POLYFUNCTIONAL PYRAZOLES. 8*. SYNTHESIS OF 6-ALKYL-2-ARYL-2*H*-PYRAZOLO[4,3-*d*]PYRIMIDINE-5,7(4*H*,6*H*)-DIONES BASED ON ETHYL 1-ARYL-4-ISOCYANATOPYRAZOLE-3-CARBOXYLATES

M. K. Bratenko¹**, M. M. Barus¹, and M. V. Vovk²

A method for the preparation of 6-alkyl-2-aryl-2H-pyrazolo[4,3-d]pyrimidine-5,7(4H,6H)-diones in reaction of ethyl 1-aryl-4-isocyanatopyrazole-3-carboxylates with aliphatic amines followed by cyclization of the obtained 4-ureidopyrazole-3-carboxylic acid esters in the presence of bases is proposed.

Keywords: 6-alkyl-2-arylpyrazolo[4,3-*d*]pyrimidine-5,7-diones, 1-aryl-3-ethoxycarbonylpyrazole-4-carboxylic acids, 1-aryl-4-ureidopyrazole-3-carboxylic acids, ethyl 1-aryl-4-formylpyrazole-3-carboxylates, ethyl 1-aryl-4-isocyanatopyrazole-3-carboxylates, intramolecular cyclization.

Pyrazolo[4,3-*d*]pyrimidine-5,7-diones are pharmacologically promising heterocyclic systems. An important reason for their systematic investigation is the discovery among them of the C-nucleoside antibiotic oxoformycin B [2], stimulants of insulin secretion [3], corticotropin-releasing factor receptor antagonists [4], and selective calcitonin inducers [5]. Representatives of pyrazolo[4,3-*d*]pyrimidine-5,7-diones are also important synthons for the design of adenosine receptor antagonists [6, 7] and fluorescent probes in receptor-binding enzymatic systems [8].

Two methods are usually employed for the preparation of pyrazolo[4,3-*d*]pyrimidine-5,7-diones. The first method is based on pyrazole annelation of polyfunctional uracils [5, 9-11]. The second is based on the principle of the formation of a pyrimidine ring as a result of intramolecular condensation of amides [12-15] or esters [16] of 4-aminopyrazole-3-carboxylic acids. It should be mentioned that in the last case toxic and challenging alkyl isocyanates are used as electrophilic component for the closure of the pyrimidine ring. Moreover, the synthetic value of the method is low due to the complexity of isolation of the initial 4-aminopyrazole-5-carboxylates, which are formed in a mixture with the isomeric 4-aminopyrazole-5-carboxylates.

We have proposed a more effective and scalable method for the synthesis of 6-alkyl-2-arylpyrazolo-[4,3-d] pyrimidine-5,7-diones that requires the use of ethyl 4-isocyanatopyrazole-3-carboxylates **3a**,**b** as key

²Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska St., Kyiv 02094, Ukraine; e-mail: mvovk@i.com.ua.

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1443-1450, September, 2013. Original article submitted April 24, 2013.

^{*}For Communication 7, see [1].

^{**}To whom correspondence should be addressed, e-mail: bratenko@gmail.com.

¹Bukovinsk State Medical University, 2 Teatral'naya Sq., Chernovtsy 58002, Ukraine.

synthetic intermediates. These compounds are formed smoothly by a modified Curtius reaction [17] from 3-ethoxycarbonylpyrazole-4-carboxylic acids 2a,b, which obtained through oxidation of the accessible [18] 4-formylpyrazole-3-carboxylates 1a,b. It was shown that the use of 4-isocyanatopyrazoles 3a,b has an advantage over the use of 4-aminopyrazoles [16] since it is possible to obtain a wide range of pyrazolylureas 4a-m in reaction with primary amines, including those containing *N*-alkyl-functionalized substituents in the ureide fragment. The presence of these substituents is essential for the subsequent modifications of the pyrazolo[4,3-d]pyrimidinedione system.

Investigation toward intramolecular cyclization of compounds **4a-m** showed that the substituent R in the ureide fragment plays a significant role in a process. Thus, upon treatment with potassium hydroxide (method A) or potassium *tert*-butoxide (method B) the ureido esters **4a-g,k-m** containing sterically unhindered alkyl substituents undergo intramolecular cyclization with the formation of pyrazolo[4,3-*d*]pyrimidinediones **5a-j** with yields of 57-78% (Table 1). On the other hand, under analogous conditions *N*-cyclohexyl- or *N*-arylureido esters (compounds **4h** or **4i,j**, respectively) are not susceptible to closure of the pyrimidine ring but undergo hydrolysis of the ethoxycarbonyl group with the formation of the ureido acids **6a-c**. This fact confirms the predominant effect of the steric and electronic factors of the substituents at the N-3 atom of the ureide group on the pyrimidine annelation of compound **4**.

