COMPOSES D'ADDITION FORMES PAR LES PENTA-CHLORURES DE NIOBIUM (V), DE TANTALE (V) ET DE PROTACTINIUM (V) AVEC LE CHLORURE DE NITROSYLE: ETUDE INFRAROUGE ET RAMAN

J. MacCORDICK, G. KAUFMANN et R. ROHMER

Laboratoire de Chimie Minérale et Structurale, laboratoire associé au CNRS, Groupe de Spectrochimie, Institut de Chimie, Université de Strasbourg, France

(First received 10 January 1969; in revised form 20 February 1969)

Résumé – Les spectres de vibration et quelques propriétés thermiques et radiocristallographiques sont signalés pour les composés d'addition $M^{v}Cl_{s}$. NOCl (M=Nb, Ta). Un complexe répondant à la composition $PaCl_{s}$. 3NOCl a été étudié sous quelques réserves à cause de la faible quantité. Le caractère ionique des composés aussi bien que les données spectrales correspondant à leurs anions sont discutés.

Abstract—Thermal and crystallographic properties and vibrational spectra are reported for the addition compounds M^vCl_s . NOCl (M = Nb, Ta) and in part for a complex analysed as $PaCl_s$. 3NOCl. The ionic nature of the products is discussed and spectral data for the anions are presented.

Dans un travail précédent, nous avons signalé l'existence de deux composés d'addition du type M^vCl₅. NOCl formés par la réaction des pentachlorures de niobium et de tantale avec le chlorure de nitrosyle[1]. Plus récemment, il a été possible d'étendre l'étude avec NOCl comme coordinat au cas du protactinium en utilisant PaCl₅[2]. Le choix de ce dernier nous semblait important parce que plusieurs réactions du protactinium de degré d'oxydation 5 ressemblent à celles de niobium et de tantale pentavalents. Cette analogie se manifeste surtout avec les chlorures, qui forment des anions complexes MCl₆⁻ pour tous les trois éléments. Alors que la coordinence de 6 est maximale pour les complexes chlorés de niobium et de tantale, on connaît pour le protactinium (V), en plus, la coordinence 8 représentée par l'octachloroprotactinate [(CH₃)₄N]₃PaCl₈[3].

Nous nous proposons dans le présent travail de comparer le comportement des pentachlorures des éléments de transition du groupe VA avec celui de PaCl₅ vis-à-vis du même coordinat NOCl et d'appliquer les techniques de spectroscopie infrarouge et Raman à l'étude structurale des produits formés.

PARTIE EXPÉRIMENTALE

1. Appareillage et réactions des pentachlorures

Dans toutes les phases de préparation et manipulation des complexes, il était nécessaire de soustraire les corps réagissants à l'humidité. Les réactions préparatives sont faites en système scellé et le transfert des produits est accompli dans une boîte à gants sèche.

- 1. J. MacCordick et R. Rohmer, C. r. hebd. Séanc. Acad. Sci., Paris (C) 263, 1369 (1966).
- 2. J. MacCordick, Inorg. nucl. Chem. Lett. 4, 665 (1968).
- 3. K. W. Bagnall et D. Brown, J. chem. Soc. 1964, 3021.

1.1. Réactions avec NbCl₅ et TaCl₅. Pour la synthèse des composés d'addition de NOCl avec les pentachlorures de niobium et de tantale, nous avons utilisé un vase de réaction à filtration interne comme celui décrit pour la séparation du mélange NbOCl₃ et NbCl₅ [4]. Après l'évaporation de la solution du pentachlorure de niobium ou de tantale dans un excès de NOCl liquide, on recueille les complexes MCl₅. NOCl[1].

Anal. NbCl₅. NOCl:

Calcd. %: Nb 27,68; Cl 63,38; N 4,17. Trouvé: 27,9₁ 63,3₅ 4,1₄.

