: The Synthesis of Vicinal Tricarbonyl Amides

Yueyang Liu, Zhiguo Zhang,* Yameng Wan, Guisheng Zhang,* Zhonglian Li, Jingjing Bi, Nana Ma,

Tongxin Liu, Qingfeng Liu

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henna Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.

Fax: (+86)-373-332-5250; E-mail: zhangzg@htu.edu.cn or zgs6668@yahoo.com

 $R^{1} \xrightarrow{\text{O} \text{O}} R^{2} \xrightarrow{\text{PIFA (1.5 equiv)}} V_{\text{MeCN}/V_{\text{HeO}} = 10:1} \xrightarrow{\text{O} \text{O}} R^{1} \xrightarrow{\text{O} \text{O}} R^{2} \underset{\text{O} \cdot \text{H}_{2}\text{O}}{\text{O} \cdot \text{H}_{2}\text{O}} \underset{\text{HO} \text{OH}}{=} R^{1} \xrightarrow{\text{O} \text{O}} R^{2} \underset{\text{O} \cdot \text{H}_{2}\text{O}}{=} R^{1} \xrightarrow{\text{O} \text{O}} R^{2} \underset{\text{HO} \text{OH}}{=} R^{2}$ $R^{1} = \text{Aryl, Alkyl, -NHPh; R^{2} = -NHAr, -NHAlkyl, -NH_{2}, Aryl, OEt, etc.}$ • Metal-Free Reaction • Mild Reaction Conditions • Important Product

Abstract: A facile and direct oxidative reaction for the synthesis of vicinal tricarbonyl amides (VTAs) in moderate to excellent yields (53%-88%) was developed starting from readily available β -ketoamides in the presence of phenyliodine(III) bis(trifluoroacetate) (PIFA). The resulting products possess significant synthetic potential, making this approach a valuable addition to the traditional methods already available for the preparation of these molecules.

Keywords: Vicinal tricarbonyl amides (VTAs); β-Dicarbonyl compounds; β-Ketoamides; PIFA; Hypervalent iodine

Vicinal tricarbonyls are an important moiety that appears in biologically and pharmaceutically significant compounds, such as the elastase inhibitors YM–47141 and YM–47142 (Figure 1).¹ They are also a key synthon² that plays an important role in the construction of some natural products³ and useful small molecules.⁴ Commonly, vicinal tricarbonyl compounds (VTCs) are usually obtained in a mixture of the keto and dihydroxy forms,⁵ and the *gem*-diol can be easily dehydrated to provide the original free vicinal tricarbonyls under certain conditions,⁶ which is indicative of the reversible nature of this system (Figure 2, right box).⁷ Recent research has indicated that the reversible addition

of alcohols, amines and thiols can also occur to the central carbonyl group of the VTCs to afford hemiketal, hemiaminal, and hemithioketal formation, respectively.8 Generally, three strategies are utilized for the synthesis of VTCs, in which β -ketoamides are always employed as a special case of β -dicarbonyl compounds. First, starting with α -unfunctionalized β -dicarbonyl compounds has been the most efficient way to obtain VTCs in the presence of various oxidation catalytic systems, including DDQ/TEMPO,⁹ CAN,¹⁰ m-CPBA/Cu(OAc)₂,¹¹ Dess-Martin periodinane (DMP),¹² SeO₂,¹³ and ¹O₂/Bu₄NF¹⁴ over the past several decades (Scheme 1, path a). Second, the conversion of α -mono- and disubstituted β -dicarbonyl derivatives to the desired VTCs constitutes another important route (Figure 2, path b).^{13, 15} Third, oxidative cleavage of the C=C, C=N, C=S, C=P, and C=I double bonds of some α -methylene functionalized β -dicarbonyl compounds such as α -diazo- β -dicarbonyls, can also afford VTCs.^{2, 10, 16} This involves a two-step procedure consisting of functionalizing the central carbon followed by oxidation with suitable reagents such as ¹BuOCl/HCO₂H,⁶ 2-iodoxybenzoic acid (IBX),² O₂ or O₃,¹⁷ Oxone,¹⁸ DMP,¹⁹ and NaIO₄ (Figure 2, path c).²⁰ Although numerous, efficient approaches have been established to date, a literature review showed a limited number of existing works addressing the systematic construction of vicinal tricarbonyl amides (VTAs) directly using β -ketoamides through a one-step reaction,¹² except for several examples using the strategy of α -methylene-functionalized β -ketoamides by multi-step reactions.^{17b, 19-21} At the time we prepared this manuscript, Zhang and co-workers²² reported a complementary approach to VTCs by an iodosobenzene-mediated direct oxidation of β-dicarbonyls C-H activation/annulation cascade using electrophilic α -halo and α -pseudohalo ketones assisted by Fe(NO₃)₃·9H₂O under mild and environmentally friendly conditions. In their work, only two types of secondary amides were employed, and the desired VTAs were obtained in 67% and 68% yields, respectively. Thus, as it can be seen, the synthesis of a VTA series using a simple catalytic system with a high yield of the target products is largely unexplored. Here, we present our recent efforts regarding the PIFA-mediated α-C-H bond oxidative reaction of β-ketoamide derivatives for the

synthesis of VTAs.²³

Figure 1. Structure of YM-47141 and YM-47142.

Figure 2. Representative routes to the VTCs and the equilibrium of the dihydroxyl and keto forms.

Hypervalent iodine reagents are advanced oxidants and advantageous because of their ready availability, nontoxicity, ease of handling and environmentally benign characteristics; they have been vastly utilized in many useful organic transformations.²⁴ Previous works²⁵ have demonstrated that, in the presence of PIFA and water,²⁶ the oxidization of amides bearing more active α -positions can generate alcohols, which are easily oxidized to α -diketones.²⁷ Very recently, we developed two reliable, efficient, green oxidative C–N bond formation reactions in the presence of hypervalent iodine reagents for the synthesis of 1*H*-indazoles²⁸ and spirocyclopropane quinolinediones under mild conditions.²⁹ These metal-free reactions inspired us to synthesize other useful synthons, such as VTAs, via α -C–H bond oxidative reactions starting from readily available β -ketoamides in the presence of organoiodine reagents.