1–3 a, 4a–j, 5a–g, 6a–c Ar = Ph, 1–3 b, 4k–m, 5h–j Ar = 4-BrC₆H₄; 4, 5 a R = n-C₄H₉; b R = (CH₂)₂OH; c R = (CH₂)₂NMe₂; e R = 4-ClC₆H₄CH₂; f R = 4-MeC₆H₄CH₂; 4d,k, 5d,h R = PhCH₂; 4g,m, 5g,j R = 4-MeOC₆H₄(CH₂)₂; 4l, 5i R = 4-MeOC₆H₄CH₂; 4h, 6a R = *cyclo*-C₆H₁₁; 4i, 6b R = Ph; 4j, 6c R = 4-MeC₆H₄

The starting isocyanates 3a,b are light-yellow crystals that are sensitive to atmospheric moisture and require the use of dry solvents. Their structure is consistent with the results of ¹H NMR spectroscopy and also with the data from the IR spectra, in which strong absorption bands for the C=O (1730 cm⁻¹) and N=C=O (2250 cm⁻¹) groups are observed. The structure and composition of the intermediate ureido carboxylates **4a-m** and also of the final products **5a-j**, **6a-c** were confirmed by complex physicochemical investigation using elemental analysis, chromato-mass spectrometry, and IR and NMR spectroscopy (Tables 1-4).

Com-	Empirical		Found, % alculated.	%	Mp. °C	Yield, %
pound	Iormula	C H N		17	(method)	
4 a	$C_{17}H_{22}N_4O_3$	$\frac{61.78}{61.80}$	<u>6.79</u> 6.71	$\frac{16.88}{16.96}$	90-91	84
4b	$C_{15}H_{18}N_4O_4$	<u>56.72</u> 56.60	$\frac{5.61}{5.70}$	$\frac{17.35}{17.60}$	155-157	73
4c	$C_{17}H_{23}N_5O_3$	$\frac{59.31}{59.12}$	$\frac{6.91}{6.71}$	$\frac{20.38}{20.28}$	103-104	70
4d	$C_{20}H_{20}N_4O_3$	<u>65.66</u> 65.92	$\frac{5.41}{5.53}$	$\frac{15.29}{15.37}$	160-162	88
4e	$C_{20}H_{19}ClN_4O_3$	<u>59.96</u> 60.23	$\frac{4.61}{4.80}$	$\frac{13.85}{14.05}$	178-179	92
4f	$C_{21}H_{22}N_4O_3$	$\frac{66.87}{66.65}$	$\frac{5.98}{5.86}$	$\frac{14.61}{14.80}$	182-183	86
4g	$C_{22}H_{24}N_4O_4$	$\frac{64.93}{64.69}$	$\frac{5.86}{5.92}$	$\frac{13.87}{13.72}$	105-106	77
4h	$C_{19}H_{24}N_4O_3$	$\frac{64.15}{64.03}$	<u>6.80</u> 6.79	$\frac{15.68}{15.72}$	100-101	87
4 i	$C_{19}H_{18}N_4O_3$	$\frac{65.08}{65.13}$	$\frac{5.18}{5.18}$	$\frac{16.01}{15.99}$	134-135	90
4j	$C_{20}H_{20}N_4O_3\\$	<u>65.85</u> 65.92	$\frac{5.60}{5.53}$	$\frac{15.29}{15.37}$	148-149	87
4k	$C_{20}H_{19}BrN_4O_3$	<u>54.41</u> 54.19	$\frac{4.19}{4.32}$	$\frac{12.48}{12.64}$	160-161	81
41	$C_{21}H_{21}BrN_4O_4 \\$	$\frac{53.53}{53.29}$	$\frac{4.31}{4.47}$	$\frac{11.77}{11.84}$	185-187	84
4m	$C_{22}H_{23}BrN_4O_4$	$\frac{54.03}{54.22}$	$\frac{4.91}{4.76}$	$\frac{11.36}{11.50}$	150-151	73
5a	$C_{15}H_{16}N_4O_2$	<u>63.61</u> 63.37	<u>5.53</u> 5.67	<u>19.49</u> 19.71	190-191	63 (A) 68 (B)
5b	$C_{13}H_{12}N_4O_3$	$\frac{57.61}{57.35}$	$\frac{4.59}{4.44}$	$\frac{20.36}{20.58}$	225-226	70 (A)
5c	$C_{15}H_{17}N_5O_2\\$	$\frac{60.47}{60.19}$	<u>5.49</u> 5.72	$\frac{23.66}{23.40}$	295-298	64 (B)
5d	$C_{18}H_{14}N_4O_2\\$	$\frac{67.68}{67.92}$	$\frac{4.31}{4.43}$	$\frac{17.45}{17.60}$	282-284	78 (B)
5e	$C_{18}H_{13}ClN_4O_2$	$\frac{61.47}{61.28}$	$\frac{3.80}{3.71}$	$\frac{15.51}{15.88}$	>300	74 (A)
5f	$C_{19}H_{16}N_4O_2$	$\frac{68.71}{68.66}$	$\frac{5.03}{4.85}$	$\frac{16.88}{16.86}$	210-212	77 (A)
5g	$C_{20}H_{18}N_4O_3\\$	<u>66.07</u>	$\frac{5.10}{5.01}$	$\frac{15.30}{15.46}$	259-262	66 (B)
5h	$C_{18}H_{13}BrN_4O_2$	$\frac{54.70}{54.42}$	$\frac{3.16}{2.20}$	13.40 14.31 14.10	279-283	67 (A)
5i	$C_{19}H_{15}BrN_4O_3$	54.45 53.17 52.41	$\frac{3.50}{3.62}$	14.10 12.81 12.11	268-271	61 (B)
5j	$C_{20}H_{17}BrN_4O_3$	53.41 <u>54.19</u> 54.44	3.34 <u>3.70</u> <u>3.88</u>	<u>12.85</u> 12.70	259-261	57 (B)