Anal. TaCls . NOCl:

Calcd. %: Ta 42,70; Cl 50,22; N 3,30. Trouvé: 43,0₃ 49,9₂ 3,4₂.

1.2. Réaction avec PaCl₅. La synthèse de ²³¹PaCl₅ et celle du complexe formé avec NOCl sont réalisées dans le système en verre Pyrex représenté par la Fig. 1. Toutes les opérations sont faites dans une boîte à gants adaptée au travail radiochimique.

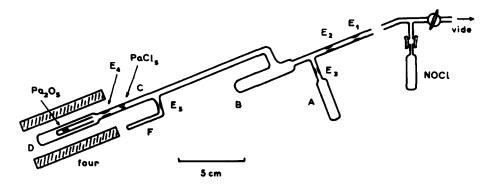


Fig. 1. Synthèse de PaCl₅ et du complexe PaCl₅. 3NOCl.

Un échantillon d'oxyde de protactinium purifié par reprécipitation est placé dans le compartiment D et chloré par des vapeurs de chlorure de thionyle à $375-550^{\circ}[5]$. Dans ce but, un excès de $SOCl_2$ liquide est introduit dans la partie B à l'aide d'une micropipette étirée introduite par les étranglements E_1 et E_2 . L'étranglement E_1 sert à sceller l'appareil dans le vide avant le commencement de la chloruration. PaCl₅ formé (4-5 mg) se sublime et se condense sous forme d'aiguilles dans la zone C. Ensuite, l'excès de $SOCl_2$ est condensé dans l'ampoule A, qui est enlevée en scellant l'étranglement E_3 . De même façon, on enlève par scellage en E_4 le résidu de sublimation de D.

Dans le deuxième stade, une ampoule contenant environ $0.5\,\mathrm{g}$ de chlorure de nitrosyle est raccordée avec l'appareil en E_1 et NOCl est distillé sous vide dans le compartiment B, refroidi avec de l'azote liquide. L'appareil est finalement scellé sous vide à l'étranglement E_2 . La condensation d'un excès (50–100 mg) de NOCl sur les cristaux de $PaCl_5$ peut maintenant être effectuée par refroidissement de la partie C dans un vase Dewar. Le mélange réactif est porté à 20° et la solution claire formée est transvasée dans le bras F. L'excès de NOCl est évaporé en plongeant le réservoir B dans de l'azote liquide. Le complexe de composition $PaCl_5$. 3NOCl est isolé dans le tube F après scellage en E_5 .

Anal. PaCl₅. 3NOCl:

Calcd. %: Pa 38,20; Cl 46,91. Trouvé: 39,2; 47,7; Pa : Cl = 1 : 7,92.

- 4. J. MacCordick, Separation Sci. Sous presse.
- 5. D. Brown et P. J. Jones, J. chem. Soc. (A) 1966, 874.

2. Préparation des réactifs

Pentachlorures de niobium et de tantale. Le montage à filtration mentionné dans la section 1.1. permet d'utiliser les pentachlorures de commerce sans purification ultérieure. Cependant, le rendement en complexe est amélioré si les échantillons de NbCl₃ et TaCl₅ sont débarrassés d'abord des traces d'oxyde ou d'oxychlorure par sublimation.

Composés de protactinium. Les opérations de purification, de synthèse et de dosage dans le cas des derivés de protactinium sont réalisées par des techniques déjà décrites (sect. 1)[2, 5].

Chlorure de nitrosyle. NOCl est préparé par la réaction

$$2NO + Cl_2 \rightarrow 2NOCl$$

et purifié par distillation[6].

3. Dosages

Niobium, tantale et protactinium. Les métaux sont précipités sous forme de leurs hémipentoxydes avec de l'ammoniaque et pesés comme les pentoxydes, après calcination à 900°.

Chlore, azote. Le chlore est analysé par potentiométrie avec AgNO₃ après la séparation des oxydes par filtration (Nb et Ta) ou par centrifugation (Pa).