With this assumption in mind, N-(4-chlorophenyl)-3-oxo-3-phenylpropanamide (1g) was selected

key results are summarized in Table 1. At the beginning, we treated 1g with 1.5 equiv. of PIFA in MeCN (3 mL) at 60 °C. After 36 h, compound 2g, which was identified by ¹H, ¹³C NMR, and MS, could be obtained in 82% yield after work-up followed by column chromatography (Table 1, entry 1). The spectroscopic analysis showed product 2g was a mixture of the dihydroxy and keto forms; the keto form was the major one. This spectral evidence corresponds with those available in the literature.^{2, 10} It is worth noting that the ratio of compounds **2** and **3** could be determined based on ¹H NMR, but the ratio will vary with the amount of water. Further investigation of the solvent indicated that a certain proportion of water can shorten the reaction time greatly (Table 1, entry 2 vs entry 1). And after many attempts, the ratio of acetonitrile and water was finally identified as 10 to 1 (Table 1, entry 2). The yield of 2g decreased slightly if 1.0 and 2.0 equiv. of PIFA was loaded or a lower or higher reaction temperature was employed (Table 1, entries 3-6). Other organoiodine reagents including diacetoxyiodobenzene (PIDA), PhIO, IBX, and DMP, were screened and they were found to be not as efficient as PIFA (Table 1, entries 7-10). Several other solvents, such as PEG-400, EtOH, dioxane, DCE, DMSO, DMF, and THF resulted in lower yields of 2g compared with those in the mixed-solvent of acetonitrile and water ($V_{CH3CN/H2O} = 10:1$) (Table 1, entries 11–17). Table 1. Survey of the Reaction Conditions^a $\begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

entry	oxidant (equiv)	solvent	time/h	yield/%
1	PIFA (1.5)	MeCN	36	82
2	PIFA (1.5)	MeCN/H ₂ O (10:1)	10	84
3	PIFA (1.0)	MeCN/H ₂ O (10:1)	13	74
4	PIFA (2.0)	MeCN/H ₂ O (10:1)	12	71

5	PIFA (1.5)/40 °C	MeCN/H ₂ O (10:1)	12	69
6	PIFA (1.5)/80 °C	MeCN/H ₂ O (10:1)	10	74
7	PIDA (1.5)	MeCN/H ₂ O (10:1)	13	58
8	PhIO (1.5)	MeCN/H ₂ O (10:1)	13	63
9	IBX (1.5)	MeCN/H ₂ O (10:1)	13	49
10	DMP (1.5)	MeCN/H ₂ O (10:1)	13	55
11	PIFA (1.5)	PEG-400	72	72
12	PIFA (1.5)	EtOH	48	58
13	PIFA (1.5)	Dioxane	72	Trace ^b
14	PIFA (1.5)	DCE	72	20 ^c
15	PIFA (1.5)	DMSO	46	73
16	PIFA (1.5)	DMF	48	74
17	PIFA (1.5)	THF	60	0^d

^{*a*} Unless otherwise indicated, all reactions were carried out with **1** (0.5 mmol) in 3 mL solvent at 60 °C. ^{*b*} 71% of **1g** was recovered. ^{*c*} 61% of **1g** was recovered. ^{*d*} 93% of **1g** was recovered.

After having optimized the reaction conditions (Table 1, entry 2), the substrate scope of this oxidative reaction was investigated (Table 2). Initially, various β -ketoamides were investigated (R²): a number of functional aromatic amine groups bearing -CO₂Et, -CF₃, -F, -Cl, -Me, or -MeO at the *-ortho*, *-meta* or *-para* positions were tolerated well (products **2a–q**). The ester group, which can be converted easily to other useful functional groups, was suitable for the oxidative reaction and gave **2a–c** in good yields (70%–88%). Importantly, the chloro and fluoro substituents could be tolerated well in this reaction, thereby facilitating additional modifications at these positions (**2d–i**). Furthermore, the CF₃ group also showed high reactivity leading to **2j** in good yield (84%). Gratifyingly, the starting materials **1k–q** bearing electron-donating groups on the aromatic ring were also viable for the construction of **2k–q** in high yields (71%–86%). Subsequently, the aliphatic

amine substituent cyclohexyl was employed in the reaction and gave a satisfying yield of 2r (81%). The investigation using β -keto ester (1s: $R^2 = OMe$) resulted in an incomplete oxidative reaction. Compound 2s was isolated in 72% yield along with the recovered starting material 1s (12%), and the yield of 2s could not be increased further by prolonging the reaction times. It was found that the dibenzoylmethane compound (1t: $R^2 = Ph$) only gave product 2t in a yield of 53%. The reaction toward the benzoyl group (R^1) bearing a –Me at the *-ortho*, *-meta* or *-para* position on the phenyl ring was also carried out with 1u-w under the optimized conditions, and they gave the corresponding VTAs 2u-w in 77%–81% yields. However, fewer experiments were conducted toward varying other arylcarbonyl groups because of the limited number of available substrates at this position. To our delight, diamide 1x also afforded the desired compound 2x in 53% yield, along with some unidentified complex mixture. This case suggested that the present method might be utilized in oxidative reactions containing a plurality of amino groups.³⁰ It should be emphasized that all of the synthesized VTAs are stable enough for storage at room temperature.

Table 2. Reaction Extension^a

^{*a*} Unless otherwise indicated, all reactions were carried out with **1** (0.5 mmol) and PIFA (1.5 equiv) in 3 mL mixed solvents of CH₃CN and H₂O (V_{CH₃CN}:V_{H₂O} = 10:1) at 60 °C, and the ratio of **2** and **3** in parentheses is based on current ¹H NMR. ^{*b*} 12% of **1s** was recovered, and the yield of **2s** could not be increased by adding 2.5 equivalent of PIFA. ^{*c*} Reaction was performed at room temperature.

It should be noted that, similar to Deng's⁹ work in 2014, we also failed to purify the aliphatic VTC product **2y** by flash chromatography on silica gel, although a high yield was observed on the thin-layer chromatography (TLC) plate. Accordingly, after producing **2y** in situ at 40 °C under the optimal conditions, further derivatization was carried out with benzene-1,2-diamine in the presence of 4-methylbenzenesulfonic acid at 60 °C in one-pot. As expected, the quinoxaline derivative **4y** was isolated in 70% yield after 1 h, which proved the formation of **2y** (Table 3, entry 1). To our delight, four types of other aliphatic β -ketoamides, including **1z–c'** and aliphatic β -keto ester **1d'**, could also afford the derivatives **4z–d'** in 41%–87% total yields (Table 3, entries 2-5).

Table 3. One-pot Synthesis of Quinoxaline Derivative 4.