TABLE 1. Physicochemical Characteristics of the Synthesized Compounds 4a-m, 5a-j

Thus, it was established that ethyl 1-aryl-4-isocyanatopyrazole-3-carboxylates are convenient new starting compounds for the preparative synthesis of 6-alkyl-2-aryl-2*H*-pyrazolo[4,3-d]pyrimidine-5,7(4H,6H)-diones.

EXPERIMENTAL

The IR spectra were recorded in CH_2Cl_2 (compounds **3a**,**b**) and in pellets with KBr (the other compounds) on a UR-20 spectrometer. The ¹H and ¹³C NMR spectra were recorded on a Bruker Avance DRX-500 spectrometer (500 and 125 MHz, respectively) in CDCl₃ (compounds **3a**,**b**) and DMSO-d₆ (the other

Com-	IR spectru	m, v, cm ⁻¹	Mass,	Com-	IR spectrum, v, cm ⁻¹		Mass,
pound	and C=O NH spectrum $m/z [M+H]^+$		pound	C=O	NH	spectrum $m/z [M+H]^+$	
4a	1690, 1725	3255, 3340	331	4m	1700, 1725	3255, 3345	488
4b*	1690, 1725	3260, 3345	319	5a	1675, 1715	3345	285
4c	1695, 1720	3240, 3335	346	5b * ²	1675, 1720	3360	273
4d	1700, 1730	3255, 3365	365	5c	1670, 1715	3365	300
4e	1690, 1730	3250, 3360	399	5d	1670, 1715	3350	319
4f	1685, 1730	3270, 3355	379	5e	1675, 1720	3360	353
4g	1700, 1725	3270, 3350	409	5f	1675, 1720	3370	333
4h	1695, 1720	3245, 3345	357	5g	1680, 1720	3375	363
4i	1695, 1725	3250, 3360	351	5h	1675, 1715	3365	398
4j	1700, 1730	3245, 3355	365	5i	1670, 1715	3355	428
4k	1695, 1730	3245, 3365	444	5j	1675, 1720	3360	442
41	1700, 1725	3250, 3360	474				

TABLE 2. The IR and Mass Spectra of Compounds 4a-m, 5a-j

* v(OH) 3430. *² v(OH) 3405.