Dans les complexes de niobium et de tantale, l'azote est dosé par la méthode de Kjeldahl en utilisant l'alliage Dewarda comme réducteur.

4. Appareils de mesure

Spectres. Les spectres infrarouges ont été enregistrés avec des spectrophotomètres Beckman IR 12 et IR 11 en utilisant la technique de l'émulsion dans le nujol. Des plaques de chlorure de sodium sont employées pour le domaine 4000-750 cm⁻¹ et des plaques en polyéthylène pour la région 400-100 cm⁻¹.

Les spectres Raman ont été réalisés à l'aide d'un spectrophotomètre Coderg, la source excitatrice étant un laser hélium-néon (6328 Å) de 100 mW de puissance.

Thermogravimétrie. Pour l'enregistrement des thermogrammes en atmosphère d'azote sec, nous nous sommes servis d'une thermobalance Stanton modèle MF-HI à vitesse de chauffe de 50°/hr.

Diagrammes de diffraction. Les clichés de poudre sont faits avec une caméra de Debye-Scherrer de diametre 114,6 mm en utilisant le rayonnement $CuK\alpha$ filtré ($\lambda = 1,54178$ Å).

Pesées. Les pesées pour le dosage du complexe de Pa étaient effectuées sur une microbalance Mettler type M 5 de $\pm 5\mu g$ de précision.

RÉSULTATS ET DISCUSSION

1. Action de NOCl sur NbCl₅, TaCl₅ et PaCl₅

Contrairement aux oxychlorures NbOCl₃ et TaOCl₃[1], les pentachlorures de niobium, de tantale et de protactinium se dissolvent facilement dans un excès 15-30 fois molaire de NOCl liquide à 20°. Dans ces conditions, le chlorure de nitrosyle sert en même temps de solvant et de réactif.

Les composés d'addition obtenus après évaporation de l'excès de NOCl sont jaune vif et, en général, pulvérulents. Par évaporation très lente à froid, il est possible d'amorcer une cristallisation des produits en forme de feuilles ou d'aiguilles. Alors que NbCl₅ et TaCl₅ ne forment que des composés d'addition 1:1 avec NOCl, l'analyse du complexe PaCl₅-NOCl indique un rapport MCl₅: NOCl de 1:3. Ces résultats paraissent raisonnables si on tient compte des diverses coordinences possibles pour les trois atomes métalliques envisagés.

Les trois composés d'addition sont facilement hydrolysés mais sont stables en atmosphère d'azote sec à la température ordinaire.

6. Voir J. MacCordick, Dissertation, Universität Heidelberg, 1962.

1.1. Comportement thermique. La détermination du point de fusion de chaque complexe était faite dans les conditions imposées par le composé de protactinium, c.à.d. en tube scellé sous vide (~ 0.01 mm de mercure), à moitié immergé dans le bain chaud. Les résultats sont donnés dans le Tableau 1.

I doleda I				
Composé	p.F. (°C)	Comportement vers 150° sous vide en tube scellé		
NbCl ₅ . NOCl	176-178	peu de sublimation, décomposition partielle		
TaCl ₅ . NOCl	228-230	sublimation, très peu de décomposition		
PaCl ₅ .3NOCl	120-125	ni sublimation ni décomposition évidente		

Tableau 1

Il est à noter que le point de fusion que nous trouvons ici pour TaCl₅. NOCl est beaucoup plus élevé que la valeur déjà signalée[1]. Ceci est attribué à des différences de pureté ou de vitesse de chauffe et aux conditions de mesure specifiées ci-dessus.

Les courbes thermogravimétriques des composés NbCl₅. NOCl et TaCl₅. NOCl sont enregistrées sous 1 atm d'azote et sont représentées dans la Fig. 2.