1	Me	NHPh	40	4	4y : 70
2	Me	NH_2	r.t.	15 min	4z : 41
3	Me	N(Me) ₂	40	4	4a' : 83
4	^t Bu	NHPh	60	8	4b' : 85
5	ⁿ Bu	NHPh	60	5	4c' : 87
6	ⁿ Bu	OMe	60	5	4d' : 75

In summary, we have demonstrated a facile method for the direct synthesis of VTAs from readily available β -ketoamides in moderate to excellent yields through PIFA-mediated oxidative activation of the sp³ C–H bond. The advantage of this protocol is associated with readily available starting materials, excellent yields, dense and flexible substituted patterns, and important synthetic potential of the products. It is noted that different from previous literature reports on the synthesis of VTCs from 1,3-dicarbonyls, the present method focused on the preparation of VTA series. Moreover, as an alternative and valuable route, it may be more practical for the construction of VTA analogue-containing biomolecules.^{1, 3a, 3e, 31}

Experimental Section

General Remarks. All reactions were carried out under air atmosphere, unless otherwise indicated. Other all reagents were purchased from commercial sources and used without further treatment, unless otherwise indicated. Petroleum ether (PE) used refers to the 60-90 °C boiling point fraction of petroleum. Ethyl acetate is abbreviated as EA. ¹H NMR and ¹³C{¹H} NMR spectra were recorded on Bruker Avance/600 (¹H: 600 MHz, ¹³C{¹H}: 150 MHz at 25 °C) or Bruker Avance/400 (¹H: 400 MHz, ¹³C{¹H}: 100 MHz at 25 °C) and TMS as internal standard. Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, dd = double doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz). All high-resolution mass spectra (HRMS) were measured on a mass spectrometer by using electrospray ionization (ESI-oa-TOF), and the purity of all samples used for HRMS (>95%) were confirmed by ¹H NMR and ¹³C{¹H} NMR

The Journal of Organic Chemistry

thermometer and were uncorrected. All reactions were monitored by TLC with GF254 silica gel coated plates. Flash chromatography was carried out on SiO₂ (silica gel 200–300 mesh).

Typical Experimental Procedure For 2 (2g as an example): To a round-bottom flask (25 mL) **1g** (137 mg, 0.5 mmol) and PIFA (323 mg, 0.75 mmol) were added, and the mixture was well stirred in CH₃CN/H₂O (3 mL) at 60 °C (the whole process was closely monitored by TLC). After 12 h, the residue was purified by a short flash silica gel column chromatography (eluent: EA/PE = 3/10) to give *N*-(4-chlorophenyl)-2,3-dioxo-3-phenylpropanamide **2g** as white solid (128 mg, 84%).

Ethyl 4-(2,3-dioxo-3-phenylpropanamido)benzoate (2a). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (151 mg, 88%) with the ratio of 2a and 3a was 3:1; ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 8.09 (d, *J* = 8.4 Hz, 2H), 7.93 (d, *J* = 7.6 Hz, 2H), 7.76 (d, *J* = 8.8 Hz, 2H), 7.56 (t, *J* = 7.6 Hz, 2H), 4.37 (t, *J* = 7.0 Hz, 2H), 1.40 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 193.6, 193.1, 188.5, 167.4, 166.0, 165.9, 156.8, 140.6, 139.7, 135.7, 134.9, 132.0, 131.3, 131.0, 130.84, 130.8, 130.77, 130.6, 129.6, 129.2, 128.8, 127.6, 127.0, 119.4, 119.3, 61.2, 61.1, 14.3; IR (KBr, neat): *v* = 3503, 3408, 3343, 1713, 1688, 1597, 1525, 1411, 1288, 1182, 1115, 1008, 856, 769 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₈H₁₅NO₅ ([M+Na]⁺) 348.0842, found: 348.0845.

Ethyl 3-(2,3-dioxo-3-phenylpropanamido)benzoate (2b). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (130 mg, 76%) with the ratio of 2b and 3b was 4:1; ¹H NMR (400 MHz, CDCl₃) δ 8.90 (s, 1H), 8.24 (s, 1H), 8.06-7.99 (m, 1H), 7.90 (t, *J* = 9.0 Hz, 2H), 7.69 (t, *J* = 7.6 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 2H), 7.34-7.47 (m, 2H), 4.41-4.32 (m, 2H), 1.38 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 193.2, 188.7, 165.8, 156.7, 136.0, 135.59, 134.9, 132.0, 131.8, 130.8, 129.6, 129.5, 129.3, 129.2, 128.8, 126.9, 126.4, 124.3, 124.1, 120.9, 61.4, 14.3; IR (KBr, neat): *v* = 3265, 3195, 3126, 1733, 1684, 1597, 1533, 1493, 1403, 1092, 827 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₈H₁₅NO₅ ([M+H]⁺)326.1023, found: 326.1023.

Ethyl 2-(2,3-dioxo-3-phenylpropanamido)benzoate (2c). The product was isolated by flash

chromatography (eluent: EA/PE = 3/10) as a white solid (120 mg, 70%) with the ratio of **2c** and **3c** was 10:1; ¹H NMR (400 MHz, CDCl₃) δ 12.58 (s, 1H), 8.72 (d, *J* = 8.4 Hz, 1H), 8.14 (dd, *J* = 8.0 Hz, 1.6 Hz, 1H), 7.94 (dd, *J* = 8.4 Hz, 2H), 7.69 (t, *J* = 7.4 Hz, 1H), 7.57 (m, 3H), 7.27-7.18 (m, 1H), 4.47 (dd, *J* = 14.4 Hz, 7.2 Hz, 2H), 1.45 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.8, 188.7, 167.8, 157.5, 139.2, 135.4, 134.7, 132.2, 131.3, 129.6, 129.1, 124.4, 120.7, 116.9, 62.0, 14.2; IR (KBr, neat): *v* = 3234, 3185, 3119, 1697, 1666, 1589, 1529, 1451, 1303, 1281, 1222, 1102, 866, 767, 752 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₈H₁₅NO₅ ([M+Na]⁺) 348.0842, found: 348.0843.

N-(4-fluorophenyl)-2,3-dioxo-3-phenylpropanamide (2d). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (114 mg, 79%) with the ratio of 2d and 3d was 3:1; ¹H NMR (600 MHz, CDCl₃) δ 8.64 (s, 1H), 7.92 (dd, *J* = 8.4 Hz, 2H), 7.71 (t, *J* = 7.5 Hz, 1H), 7.67-7.64 (m, 2H), 7.55 (t, *J* = 7.8 Hz, 2H), 7.11-7.07 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 193.3, 189.0, 161.0, 159.4, 156.4, 135.6, 135.0, 132.1, 130.8, 129.6, 129.2, 128.8, 122.0, 121.9, 121.7, 121.68, 116.3, 116.1, 116.0, 115.9; IR (KBr, neat): *v* = 3419, 3352, 3067, 1680, 1658, 1595, 1558, 1509, 1209, 1110, 1090, 834 cm⁻¹; HRMS (ESI), m/z calcd. for C₁₅H₁₀FNO₃ ([M+Na]⁺) 294.0537, found: 294.0541.