TABLE 3. The ¹H NMR Spectra of Compounds 4a-m, 5a-j

Com-	Chemical shifts, δ , ppm (<i>J</i> , Hz)					
1	2					
4a	0.89 (3H, t, $J = 6.8$, (CH ₂) ₃ C <u>H₃</u>); 1.32-1.43 (7H, m, CH ₂ C <u>H₂CH₂CH₂CH₃, OCH₂C<u>H₃</u>); 3.11 (2H, t, $J = 6.6$, NHCH₂); 4.38 (2H, q, $J = 6.8$, OC<u>H₂CH₃</u>); 7.37-7.55 (4H, m, H Ph, NH); 7.83 (2H, d, $J = 8.2$, H Ph);</u>					
4b	8.39 (1H, s, H-5); 8.68 (1H, s, NH) 1.35 (3H, t, $J = 6.8$, OCH ₂ C <u>H₃</u>); 3.19 (2H, t, $J = 5.8$, NHC <u>H₂</u> CH ₂ OH); 3.57 (2H, t, $J = 5.8$, NHCH ₂ C <u>H₂OH</u>); 4.38 (2H, q, $J = 6.8$, OC <u>H₂CH₃</u>); 4.75 (1H, br. s, OH); 7.18-7.38 (4H, m, H Ph, NH); 7.83 (2H, d, $J = 7.6$, H Ph); 8.40 (1H, s, H-5); 8.82 (1H, s, NH)					
4c	1.37 (3H, t, $J = 6.8$, OCH ₂ C <u>H</u> ₃); 2.17 (6H, s, N(CH ₃) ₂); 2.32 (2H, t, $J = 6.0$, NHCH ₂ C <u>H</u> ₂ NMe ₂); 3.21 (2H, t, $J = 6.0$, NHC <u>H</u> ₂ CH ₂ NMe ₂); 4.39 (2H, q, $J = 7.2$, OC <u>H</u> ₂ CH ₃); 7.39-7.55 (4H, m, H Ph, NH); 7.84 (2H, d, $J = 8.0$, H Ph); 8.48 (1H, s, H-5); 8.69 (1H, s, NH)					
4d	1.36 (3H, t, $J = 6.8$, OCH ₂ CH ₃); 4.39 (2H, d, $J = 5.4$, CH ₂ Ph); 4.41 (2H, q, $J = 6.8$, OCH ₂ CH ₃); 7.26-7.90 (11H, m, H Ph, NH); 8.52 (1H, s, H-5); 8.70 (1H, s, NH)					
4e	1.36 (3H, t, $J = 7.2$, OCH ₂ CH ₃); 4.32 (2H, d, $J = 5.2$, CH ₂ Ar); 4.39 (2H, q, $J = 7.2$, OCH ₂ CH ₃); 7.31 (2H, t, $J = 7.6$, H Ar); 7.33-7.44 (5H, m, H Ph); 7.84-7.92 (3H, m, H Ar, NH); 8.53 (1H, s, H-5); 8.69 (1H, s, NH)					
4f	1.36 (3H, t, J = 6.8, OCH ₂ C <u>H₃</u>); 2.29 (3H, s, ArC <u>H₃</u>); 4.28 (2H, d, J = 5.4, C <u>H₂</u> Ar); 4.39 (2H, q, J = 6.8, OC <u>H₂</u> CH ₃); 7.15 (2H, d, J = 7.6, H Ar); 7.20 (2H, d, J = 7.6, H Ar); 7.38 (1H, t, J = 7.6, H Ph); 7.53 (2H, t, J = 7.6, H Ph); 7.84-7.88 (3H, m, H Ph, NH); 8.49 (1H, s, H-5); 8.70 (1H, s, NH)					
4g	1.36 (3H, t, $J = 7.2$, OCH ₂ CH ₃); 2.70 (2H, t, $J = 6.8$, NHCH ₂ CH ₂ Ar); 3.31 (2H, t, $J = 6.8$, NHCH ₂ CH ₂ Ar); 3.73 (3H, s, OCH ₃); 4.38 (2H, q, $J = 7.2$, OCH ₂ CH ₃); 6.87 (2H, d, $J = 8.0$, H Ar); 7.16 (2H, d, $J = 8.0$, H Ar); 7.37-7.56 (4H, m, H Ph, NH); 7.85 (2H, d, $J = 8.0$, H Ph); 8.42 (1H, s, H-5); 8.70 (1H, s, NH)					
4h	1.06-1.08 (13H, m, 5CH ₂ , OCH ₂ CH ₃); 3.48-3.53 (1H, m, NHC <u>H</u>); 4.39 (2H, q, J = 7.2, OC <u>H₂CH₃</u>); 7.28-7.55 (4H, m, H Ph, NH); 7.83 (2H, d, J = 7.2, H Ph); 8.38 (1H, s, H-5); 8.67 (1H, s, NH)					
4i	1.38 (3H, t, $J = 6.8$, OCH ₂ CH ₃); 4.41 (2H, q, $J = 6.8$, OCH ₂ CH ₃); 6.99 (1H, t, $J = 7.2$, H Ph); 7.29-7.42 (7H, m, H Ph); 7.87 (2H, d, $J = 7.6$, H Ph); 8.76 (1H, s, H-5); 8.82 (1H, s, NH); 9.84 (1H, s, NH)					
4j	1.35 (3H, t, J = 7.0, OCH ₂ CH ₃); 2.38 (3H, s, ArCH ₃); 4.42 (2H, q, J = 7.0, OCH ₂ CH ₃); 7.09 (2H, d, J = 7.6, H Ar); 7.39-7.56 (5H, m, H Ph); 7.87 (2H, d, J = 7.6, H Ar); 8.76 (1H, s, H-5); 8.81 (1H, s, NH); 9.74 (1H, s, NH)					

TABLE 3 (continued)