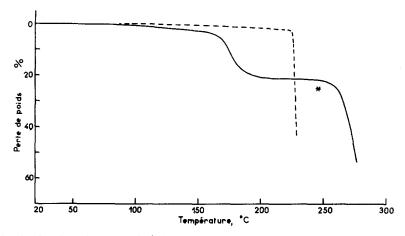


Fig. 2. Courbes thermogravimétriques sous azote pour (a) NbCl₅. NOCl (----); (b) TaCl₅. NOCl (----). Vitesse de chauffe 50°/hr. (* – Ébullition de NbCl₅).

Pour le complexe de niobium, on note une légère perte continue qui commence vers $55-60^{\circ}$ et qui devient plus rapide en dessus de 150° . Vers 200° , le produit a perdu 1 mole NOCl pour 1 mole NbCl₅ et le palier entre 200 et 245° correspond à NbCl₅ pur. La nouvelle chute de poids qui apparaît au-dessus de 245° est attribuable à l'ébullition du pentachlorure (t_{eb} de NbCl₅ = 241°).

À titre comparatif, la courbe relative à TaCl₅. NOCl montre nettement la plus grande stabilité thermique de ce composé; on n'observe qu'une perte de 1-2% du poids de l'échantillon à 200°. La chute subite vers 225-230° s'accomplit déjà dans la phase liquide et semble être plus rapide que dans le cas du composé

de niobium; elle peut s'interpréter par une ébullition et une décomposition du complexe simultanées.

Bien qu'une étude thermogravimétrique de PaCl₅. 3NOCl ne fût pas possible, le comportement en tube scellé indiquait que ce composé restait stable même dans l'état fondu jusqu'à 150° au moins [2].

1.2. Étude radiocristallographique de MCl_5 . NOCl (M = Nb, Ta). Les clichés de poudre des complexes de niobium et de tantale sont comparés dans la Fig. 3. Ils sont différents des clichés des pentachlorures de départ. Il est évident d'aprés le diagramme de diffraction que $TaCl_5$. NOCl (Fig. 3b) est isotype de NH_4TaCl_6 (Fig. 3a), ce qui permet de proposer la formule ionique $NO^+TaCl_6^-$ [7]. Cette formule est confirmée par l'étude spectrophotométrique.

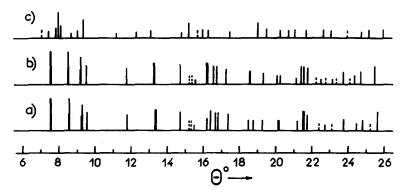


Fig. 3. Diagrammes de diffraction partiels (CuK_α); (a) NH₄TaCl₆; (b) TaCl₅. NOCl; (c) NbCl₅. NOCl.

Par contre, le cliché de NbCl₅. NOCl, ou mieux, NO+NbCl₆- (Fig. 3c), montre que ce complexe n'est plus isotype du composé analogue de tantale et qu'il possède sa propre structure cristalline. Cette anomalie sera interprétée à l'aide des spectres i.r. et Raman.

1.3. Spectres de vibration des composés MCl₅. NOCl (M = Nb, Ta). Nature des bandes observés. Les spectres de ces deux composés présentant dans l'infrarouge lointain des bandes très larges et peu intenses, se prêtent difficilement à une éventuelle étude de structure. Par contre, les spectres Raman (Figs. 4 et 5) sont constitués par des raies fines et bien définies. Les spectres i.r. et Raman des deux complexes presentent dans la région 2160 cm⁻¹ une bande attribuable à la présence d'un groupement NO⁺[8]. Nous sommes ainsi amenés à proposer pour les deux corps la formule ionique NO⁺MCl₆⁻.

Les ions MCl_6^- sont caractérisés par une série de bandes ou de raies situées dans la région $400-100 \, \mathrm{cm}^{-1}$. Le petit nombre de ces bandes laisse supposer que la symétrie de ces ions doit être relativement élevée. Aussi avons-nous adopté comme hypothèse de travail que les anions MCl_6 appartiennent vraisemblablement au groupe ponctuel O_h .