N-(3-fluorophenyl)-2,3-dioxo-3-phenylpropanamide (2e). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (124 mg, 86%) with the ratio of 2e and 3e was 2:1; ¹H NMR (600 MHz, CDCl₃) δ 8.66 (s, 1H), 7.82 (d, *J* = 7.8 Hz, 2H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.52 (d, *J* = 10.2 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 2H), 7.25 (s, 2H), 6.86-6.81 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 193.1, 188.6, 163.8, 162.2, 156.6, 137.2, 137.16, 135.6, 132.0, 130.8, 130.6, 130.55, 129.6, 129.2, 128.8, 115.5, 115.4, 112.9, 112.7, 107.7, 107.5; IR (KBr, neat): *v* = 3454, 3305, 3210, 1737, 1686, 1671, 1614, 1551, 1493, 1449, 1147, 1095, 967, 775 cm⁻¹; HRMS (ESI), m/z calcd. for C₁₅H₁₀FNO₃ ([M+Na]⁺) 294.0537, found: 294.0538.

N-(2-fluorophenyl)-2,3-dioxo-3-phenylpropanamide (2f). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (120 mg, 83%) with the ratio of 2f and 3f

was 2:1; ¹H NMR (600 MHz, CDCl₃) δ 8.93 (s, 1H), 7.93 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.8 Hz, 2H), 7.47 (m, 2H), 7.18 (dd, J = 7.8 Hz, 4.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.0, 188.2, 167.2, 156.5, 154.0, 135.6, 134.8, 132.0, 130.8, 129.6, 129.2, 128.7, 126.3, 126.2, 125.7, 124.9, 124.6, 121.8, 121.5, 115.4, 115.2, 115.1; IR (KBr, neat): v = 3386, 3350, 3074, 1696, 1680, 1598, 1530, 1487, 1456, 1412, 1263, 1196, 1116, 992, 925, 846, 780, 754 cm⁻¹; HRMS (ESI), m/z calcd. for C₁₅H₁₀FNO₃ ([M+Na]⁺) 294.0537, found: 294.0539.

N-(4-chlorophenyl)-2,3-dioxo-3-phenylpropanamide (2g). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (128 mg, 84%) with the ratio of 2g and 3g was 14:1; ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 7.89 (dd, *J* = 8.4 Hz, 1.6 Hz, 2H), 7.72-7.67 (m, 1H), 7.65-7.60 (m, 2H), 7.53 (t, *J* = 7.8 Hz, 2H), 7.36-7.32 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 193.1, 188.6, 156.4, 135.6, 134.3, 131.9, 131.0, 129.5, 129.4, 129.2, 121.2; IR (KBr, neat): *v* = 3315, 3115, 3061, 1728, 1694, 1666, 1596, 1539, 1493, 1449, 1403, 1220, 1011, 870, 827, 758 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₅H₁₀ClNO₃ ([M+Na]⁺) 310.0241, found: 310.0246.

N-(3-chlorophenyl)-2,3-dioxo-3-phenylpropanamide (2h). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (128 mg, 84%) with the ratio of 2h and 3h was 9:1; ¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 7.94-7.89 (m, 2H), 7.80 (t, *J* = 2.0 Hz, 1H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.59-7.49 (m, 3H), 7.33 (t, *J* = 8.2 Hz, 1H), 7.23-7.18 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 193.1, 188.5, 156.5, 136.8, 135.6, 135.0, 131.9, 130.3, 129.5, 129.2, 126.0, 120.1, 117.9; IR (KBr, neat): *v* = 3300, 3133, 3063, 1734, 1686, 1670, 1597, 1549, 1485, 1449, 1430, 1417, 1225, 1092, 909, 876, 781 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₅H₁₀ClNO₃ ([M+Na]⁺) 310.0241, found: 310.0240.

N-(2-chlorophenyl)-2,3-dioxo-3-phenylpropanamide (2i). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (130 mg, 85%) with the ratio of 2i and 3i was 2:1; ¹H NMR (600 MHz, CDCl₃) δ 9.11 (s, 1H), 8.21 (d, *J* = 8.4 Hz, 1H), 7.93 (d, *J* = 7.8 Hz, 1H), 7.71 (t, *J* = 9.0 Hz, 1H), 7.61 (t, *J* = 6.6 Hz, 2H), 7.55 (dd, *J* = 16.5 Hz, 8.7 Hz, 2H), 7.46 (t, *J* =

7.8 Hz, 1H), 7.27 (t, J = 6.6 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 193.4, 192.7, 188.1, 167.5, 156.6, 135.6, 134.9, 133.3, 133.0, 132.0, 131.2, 130.7, 129.6, 129.2, 128.8, 126.6, 126.5, 126.3, 125.8, 125.5, 124.2, 123.2; IR (KBr, neat): v = 3384, 1743, 1700, 1594, 1537, 1462, 1321, 1289, 1190, 1130, 1098, 1037, 765 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₅H₁₀ClNO₃ ([M+Na]⁺) 310.0241, found: 310.0241.

N-(2-trifluoromethyl)- 2,3-dioxo-3-phenylpropanamide (2j). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (142 mg, 84%) with the ratio of 2j and 3j was 2:1; ¹H NMR (600 MHz, CDCl₃) δ 9.12 (s, 1H), 8.21 (d, *J* = 7.8 Hz, 1H), 7.93 (d, *J* = 7.8 Hz, 1H), 7.71 (t, *J* = 10.2 Hz, 1H), 7.61 (t, *J* = 8.1 Hz, 2H), 7.58-7.52 (m, 2H), 7.45 (t, *J* = 7.8 Hz, 1H), 7.27 (t, *J* = 7.5 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 193.4, 192.7, 188.1, 167.5, 156.6, 135.6, 134.9, 133.3, 133.0, 132.0, 131.2, 130.7, 129.6, 129.2, 128.8, 126.6, 126.5, 126.3, 125.8, 125.5, 124.2, 123.2; IR (KBr, neat): *v* = 3396, 1709, 1594, 1537, 1456, 1321, 1293, 1174, 1120, 1035, 937, 866, 766 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₆H₁₀F₃NO₃ ([M+Na]⁺) 344.0505, found: 344.0521.

N-2,3-dioxo-3-diphenylpropanamide (2k). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (98 mg, 72%) with the ratio of 2k and 3k was 5:1; ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 7.96 (d, *J* = 7.2 Hz, 2H), 7.73 (d, *J* = 7.6 Hz, 3H), 7.57 (t, *J* = 7.4 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.26 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 193.5, 189.0, 156.5, 135.7, 135.4, 132.0, 130.7, 129.5, 129.3, 129.1, 129.0, 128.6, 125.8, 125.3, 120.0, 119.9; IR (KBr, neat): *v* = 3345, 3284, 3194, 1689, 1648, 1596, 1532, 1492, 1395, 1325, 1315, 1244, 1164, 1006, 935, 828, 816 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₅H₁₁NO₃ ([M+H]⁺) 254.0812, found: 254.0810.