1	2
4k	1.35 (3H, t, $J = 7.2$, OCH ₂ CH ₃); 4.34 (2H, d, $J = 5.6$, CH ₂ Ph); 4.40 (2H, q, $J = 7.2$, OCH ₂ CH ₃); 7.24-7.39 (5H, m, H Ph); 7.72 (2H, d, $J = 7.8$, H Ar); 7.8(7.201 (2H, m, H Ar, 2H)); 8.51 (4H a, 2H)); 8.72 (4H a, H 5);
41	7.80-7.91 (3H, m, H Ar, NH); 8.31 (1H, s, NH); 8.75 (1H, s, H-5) 1.35 (3H, t, $J = 6.8$, OCH ₂ CH ₃); 3.74 (3H, s, OCH ₃); 4.25 (2H, d, $J = 5.6$, CH ₂ Ar); 4.38 (2H, q, $J = 6.8$, OCH ₂ CH ₃); 6.86 (2H, d, $J = 8.2$, H Ar); 7.23 (2H, d, $J = 8.2$, H Ar); 7.70 (2H, d, $J = 8.4$, H Ar); 8.81-8.86 (3H, m, H Ar, NH); 8.47 (1H, s, NH); 8.74 (1H, s, H-5)
4m	$\begin{array}{l} 1.35 (3H, t, J = 7.2, OCH_2CH_3); 2.70 (2H, t, J = 6.6, NHCH_2CH_2Ar); \\ 3.31-3.38 (2H, m, NHCH_2CH_2Ar); 4.38 (2H, q, J = 7.2, OCH_2CH_3); 6.86 (2H, d, J = 8.4, H Ar); \\ 7.16 (2H, d, J = 8.4, H Ar); 7.44 (1H, s, NH); 7.71 (2H, d, J = 8.4, H Ar); \\ 7.84 (2H, d, J = 8.4, H Ar); 8.41 (1H, s, NH); 8.72 (1H, s, H-5) \end{array}$
5a	0.93 (3H, t, <i>J</i> = 7.0, NH(CH ₂) ₃ CH ₃); 1.40-1.47 (4H, m, CH ₂ CH ₂ CH ₂ CH ₃); 3.62 (2H, <i>J</i> = 6.2, NHC <u>H₂</u>); 7.38-7.54 (3H, m, H Ph); 7.88 (2H, d, <i>J</i> = 8.0, H Ph); 8.42 (1H, s, H-3); 11.22 (1H, s, NH)
5b	3.55 (2H, t, <i>J</i> = 6.0, NC <u>H</u> ₂ CH ₂ OH); 3.99 (2H, t, <i>J</i> = 6.0, NCH ₂ C <u>H</u> ₂ OH); 4.80 (1H, br. s, OH); 7.42-7.51 (3H, m, H Ph); 7.95 (2H, d, <i>J</i> = 7.8, H Ph); 8.39 (1H, s, H-3); 11.32 (1H, s, NH)
5c	2.20 (6H, s, N(CH ₃) ₂); 3.42 (2H, t, <i>J</i> = 6.0, NCH ₂ C <u>H₂</u> NMe ₂); 4.00 (2H, t, <i>J</i> = 6.0, NC <u>H₂</u> CH ₂ NMe ₂); 7.27-7.43 (3H, m, H Ph); 7.94 (2H, d, <i>J</i> = 7.6, H Ph); 8.37 (1H, s, H-3); 11.38 (1H, br. s, NH)
5d	5.10 (2H, s, CH ₂ Ph); 7.25-7.84 (10H, m, H Ph); 8.41 (1H, s, H-3); 11.46 (1H, s, NH)
5e	5.07 (2H, s, CH ₂ Ar); 7.36-7.57 (7H, m, H Ar); 7.95 (2H, d, <i>J</i> = 7.6, H Ar); 8.41 (1H, s, H-3); 11.49 (1H, s, NH)
5f	5.05 (2H, s, C <u>H</u> ,Ar); 7.10-7.56 (7H, m, H Ar); 7.96 (2H, d, <i>J</i> = 7.8, H Ar); 8.39 (1H, s, H-3); 11.46 (1H, s, NH)
5g	2.81 (2H, t, $J = 6.8$, NHCH ₂ CH ₂ Ar); 3.73 (3H, s, OCH ₃); 4.07 (2H, t, $J = 6.8$, NHCH ₂ CH ₂ Ar); 6.84 (2H, d, $J = 8.4$, H Ar); 7.15 (2H, d, $J = 7.6$, H Ph); 7.44 (1H, t, $J = 7.8$, H Ph); 7.57 (2H, d, $J = 8.0$, H Ph); 7.96 (2H, d, $J = 8.4$, H Ar); 8.38 (1H, s, H-3); 11.35 (1H, s, NH)
5h	5.09 (2H, s, CH ₂ Ph); 7.25-7.35 (5H, m, H Ph); 7.72 (2H, d, <i>J</i> = 8.0, H Ar); 7.94 (2H, d, <i>J</i> = 8.0, H Ar); 8.44 (1H, s, H-3); 11.49 (1H, s, NH)
5i	3.73 (3H, s, OCH ₃); 5.03 (2H, s, C <u>H</u> ₂ Ar); 6.86 (2H, d, <i>J</i> = 7.8, H Ar); 7.29 (2H, d, <i>J</i> = 7.8, H Ar); 7.73 (2H, d, <i>J</i> = 8.0, H Ar); 7.91 (2H, d, <i>J</i> = 8.0, H Ar); 8.34 (1H, s, H-3); 11.29 (1H, s, NH)
5j	2.79 (2H, t, $J = 7.0$, NHCH ₂ C <u>H</u> ₂ Ar); 3.73 (3H, s, OCH ₃); 4.05 (2H, t, $J = 7.0$, NHC <u>H</u> ₂ CH ₂ Ar); 6.86 (2H, d, $J = 8.0$, H Ar); 7.15 (2H, d, $J = 8.0$, H Ar); 7.74 (2H, d, $J = 8.4$, H Ar); 7.93 (2H, d, $J = 8.4$, H Ar); 8.40 (1H, s, H-3); 11.37 (1H, s, NH)

compounds) with TMS as internal standard. The mass spectra were recorded on an Agilent LC/MSD SL chromatomass spectrometer; Zorbax SB-C18 column, 4.6×15 mm, $1.8 \mu m$ (PN 82(c)75-932). Solvents: A – MeCN–H₂O, 95:5, 0.1% trifluoroacetic acid; B – 0.1% aqueous trifluoroacetic acid; eluent flow rate 3 ml/min; injection volume 1 µl; UV detectors 215, 254, 285 nm; chemical ionization at atmospheric pressure, scan range *m/z* 80-1000. Elemental analysis was performed on a Perkin-Elmer CHN Analyzer in the analytical laboratory of the Institute of Organic Chemistry, National Academy of Sciences of Ukraine. The melting points were determined on a Kofler hot bench and were not corrected. Compounds **1a,b** were obtained by the described method [18].