Voir L. J. Klinkenberg, Rec. Trav. chim. Pays-Bas. 56, 749 (1937); Chem. Weekblad 35, 197 (1938).

^{8.} Voir D. W. A. Sharp et J. Thorley, J. chem. Soc. 1963, 3557

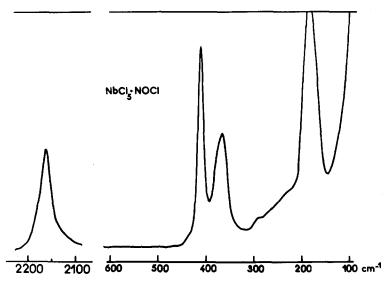


Fig. 4. Spectre Raman de NbCl₅. NOCl.

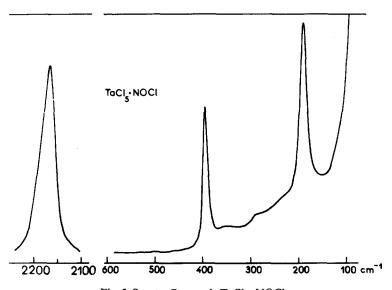


Fig. 5. Spectre Raman de TaCl₅. NOCl.

Dans une telle hypothèse, les 15 vibrations fondamentales de ces ions vont se repartir suivant les diverses représentations irréductibles du groupe O_h de la façon suivante:

$$\Gamma = A_{1g} + E_g + 2F_{1u} + F_{2g} + F_{2u}.$$

Les vibrations A_{1g} , E_g et F_{2g} sont visibles uniquement en Raman, les vibrations F_{1u} sont seulement actives en infrarouge alors que la vibration F_{2u} est inactive dans les deux spectres.

Le spectre Raman de l'ion TaCl₆ présente effectivement 3 raies caractéris-

tiques vers 394, 290 et 190 cm⁻¹. Ces raies doîvent correspondre respectivement aux vibrations de valence Ta-Cl $\nu_1(A_{1g})$ et $\nu_2(E_g)$ et à la vibration de déformation de l'angle Cl-Ta-Cl $\nu_5(F_{2g})$. Les deux bandes du spectre infrarouge de cet ion vers 330 et 160 cm⁻¹ correspondent alors à la vibration de valence Ta-Cl $\nu_3(F_{1u})$ et à la vibration de déformation de l'angle Cl-Ta-Cl $\nu_4(F_{1u})$. Il est à noter que la vibration $\nu_5(F_{2g})$ apparaît faiblement dans le spectre i.r. alors que la vibration $\nu_3(F_{1u})$ devient également légèrement active en Raman (~ 360 cm⁻¹). Ce fait suggère que l'octaèdre TaCl₆-soit déformé.

Cette déformation de l'octaèdre formé par les 6 atomes de chlore va en s'accentuant lorsqu'on remplace le tantale par le niobium. En effect, dans le spectre Raman de l'ion $NbCl_6^-$ qui théoriquement ne devrait présenter que trois raies correspondant aux vibrations ν_1 , ν_2 et ν_5 (409, 295 et 185 cm⁻¹), apparaît une raie supplémentaire intense vers 364 cm⁻¹, raie correspondant à la vibration ν_3 . Inversement, le spectre i.r. de ce même ion présente à côté des deux bandes correspondant aux vibrations ν_3 et ν_4 (360 et 165 cm⁻¹) deux bandes d'intensité moyenne (390 et 190 cm⁻¹) attribuable à ν_1 et ν_5 .

Il ressort de cette première analyse que les spectres de vibration des ions MCl_6^- peuvent s'interpréter en admettant que les six atomes de chlore forment autour de l'atome métallique en octaèdre plus ou moins déformé[9]. Les nombres d'onde des diverses vibrations fondamentales de ces deux ions sont résumés dans le Tableau 2.