2,3-dioxo-3-phenyl-*N***-(***p***-tolyl)propanamide (21).** The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (101 mg, 71%) with the ratio of **21** and **31** was 3:1; ¹H NMR (600 MHz, CDCl₃) δ 8.63 (s, 1H), 7.91 (d, *J* = 7.8 Hz, 2H), 7.54 (dd, *J* = 15.3 Hz, 7.5 Hz, 4H), 7.44 (t, *J* = 7.2 Hz, 1H), 7.18 (d, *J* = 7.8 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (151 MHz,

CDCl₃) δ 193.9, 193.6, 189.3, 166.9, 156.4, 135.8, 135.5, 134.8, 133.9, 133.3, 132.2, 131.4, 130.8, 129.9, 129.6, 129.5, 129.2, 128.8, 120.2, 119.9, 21.0; IR (KBr, neat): v = 3343, 3033, 2921, 1679, 1598, 1530, 1453, 1403, 1242, 1113, 996, 925, 811, 763 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₆H₁₃NO₃ ([M+Na]⁺) 290.0788, found: 290.0788.

2,3-dioxo-3-phenyl-*N***-(***m***-tolyl)propanamide** (**2m).** The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (101 mg, 71%) with the ratio of **2m** and **3m** was 4:1; ¹H NMR (600 MHz, CDCl₃) δ 8.59 (s, 1H), 7.91 (d, *J* = 8.4 Hz, 2H), 7.70 (t, *J* = 7.5 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 3H), 7.28 (d, *J* = 7.8 Hz, 1H), 7.03 (d, *J* = 7.8 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 193.6, 189.3, 156.4, 139.5, 135.7, 135.5, 134.9, 132.2, 130.8, 129.5, 129.2, 129.18, 129.0, 128.8, 126.8, 126.2, 120.5, 117.0, 21.5; IR (KBr, neat): *v* = 3357, 3066, 2923, 1680, 1614, 1546, 1538, 1491, 1451, 1257, 1113, 1003, 988, 932, 849, 777 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₆H₁₃NO₃ ([M+H]⁺) 268.0968, found: 268.0968.

N-(4-methoxyphenyl)-2,3-dioxo-3-phenylpropanamide (2n). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (120 mg, 80%) with the ratio of 2n and 3n was 5:1; ¹H NMR (600 MHz, CDCl₃) δ 8.62 (s, 1H), 7.91 (d, *J* = 7.8 Hz, 2H), 7.69 (t, *J* = 7.2 Hz, 1H), 7.60 (d, *J* = 7.8 Hz, 2H), 7.53 (t, *J* = 7.5 Hz, 2H), 6.90 (d, *J* = 7.8 Hz, 2H), 3.81 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 193.6, 189.4, 166.8, 157.4, 156.1, 149.5, 135.4, 129.5, 129.1, 121.4, 114.4, 55.5; IR (KBr, neat): *v* = 3495, 3323, 3057, 1678, 1598, 1534, 1514, 1448, 1303, 1247, 1125, 1034, 931, 824 cm⁻¹; HRMS (ESI), *m/z* calcd, for C₁₆H₁₃NO₄ ([M+Na]⁺) 306.0737, found: 306.0731.

N-(3-methoxyphenyl)-2,3-dioxo-3-phenylpropanamide (2o). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (130 mg, 86%) with the ratio of 2o and 3o was 6:1; ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.95-7.84 (m, 2H), 7.71-7.65 (m, 1H), 7.52 (t, *J* = 7.6 Hz, 2H), 7.42 (t, *J* = 2.2 Hz, 1H), 7.26 (m, 1H), 7.14-7.08 (m, 1H), 6.73-6.77 (m, 1H), 3.78 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.5, 189.0, 160.2, 156.4, 136.9, 135.5, 132.0, 130.7, 130.0, 129.5, 129.1, 128.7, 112.1, 112.0, 105.4, 55.3; IR (KBr, neat): *v* = 3361, 3072, 2994, 1720, 1700,

1672, 1609, 1552, 1498, 1448, 1420, 1294, 1265, 1202, 1176, 1156, 1097, 1045, 960, 851, 839, 786 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₆H₁₃NO₄ ([M+Na]⁺) 306.0737, found: 306.0738.

N-(2-methoxyphenyl)-2,3-dioxo-3-phenylpropanamide (2p). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (125 mg, 83%) with the ratio of 2p and 3p was 10:1; ¹H NMR (400 MHz, CDCl₃) δ 9.34 (s, 1H), 8.39 (dd, *J* = 8.0 Hz, 1H), 7.92 (dd, *J* = 8.4 Hz, 2H), 7.69 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 2H), 7.16 (m, 1H), 6.99 (t, *J* = 7.8 Hz, 1H), 6.95 (d, *J* = 8.4 Hz, 1H), 3.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.8, 189.2, 156.4, 148.7, 135.4, 132.2, 129.5, 129.2, 125.8, 125.5, 121.2, 120.1, 110.3, 55.9; IR (KBr, neat): *v* = 3382, 3025, 2970, 1721, 1688, 1669, 1596, 1535, 1488, 1465, 1450, 1318, 1292, 1254, 1217, 1120, 1082, 1025, 937, 865, 785, 757 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₆H₁₃NO4 ([M+Na]⁺) 306.0737, found: 306.0738.

2,3-dioxo-3-phenyl-*N***-mesitylpropanamide** (**2q**). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (111 mg, 71%) with the ratio of **2q** and **3q** was 2:1; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.93 (d, *J* = 7.2 Hz, 2H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.55 (t, *J* = 7.8 Hz, 2H), 6.93 (s, 2H), 2.29 (s, 3H), 2.24 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 193.2, 189.1, 157.5, 137.9, 135.4, 134.9, 134.7, 132.1, 130.9, 129.6, 129.2, 129.1, 129.0, 128.7, 21.0, 20.9, 18.4, 17.7; IR (KBr, neat): v = 3335, 3229, 3061, 1660, 1598, 1520, 1449, 1255, 1121, 1006, 927, 854 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₈H₁₇NO₃ ([M+H]⁺) 296.1281, found: 296.1286.

2,3-dioxo-3-phenyl-*N***-cyclohexyl-propanamide (2r).** The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (112 mg, 81%) with the ratio of **2r** and **3r** was 2:1; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 7.2 Hz, 1H), 7.87 (dd, *J* = 8.4 Hz, 1H), 7.67 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.8 Hz, 2H), 3.82 (m, 1H), 1.97 (d, *J* = 12.0 Hz, 2H), 1.83-1.58 (m, 5H), 1.44-1.00 (m, 7H); ¹³C NMR (101 MHz, CDCl₃) δ 193.8, 189.2, 168.2, 158.1, 135.2, 130.5, 129.5, 129.0, 128.6, 49.4, 48.7, 32.5, 32.3, 25.2, 24.6; IR (KBr, neat): *v* = 3305, 3064, 2932, 2855, 1651, 1530, 1450, 1385, 1253, 1178, 1151, 1099, 1062, 1028, 892 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₅H₁₇NO₃ ([M+Na]⁺) 282.1101, found: 282.1100.