1-Aryl-3-(ethoxycarbonyl)-1*H*-pyrazole-4-carboxylic acids 2a,b (General Method). The ester 1a,b (0.05 mol) in acetone (50 ml) was added with stirring to a suspension of KMnO₄ (7.90 g, 0.05 mol) in acetone (50 ml) and water (10 ml) at such a rate that the temperature of the reaction mixture did not exceed 20°C. The reaction mixture was stirred at room temperature for 12 h and poured into iced water (200 ml). The solid precipitate was filtered off and washed with of H₂O (100 ml), and the filtrate was acidified with 20% HCl (10 ml). The solid precipitate was filtered off, washed with water (3×50 ml), dried, and recrystallized from EtOH.

Compound 2a. Yield 9.44 g (73%). White crystals, mp 139-140°C. IR spectrum, v, cm⁻¹: 1730 (C=O), 2540-2850 (COOH). ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.39 (3H, t, *J* = 7.2, OCH₂CH₃); 4.34 (2H, q, *J* = 7.2, OCH₂CH₃); 7.39-7.42 (1H, m, H Ph); 7.50-7.55 (2H, m, H Ph); 7.92 (2H, d, *J* = 7.8, H Ph); 9.18 (1H, s, H-5); 11.98 (1H, s, COOH). Found, %: C 60.23; H 4.76; N 10.90. C₁₃H₁₂N₂O₄. Calculated, %: C 60.00; H 4.65; N 10.76.

Com-	Chemical shifts, δ, ppm					
pound	C-3	C-3a	C-5	C-7	C-7a	R, Ar
5a	112.8	132.1	150.2	157.3	138.7	17.8; 20.8; 31.4; 46.5; 119.3; 126.6; 127.4; 129.4
5b	112.7	132.2	150.1	157.4	138.9	44.4; 60.3; 119.9; 125.4; 127.0; 128.8
5c	112.6	132.0	150.5	157.3	139.1	37.8; 45.0; 56.4; 119.4; 127.0; 127.6; 129.2
5d	113.0	131.9	150.6	157.3	139.1	41.1; 119.4; 126.9; 127.1; 127.3; 127.8; 128.2; 129.5; 137.5
5e	113.1	131.9	150.5	157.4	139.1	42.5; 119.5; 127.1; 128.2; 129.3; 129.6; 129.9; 131.6; 136.5
5f	113.0	132.0	150.6	157.3	139.1	20.6; 45.8; 119.4; 127.1; 127.4; 127.8; 128.7; 129.6; 134.5; 136.0
5g	112.7	132.0	150.4	157.1	139.1	32.6; 41.7; 54.7; 113.7; 119.3; 127.0; 127.8; 129.4; 129.5; 130.4; 157.7
5h	113.1	132.4	150.5	157.3	138.3	43.1; 120.4; 126.7; 126.9; 127.1; 127.2; 127.3
5i	113.1	132.4	150.5	157.2	138.4	42.5; 55.0; 113.6; 120.4; 121.4; 127.1; 129.1;
						129.5; 132.3; 158.3
5j	112.8	132.1	150.4	157.3	139.0	32.7; 42.0; 54.4; 113.8; 120.3; 121.5; 127.3; 129.1; 130.0; 132.4; 158.6

TABLE 4. The ¹³C NMR Spectra of Compounds 4a-m, 5a-j

Compound 2b. Yield 10.30 g (61%). Light-yellow crystals, mp 168-170°C. IR spectrum, v, cm⁻¹: 1730 (C=O), 2520-2860 (COOH). ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.43 (3H, t, *J* = 7.0, OCH₂CH₃); 4.28 (2H, q, *J* = 7.0, OCH₂CH₃); 7.63 (2H, d, *J* = 8.2, H Ar); 7.97 (2H, d, *J* = 8.2, H Ar); 9.16 (1H, s, H-5); 12.11 (1H, s, COOH). Found, %: C 45.80; H 3.10; N 8.08. C₁₃H₁₁BrN₂O₄. Calculated, %: C 46.04; H 3.27; N 8.26.