NONbCl ₆			NOT	Indexation	
	man cm ⁻¹)	I.R. $\nu(\text{cm}^{-1})$	Raman $\nu(\text{cm}^{-1})$	I.R. $\nu(\text{cm}^{-1})$	
CATION	2159 (F)	2164 (f)	2164 (TF)	2163 (m)	ν(NO ⁺)
	409 (TF)	390 }(F, 1)	394 (F)		$\nu_1(\mathbf{A}_{1g})$
	364 (F)	360		330 (F)	$\nu_3(F_{1u})$
ANION	} 295 (f)		290 (f)		$\nu_2(E_g)$
	185 (TF)	190 }(m, 1)	190 (F)	195 (f)	$\nu_5(F_{2g})$
		165		160 (m)	$\nu_4(\mathbf{F}_{1u})$

Tableau 2. Fréquences de vibration des composés NO+MCl₆- (M = Nb, Ta)

TF: très forte; F: forte; m: moyenne; f: faible; l: large.

Analyse en coordonnés normales. Considérons l'ion MCl_6^- représenté par la Fig. 6. Son état vibratoire est fixé par la donnée de 18 coordonnés internes (R_i) représentant les variations Δdi (six) et $\Delta \alpha ij$ (douze) des distances et des angles. À chaque mode de vibration sera associé une coordonné de symétrie Si de la façon suivante:

9. M. J. Ware et K. W. Bagnall, Communication privée.

vibration A_{1g} : $\nu(M-Cl)$

$$S_1 = \frac{1}{\sqrt{6}} (\Delta d_1 + \Delta d_2 + \Delta d_3 + \Delta d_4 + \Delta d_5 + \Delta d_6)$$

vibration E_q : $\nu(M-Cl)$

$$S_2 = \frac{1}{\sqrt{12}} (2\Delta d_5 + 2\Delta d_6 - \Delta d_1 - \Delta d_2 - \Delta d_3 - \Delta d_4)$$

vibrations F_{1u} : $\nu(M-Cl)$ et $\delta(Cl-M-Cl)$

$$S_3 = \frac{1}{\sqrt{2}} (\Delta d_5 - \Delta d_6)$$

$$S_4 = \frac{1}{\sqrt{8}}(\Delta \alpha_{51} + \Delta \alpha_{52} + \Delta \alpha_{53} + \Delta \alpha_{54} - \Delta \alpha_{61} - \Delta \alpha_{62} - \Delta \alpha_{63} - \Delta \alpha_{64})$$

vibration F_{2g} : $\delta(Cl-M-Cl)$

$$S_5 = \frac{1}{2}(\Delta\alpha_{12} - \Delta\alpha_{23} + \Delta\alpha_{34} - \Delta\alpha_{41})$$

vibration F_{2u} : $\delta(Cl-M-Cl)$

$$S_6 = \frac{1}{\sqrt{8}}(\Delta\alpha_{51} - \Delta\alpha_{52} + \Delta\alpha_{53} - \Delta\alpha_{54} - \Delta\alpha_{61} + \Delta\alpha_{62} - \Delta\alpha_{63} + \Delta\alpha_{64}).$$

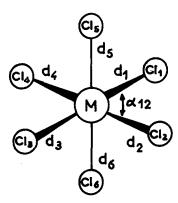


Fig. 6. Structure octaédrique de l'ion MCl₈-.

L'équation séculaire de cet ion s'écrit en utilisant les matrices G et F de Wilson [10]:

$$|GF - E\lambda| = 0$$
 où $\lambda = 4\pi^2 c^2 \bar{\nu}^2$

10. E. B. Wilson, J. C. Decius et P. C. Cross, Molecular Vibrations. McGraw-Hill, New York (1955).

les éléments de la matrice G ayant pour expression:

$$G_{11} = \mu_{CI}$$

$$G_{22} = \mu_{CI}$$

$$G_{33} = \mu_{CI} + 2\mu_{M}$$

$$G_{34} = -4\mu_{M}$$

$$G_{44} = 2(\mu_{CI} + 4\mu_{M})$$

$$G_{55} = 4\mu_{CI}$$

$$G_{66} = 2\mu_{CI}$$

où μ_{Cl} et μ_{M} représentent l'inverse des masses atomiques de chlore et du métal.