2,3-dioxo-3-phenyl-ethylpropanoate (2s).¹⁰ The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a yellow solid (81 mg, 72%) with the ratio of **2s** and **3s** was 6:1; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 7.2 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 4.21 (q, *J* = 7.2 Hz, 2H), 1.08 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 191.5, 169.9, 134.6, 131.4, 130.1, 130.0, 129.1, 128.8, 63.2, 13.6; HRMS (ESI), *m/z* calcd. for C₁₁H₁₀O₄ ([M+Na]⁺) 229.0471, found: 229.0468.

1,3-diphenylpropane-1,2,3-trione (2t).¹⁰ The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (113 mg, 88%) with the ratio of **2t** and **3t** was 7:1; ¹H NMR (400 MHz, CDCl₃) δ 8.07-8.02 (dd, J = 7.2 Hz, 4H), 7.52 (t, J = 7.4 Hz, 2H), 7.42 (d, J = 7.0 Hz, 1H), 7.38 (t, J = 7.8 Hz, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 194.2, 192.5, 188.3, 172.3, 135.4, 134.6, 133.8, 132.1, 130.3, 130.2, 129.4, 129.1, 128.8, 128.5; HRMS (ESI), *m/z* calcd. for C₁₅H₁₀O₃ ([M+Na]⁺) 261.0522, found: 261.0517.

N-(4-chlorophenyl)-2,3-dioxo-3-(*p*-tolyl)propanamide (2u). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (129 mg, 81%) with the ratio of 2u and 3u was 3:1; ¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 7.81 (d, *J* = 8.4 Hz, 2H), 7.63 (d, *J* = 8.8 Hz, 2H), 7.35 (dd, *J* = 8.8 Hz, 6.4 Hz, 4H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.6, 188.8, 156.5, 147.1, 134.4, 131.0, 129.9, 129.7, 129.5, 129.2, 121.1, 22.1; IR (KBr, neat): *v* = 3400, 3348, 3072, 1656, 1605, 1551, 1492, 1404, 1307, 1263, 1090, 1013, 830, 765 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₆H₁₂ClNO₃ ([M+H]⁺) 302.0578, found: 302.0576.

N-(4-chlorophenyl)-2,3-dioxo-3-(*o*-tolyl)propanamide (2v). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (123 mg, 77%) with the ratio of 2v and 3v was >95:5; ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 7.62 (dd, *J* = 14.0 Hz, 9.2 Hz, 3H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.39-7.31 (m, 4H), 2.69 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 195.2, 188.2, 156.5, 141.4, 134.5, 134.4, 132.7, 132.6, 131.0, 130.5, 129.4, 126.1, 121.1, 21.7; IR (KBr, neat): *v* = 3316, 3189, 3127, 1733, 1683, 1668, 1600, 1545, 1494, 1403, 1290, 1237, 1176, 1084, 1012, 833, 767 cm⁻¹;

HRMS (ESI), *m/z* calcd. for C₁₆H₁₂ClNO₃ ([M+H]⁺) 302.0578, found: 302.0573.

N-(4-chlorophenyl)-2,3-dioxo-3-(*m*-tolyl)propanamide (2w). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (123 mg, 77%) with the ratio of **2w** and **3w** was 20:1; ¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 7.68 (d, *J* = 12.4 Hz, 2H), 7.62 (d, *J* = 8.8 Hz, 2H), 7.49 (d, *J* = 7.2 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.31 (d, *J* = 8.4 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.4, 188.7, 156.5, 139.2, 136.4, 134.3, 131.9, 131.0, 129.8, 129.3, 129.0, 126.9, 121.2, 21.2; IR (KBr, neat): *v* = 3308, 3195, 3060, 1734, 1685, 1666, 1602, 1545, 1494, 1404, 1222, 1078, 1014, 937, 870, 833, 748, 725 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₆H₁₂ClNO₃ ([M+H]⁺) 302.0578, found: 302.0574.

2-oxo- N^{I} , N^{3} -**diphenylmalonamide (2x).** The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (76 mg, 53%) with the ratio of **2x** and **3x** was >95:5; ¹H NMR (400 MHz, CDCl₃) δ 9.08 (s, 2H), 7.57 (d, J = 7.6 Hz, 4H), 7.37 (t, J = 7.8 Hz, 4H), 7.17 (t, J = 7.4 Hz, 2H), 4.85 (d, J = 2.8 Hz, 1H), 4.75 (d, J = 2.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 136.5, 129.2, 125.3, 120.0, 70.6; IR (KBr, neat): v = 3355, 3307, 3055, 1694, 1599, 1536, 1443, 1312, 1196, 1123, 983, 930, 897 cm⁻¹; HRMS (ESI), *m*/*z* calcd. for C₁₅H₁₂N₂O₃ ([M+Na]⁺) 291.0740, found: 291.0743.

3-methyl-N-phenylquinoxaline-2-carboxamide (4y).³² The product was isolated by the precipitate filtered, washed with ethyl acetate and ether as a yellow solid (92 mg, 70%): mp 177-179 $^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 10.02 (s, 1H), 8.16-8.08 (m, 2H), 7.86 (m, 1H), 7.82-7.78 (m, 3H), 7.42 (t, *J* = 8.0 Hz, 2H), 7.19 (t, *J* = 7.4 Hz, 1H), 3.22 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 154.6, 143.1, 142.8, 138.9, 137.7, 131.9, 130.0, 129.2, 128.6, 124.7, 120.0, 25.1; IR (KBr, neat): *v* = 3349, 3055, 2991, 1694, 1595, 1526, 1482, 1441, 1423, 1373, 1315, 1137, 1067, 1008, 912, 881, 779, 758 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₆H₁₃N₃O ([M+Na]⁺) 286.0951, found: 286.0940.

3-methylquinoxaline-2-carboxamide (4z).³³ The product was isolated by the precipitate filtered, washed with ethyl acetate and ether as a yellow solid (38 mg, 41%): mp 192-194 °C; ¹H NMR (400

MHz, CDCl₃) δ 8.09-8.05 (m, 2H), 7.89 (d, J = 6.8 Hz, 1H), 7.86-7.81 (m, 1H), 7.74-7.78 (m, 1H), 5.70 (s, 1H), 3.14 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 154.3, 143.1, 142.7, 139.2, 131.8, 129.7, 129.3, 128.5, 24.8; IR (KBr, neat): v = 3449, 3264, 3180, 1703, 1583, 1566, 1467, 1412, 1369, 1342, 1211, 1139, 1030, 956, 821, 787, 754 cm⁻¹; HRMS (ESI), m/z calcd. for C₁₀H₉N₃O ([M+H]⁺) 188.0818, found: 188.0817.