Ethyl 1-Aryl-4-isocyanato-1*H*-pyrazole-3-carboxylates 3a,b (General Method). Ethyl chloroformate (1.65 g, 0.015 mol) was added to a solution of the acid 2a,b (0.010 mol) and Et₃N (2.7 ml, 0.020 mol) in THF (30 ml) with stirring and cooling to -10° C. The mixture was stirred at this temperature for 0.5 h, and NaN₃ (1.62 g, 0.025 mol) in H₂O (10 ml) was then added. The mixture was stirred at -10° C for a further 1 h. The reaction mixture was poured into iced water (100 ml), extracted with PhMe (3×25 ml), dried over anhydrous MgSO₄, filtered, and refluxed until the release of nitrogen had stopped (~2 h). The toluene was evaporated under vacuum, and the solid residue was recrystallized from a 3:1 mixture of benzene and hexane.

Compound 3a. Yield 2.10 g (82%). Light-yellow crystals, mp 93-95°C. IR spectrum, v, cm⁻¹: 1730 (C=O), 2250 (N=C=O). ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.44 (3H, t, *J* = 7.4, OCH₂CH₃); 4.47 (2H, q, *J* = 7.4, OCH₂CH₃); 7.34 (1H, t, *J* = 7.6, H Ph); 7.46 (2H, t, *J* = 7.8, H Ph); 7.66 (2H, d, *J* = 7.8, H Ph); 7.77 (1H, s, H-5). Found, %: C 60.30; H 4.35; N 16.16. C₁₃H₁₁N₃O₃. Calculated, %: C 60.70; H 4.31; N 16.33.

Compound 3b. Yield 2.57 g (77%). Yellow crystals, mp 118-120°C. IR spectrum, v, cm⁻¹: 1730 (C=O), 2250 (N=C=O). ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.41 (3H, t, *J* = 7.2, OCH₂CH₃); 4.30 (2H, q, *J* = 7.2, OCH₂CH₃); 7.61 (2H, d, *J* = 8.4, H Ar); 7.80 (1H, s, H-5); 7.95 (2H, d, *J* = 8.4, H Ar). Found, %: C 46.22; H 2.90; N 12.35. C₁₃H₁₀BrN₃O₃. Calculated, %: C 46.45; H 3.00; N 12.50.

Ethyl 4-({[Alkyl(aryl)amino]carbonyl}amino)-1-aryl-1*H***-pyrazole-3-carboxylates 4a-m (General Method). The corresponding amine (0.002 mol) was added to a solution of the isocyanate 3a,b (0.002 mol) in PhMe (5 ml) and left at room temperature for 3 h (in the case of aliphatic amines) or refluxed for 1 h (in the case of aromatic amines). Hexane (5 ml) was added to the reaction mixture, and after 1 h the precipitate was filtered off, washed with hexane, dried, and recrystallized from EtOH.**

6-Alkyl-2-aryl-2H-pyrazolo[**4,3-***d*]**pyrimidine-5,7**(**4H,6H**)-**diones 5a-j and 1-Phenyl-4-ureido-1H-pyrazole-3-carboxylic Acids 6a-c (General Method)**. The ureido ester **4a-m** (0.001 mol) was added to a solution of KOH (0.12 g, 0.002 mol) in EtOH (10 ml) (method A) or *t*-BuOK (0.12 g, 0.001 mol) in THF (10 ml) (method B), and the mixture was refluxed for 3 h. The reaction mixture was acidified to pH 2 with 10% HCl, and the precipitate was filtered off, washed with water, dried, and recrystallized from AcOH.

4-{[(Cyclohexylamino)carbonyl]amino}-1-phenyl-1*H***-pyrazole-3-carboxylic** Acid (6a). Yield 0.21 g (63%, method A). White crystals, mp 235-237°C. IR spectrum, v, cm⁻¹: 1665, 1710 (C=O), 2520-2830 (COOH), 1350

3230-3300 (NH). ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.18-1.95 (10H, m, 5CH₂); 3.48-3.52 (1H, m, NHC<u>H</u>); 7.37-7.53 (4H, m, H Ph, NH); 7.83 (2H, d, *J* = 7.8, H Ph); 8.38 (1H, s, H-5); 8.65 (1H, s, NH); 13.11 (1H, s, COOH). Mass spectrum, *m*/*z* (*I*_{rel}, %): 329 [M+H]⁺. Found, %: C 62.18; H 6.25; N 17.38. C₁₇H₂₀N₄O₃. Calculated, %: C 62.18; H 6.14; N 17.06.

1-Phenyl-4-(3-phenylureido)-1*H***-pyrazole-3-carboxylic Acid (6b)**. Yield 0.24 g (75%, method B). White crystals, mp 231-233°C. IR spectrum, v, cm⁻¹: 1670, 1705 (C=O), 2530-2870 (COOH), 3315-3345 (NH). ¹H NMR spectrum, δ, ppm (*J*, Hz): 6.99-7.88 (10H, m, H Ph); 8.78 (1H, s, H-5); 8.86 (1H, s, NH); 9.88 (1H, s, NH); 13.27 (1H, br. s, COOH). ¹³C NMR spectrum, δ, ppm: 117.5 (C-5); 118.0, 118.9, 121.9, 127.0, 127.2, 128.8, 129.7, 135.2, 139.8 (C Ph); 132.2 (C-4); 139.3 (C-3); 151.7 (CONH); 164.5 (COOH). Mass spectrum, *m/z* (*I*_{rel}, %): 323 [M+H]⁺. Found, %: C 63.57; H 4.50; N 17.16. $C_{17}H_{14}N_4O_3$. Calculated, %: C 63.35; H 4.38; N 17.38.

4-[3-(4-Methylphenylureido)]-1-phenyl-1*H*-pyrazole-3-carboxylic Acid (6c). Yield 0.27 g (81%, method A). White crystals, mp 239-241°C. IR spectrum, v, cm⁻¹: 1665, 1705 (C=O), 2560-2880 (COOH), 3310-3340 (NH). ¹H NMR spectrum, δ , ppm (*J*, Hz): 2.25 (3H, s, CH₃); 7.09 (2H, d, *J* = 7.8, H Ar); 7.39-7.54 (5H, m, H Ph); 7.87 (2H, d, *J* = 7.8, H Ar); 8.75 (1H, s, H-5); 8.82 (1H, s, NH); 9.76 (1H, s, NH). ¹³C NMR spectrum, δ , ppm: 20.4 (CH₃); 117.4 (C-5); 118.1, 118.9, 127.1, 127.2, 129.2, 129.7, 130.7, 137.2 (C Ar); 132.3 (C-4); 139.3 (C-3); 151.8 (CONH); 164.5 (COOH). Mass spectrum, *m/z*: 337 [M+H]⁺. Found, %: C 64.03; H 4.66; N 16.47. C₁₈H₁₆N₄O₃. Calculated, %: C 64.28; H 4.79; N 16.66.

REFERENCES

- 1. M. K. Bratenko, M. M. Barus, and M. V. Vovk, *Khim. Geterotsikl. Soedin.*, 1657 (2012). [*Chem. Heterocycl. Compd.*, **48**, 1545 (2013).]
- 2. T. Sawa, Y. Fukagawa, J. Homma, T. Wakashiro, T. Takeuchi, and M. Hori, J. Antibiot., 20, 227 (1967).
- 3. T. Nakajima, K. Ueno, Y. Nomoto, Y. Matsumoto, H. Yano, S. Nakanishi, K. Takasaki, and H. Kusaka, EU Pat. Appl. 1637532.
- 4. T. Kashiwagi, I. Takamuro, Y. Watanabe, and M. Yato, EU Pat. Appl. 1903045.
- 5. A. M. Gilbert, S. Caltabiano, F. E. Koehn, Z.-j. Chen, G. D. Francisco, J. W. Ellingboe, Y. Kharode, A. Mangine, R. Francis, H. Trailsmith, and D. Gralnick, *J. Med. Chem.*, **45**, 2342 (2002).
- 6. O. Lenzi, V. Colotta, D. Catarzi, F. Varano, D. Poli, G. Filacchioni, K. Varani, F. Vincenzi, P. A. Borea, S. Paoletta, E. Morizzo, and S. Moro, *J. Med. Chem.*, **52**, 7640 (2009).
- 7. P. G. Baraldi, G. Saponaro, M. A. Tabrizi, S. Baraldi, R. Romagnoli, A. R. Moorman, K. Varani, P. A. Borea, and D. Preti, *Bioorg. Med. Chem.*, **20**, 1046 (2012).
- 8. G. Medza, J. Wierzchowski, B. Kierdaszuk, and D. Shugar, *Bioorg. Med. Chem.*, 17, 2585 (2009).
- 9. K. Hirota, Y. Yamada, T. Asao, Y. Kitade, and S. Senda, Chem. Pharm. Bull., 29, 3060 (1981).
- 10. F. Zhang, A. Kulesza, S. Rani, B. Bernet, and A. Vasella, Helv. Chim. Acta, 91, 1201 (2008).
- 11. K. Hirota, Y. Yamada, T. Asso, and S. Senda, J. Chem. Soc., Perkin Trans. 1, 277 (1982).
- 12. R. K. Robins, F. W. Furcht, A. D. Grauer, and J. W. Jones, J. Am. Chem. Soc., 78, 2418 (1956).
- 13. V. Papesh and R. M. Dodson, J. Org. Chem., **30**, 199 (1965).
- 14. K. S. Ramasamy, R. B. Amador, Q. Habib, F. Rong, X. Han, D. Y. Li, J. Huang, Z. Hong, and H. An, *Nucleosides, Nucleotides, Nucleic Acids*, **24**, 1947 (2005).
- 15. R. A. Long, J. F. Gerster, and L. B. Townsend, J. Heterocycl. Chem., 7, 863 (1970).
- 16. T. Brady, K. Vu, J. R. Barber, S. C. Ng, and Y. Zhou, *Tetrahedron Lett.*, **50**, 6223 (2009).
- 17. J. Weinstock, J. Org. Chem., 26, 3511 (1961).
- 18. M. K. Bratenko, M. M. Barus, and M. V. Vovk, *Khim. Geterotsikl. Soedin.*, 1817 (2009). [*Chem. Heterocycl. Compd.*, **45**, 1464 (2009).]