*N,N,***3-trimethylquinoxaline-2-carboxamide** (4a').³⁴ The product was isolated by flash chromatography (eluent: EA/PE = 1/2)as a yellow liquid (89 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (m, 2H), 7.80-7.70 (m, 2H), 3.22 (s, 3H), 2.94 (s, 3H), 2.76 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.5, 151.3, 149.7, 141.6, 139.7, 130.8, 129.7, 129.0, 128.4, 38.2, 34.9, 21.9; IR (KBr, neat): v = 3449, 3068, 2995, 1642, 1502, 1485, 1410, 1321, 1260, 1184, 1123, 1061, 1007, 886, 765 cm-1; HRMS (ESI), m/z calcd. for C₁₂H₁₃N₃O ([M+H]+) 216.1131, found: 216.1127.

3-(*tert*-butyl)-*N*-phenylquinoxaline-2-carboxamide (4b'). The product was isolated by the precipitate filtered, washed with ether as a yellow solid (78 mg, 85%): mp 217-219 °C; ¹H NMR (600 MHz, DMSO) δ 10.82 (s, 1H), 8.14 (d, *J* = 7.8 Hz, 1H), 8.10 (d, *J* = 7.8 Hz, 1H), 7.94-7.86 (m, 2H), 7.73 (d, *J* = 7.8 Hz, 2H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.16 (t, *J* = 7.5 Hz, 1H), 1.52 (s, 9H); ¹³C NMR (151 MHz, DMSO) δ 167.1, 160.4, 149.7, 140.8, 139.2, 138.8, 131.5, 130.8, 129.5, 129.2, 128.8, 124.6, 120.0, 39.2, 30.0; IR (KBr, neat): *v* = 3283, 3254, 1655, 1607, 1561, 1445, 1330, 1166, 1113, 1057, 767, 756 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₉H₁₉N₃O ([M+H]⁺) 306.1601, found: 306.1600.

3-butyl-N-phenylquinoxaline-2-carboxamide (4c'). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a white solid (133 mg, 87%) : mp 119-121 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.00 (s, 1H), 8.12 (t, *J* = 7.5 Hz, 2H), 7.85 (t, *J* = 7.5 Hz, 1H), 7.79 (t, J = 8.7 Hz, 3H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.19 (t, J = 7.5 Hz, 1H), 3.62 (t, *J* = 7.8 Hz, 2H), 1.91-1.83 (m, 2H), 1.54 (m, 2H), 0.99 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 162.2, 158.5, 143.2, 142.8, 138.7, 137.7, 131.7, 129.9, 129.2, 129.1, 128.8, 124.6, 120.0, 36.8, 31.8, 23.0, 14.1; IR (KBr, neat): *v*

= 3349, 2956, 1689, 1599, 1531, 1446, 1361, 1315, 1131, 1070, 913, 777, 755 cm⁻¹; HRMS (ESI), m/z calcd. for C₁₉H₁₉N₃O ([M+H]⁺) 306.1601, found: 306.1588.

Methyl 3-butylquinoxaline-2-carboxylate (4d'). The product was isolated by flash chromatography (eluent: EA/PE = 3/10) as a colorless oil (92 mg, 75%); ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.83 (t, J = 7.5 Hz, 1H), 7.76 (t, J = 7.5 Hz, 1H), 4.08 (s, 3H), 3.25 (t, J = 7.8 Hz, 2H), 1.85-1.77 (m, 2H), 1.48 (m, 2H), 0.98 (t, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.2, 156.6, 144.2, 142.7, 139.7, 131.7, 129.8, 129.7, 128.7, 53.3, 35.8, 31.5, 22.8, 13.9; IR (KBr, neat): v = 3443, 2957, 2872, 1732, 1560, 1483, 1465, 1438, 1324, 1263, 1235, 1193, 1125, 1080, 850, 762 cm⁻¹; HRMS (ESI), *m/z* calcd. for C₁₄H₁₆N₂O₂ ([M+H]⁺) 245.1285, found: 245.1274.

Author Information

Corresponding Author

*E-mail: <u>zhangzg@htu.edu.cn</u> or <u>zgs6668@yahoo.com</u>.

Acknowledgements

We thank the NSFC (21272057, 21372065 and U1604285), Young Backbone Teachers Fund of Henan (2014GGJS-049), Key Project of Henan Educational Committee (14A150019, 14B150042, 15B610005 and 15A150015), Science & Technology Innovation Talents in Universities of Henan Province (17HASTIT002), the Program of Foundation and Frontier Technology Research of Henan Province (122300410296), Outstanding Young Talent Cultivation Project Funding of Henan Normal University (14YR002).

Supporting Information

Experimental procedure, ¹H and ¹³C NMR spectra of all compounds. Crystallographic data in CIF or other electronic format. This material is available free of charge via the internet at http://pubs.acs.org.

References

- (1) Wasserman, H. H.; Chen, J.-H.; Xia, M. Helv. Chim. Acta 2000, 83, 2607.
- (2) Santos, M. S.; Coelho, F. RSC Adv. 2012, 2, 3237 and references therein.
- (3) (a) Smith, A. B.; Condon, S. M.; McCauley, J. A.; Leazer, J. L.; Leahy, J. W.; Maleczka, R. E. J. *Am. Chem. Soc.* 1997, *119*, 962. (b) Pattenden, G.; Tankard, M.; Cherry, P. C. *Tetrahedron Lett.* 1993, *34*, 2677. (c) Loosley, B. C.; Andersen, R. J.; Dake, G. R. *Org. Lett.* 2013, *15*, 1152. (d) Schütte, J.; Kilgenstein, F.; Fischer, M.; Koert, U. *Eur. J. Org. Chem.* 2014, *2014*, 5302. (e) Ireland, R. E.; Liu, L.; Roper, T. D.; Gleason, J. L. *Tetrahedron* 1997, *53*, 13257.
- (4) (a) Roßbach, J.; Harms, K.; Koert, U. Org. Lett. 2015, 17, 3122. (b) Roßbach, J.; Harms, K.; Koert, U. Eur. J. Org. Chem. 2014, 2014, 993. (c) Mecinović, J.; Hamed, R. B.; Schofield, C. J. Angew. Chem. 2009, 121, 2834; Angew. Chem. Int. Ed. 2009, 48, 2796. (d) Goswami, S.; Maity, A. C.; Fun, H.-K.; Chantrapromma, S. Eur. J. Org. Chem. 2009, 2009, 1417. (e) Wasserman, H. H.; Rotello, V. M.; Krause, G. B. Tetrahedron Lett. 1992, 33, 5419.
- (5) Dei, T.; Morino, K.; Sudo, A.; Endo, T. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 2245.
- (6) Roßbach, J.; Baumeister, J.; Harms, K.; Koert, U. Eur. J. Org. Chem. 2013, 2013, 662.
- (7) Yuki, T.; Yonekawa, M.; Furusho, Y.; Sei, Y.; Tomita, I.; Endo, T. *Tetrahedron* **2016**, *72*, 2868, and references cited therein.
- (8) (a) Yuki, T.; Yonekawa, M.; Matsumoto, K.; Sei, Y.; Tomita, I.; Endo, T. *Tetrahedron*. 2016, 72, 4783. (b) Morino, K.; Sudo, A.; Endo, T. *Macromol.* 2012, 45, 4494.
- (9) Wang, Z.-L.; An, X.-L.; Ge, L.-S.; Jin, J.-H.; Luo, X.; Deng, W.-P. Tetrahedron 2014, 70, 3788.
- (10) Sivan, A.; Deepthi, A. Tetrahedron Lett. 2014, 55, 1890.
- (11) Asahara, H.; Nishiwaki, N. J. Org. Chem. 2014, 79, 11735.
- (12) Batchelor, M. J.; Gillespie, R. J.; Golec, J. M. C.; Hedgecock, C. J. R. *Tetrahedron Lett.* **1993**, *34*, 167.
- (13) Dayer, F.; Dao, H. L.; Gold, H.; Rodé-Gowal, H.; Dahn, H. Helv. Chim. Acta 1974, 57, 2201.

- (14) Wasserman, H. H.; Pickett, J. E. J. Am. Chem. Soc. 1982, 104, 4695.
- (15) Mahran, M. R.; Abdou, W. M.; Sidky, M. M.; Wamhoff, H. Synthesis 1987, 506.
- (16) Wasserman, H. H.; Parr, J. Acc. Chem. Res. 2004, 37, 687.
- (17) (a) Wasserman, H. H.; Han, W. T. *Tetrahedron Lett.* 1984, 25, 3743. (b) Wasserman, H. H.; Lee, K.; Xia, M. *Tetrahedron Lett.* 2000, 41, 2511.
- (18) Wasserman, H. H.; Ennis, D. S.; Power, P. L.; Ross, M. J.; Gomes, B. J. Org. Chem. 1993, 58, 4785.
- (19) Linde, R. G.; Jeroncic, L. O.; Danishefsky, S. J. J. Org. Chem. 1991, 56, 2534.
- (20) Lai, J. H.; Pham, H.; Hangauer, D. G. J. Org. Chem. 1996, 61, 1872.
- (21) (a) Malmberg, W.-D.; Voß, J.; Weinschneider, S. *Liebigs Ann. Chem.* 1983, 1694. (b) Campaigne,
 E.; Skowronski, G.; Forsch, R. A.; Beckman, J. C. *Synth. Commun.* 1976, *6*, 387.
- (22) Cui, J.; Duan, Y.-N.; Yu, J.; Zhang, C. Org. Chem. Front. 2016, 3, 1686.
- (23) Zhang, G. S.; Zhang, Z. G.; Ma, N. N.; Liu, Q. F.; Zhang, W. A kind method of oxidizing methylene of 1,3-dicarbonyl compounds into ketone. China Patent, CN 104860836, 2015.
- (24) (a) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328. (b) Zhdankin, V. V.; Stang, P. J.;
 Chem. Rev. 2008, 108, 5299.
- (25) (a) Huang, P.; Fu, X.; Liang, Y.; Zhang, R.; Dong, D. Aust. J. Chem. 2012, 65, 121. (b) Yuan, Y.;
 Yang, R.; Zhang-Negrerie, D.; Wang, J.; Du, Y.; Zhao, K. J. Org. Chem. 2013, 78, 5385. (c)
 Malamidou-Xenikaki, E.; Spyroudis, S.; Tsanakopoulou, M.; Hadjipavlou-Litina, D. J. Org.
 Chem. 2009, 74, 7315.
- (26) Kita, Y.; Matsuda, S.; Fujii, E.; Horai, M.; Hata, K.; Fujioka, H. Angew. Chem. 2005, 117, 6007.
- (27) (a) Nicolaou, K. C.; Adsool, V. A.; Hale, C. R. H. Org. Lett. 2010, 12, 1552. (b) Naiwei, W.;
 Renhua, L.; Qing, X.; Xinmiao, L. Chem. Lett. 2006, 35, 566.
- (28) Zhang, Z.; Huang, Y.; Guoqing, H.; Zhang, G.; Liu, Q. J. Heterocyclic Chem. 2016, DOI: 10.1002/jhet.2839.

- (29) Zhang, Z.; Gao, X.; Li, Z.; Zhang, G.; Ma, N.; Liu, Q.; Liu, T. Org. Chem. Front. 2016, DOI: 10.1039/c6qo00598e.
- (30) (a) Yasumuro, K.; Suzuki, Y.; Shibazaki, M.; Teramura, K.; Abe, K.; Orita, M. J. Antibiot. 1995, 48, 1425. (b) Wasserman, H. H.; Chen, J.-H.; Xia, M. J. Am. Chem. Soc. 1999, 121, 1401.
- (31) (a) Jones, T. K.; Reamer, R. A.; Desmond, R.; Mills, S. G. J. Am. Chem. Soc. 1990, 112, 2998. (b) Nicolaou, K. C.; Chakraborty, T. K.; Piscopio, A. D.; Minowa, N.; Bertinato, P. J. Am. Chem. Soc. 1993, 115, 4419. (c) Nicolaou, K. C.; Piscopio, A. D.; Bertinato, P.; Chakraborty, T. K.; Minowa, N.; Koide, K. Chem-Eur. J. 1995, 1, 318. (d) Chakraborty, T. K.; Hussain, K. A. Chem. Lett. 1997, 26, 9.
- (32) Gomes, J. R. B.; Sousa, E. A.; Gomes, P.; Vale, N.; Gonçalves, J. M.; Pandey, S.; Acree, W. E.;
 Ribeiro da Silva, M. D. M. C. *J. Phys. Chem. B.* 2007, *111*, 2075.
- (33) Hirota, T.; Namba, T.; Sasaki, K. J. Heterocycl Chem. 1987, 24, 949.
- (34) Pandit, R. P.; Kim S. H.; Lee Y. R. Adv. Synth. Catal. 2016, 358, 3586.