Nous avons utilisé une matrice F simplifiée négligeant toutes intéractions angle-angle et en ne gardant que les intéractions distance-angle. Dans ces conditions, les éléments de cette matrice auront pour expression:

$$F_{11} = f_r + 4f'_{rr} + f''_{rr}$$

$$F_{22} = f_r - 2f'_{rr} + f''_{rr}$$

$$F_{33} = f_r - f''_r$$

$$F_{34} = 2f_{r\alpha}$$

$$F_{44} = F_{55} = F_{66} = f_{\alpha}$$

 $(f'_{rr}$ et f''_{rr} représentent respectivement les interactions distance-distance formant un angle soit de 90°, soit de 180°, $f_{r\alpha}$ les interactions distance-angle).

Les valeurs numériques de ces éléments sont rassemblées dans le Tableau 3 alors que le Tableau 4 résume les nombres d'onde calculés et les constantes de force f_{M-Cl} .

Tableau 3. Éléments de la matrice F (mdynes/Å)

NbCl ₆ -	TaCl ₆ -	UCl ₆ -
$F_{11} = 3,49$	$F_{11} = 3,24$	$F_{11} = 2,46$
$F_{22} = 1.88$	$F_{22} = 1,76$	$F_{22} = 1,60$
$F_{33} = 1.51$	$F_{33} = 1,69$	$F_{33} = 1,54$
$F_{34} = 0.04$	$F_{34} = 0.02$	$F_{34} = 0.01$
$F_{44} = 0.15$	$F_{44} = 0.18$	$F_{44} = 0.12$
$F_{55} = 0.18$	$F_{55} = 0.19$	$F_{55} = 0.095$

D'autre part, pour déceler les éventuels couplages entre les divers modes de vibration, nous avons calculé la distribution d'énergie potentielle dans chaque cas pour la représentation F_{1u} (Tableau 5). Il ressort de ces données que dans l'ion $NbCl_6^-$ il existe un léger couplage entre la vibration de valence Nb-Cl et la vibration de déformation d'angle Cl-Nb-Cl.

MCl ₆ -	$\nu_1(\mathbf{A}_{1g})$	$\nu_2(E_g)$	$\nu_3(F_{1u})$	$\nu_4(\mathbf{F}_{1u})$	$ u_5(F_{2g})$	$\nu_6(F_{2u})$	f _{M−C1} (mdynes/Å)
NbCl ₆ -	409	300	364	160	185	132	~2,0
TaCl ₆ -	395	290	340	160	190	135	~2,0
UCl ₆ -	343	277	312	127	135	103	1,7

Tableau 4. Nombre d'onde calculé et constantes de force des ions MCl₆-

Tableau 5. Distribution de l'énergie potentielle (F_{1u}) dans les ions MCl_e⁻

	NbCl ₆ -		TaCl ₆ -		UCl ₆ -	
	$ u_3$	$ u_4$	$ u_3 $	ν_4	$ u_3$	ν_4
S ₃	95,0	7,00	96,4	3,7	98,2	2,2
S_4	9,0	91,0	5,0	95,1	1,8	97,8

D'après cette analyse, les constantes de force des liaisons métal-chlore dans les composés NONbCl₆ et NOTaCl₆ sont voisines et peu différentes de 2 mdynes/Å. Pistorius et al[11] ont calculé pour les liaisons M-Cl dans NbCl₅ et TaCl₅ des constantes de force de valeur moyenne 3,30 mdynes/Å. Plus récemment, mais seulement pour NbCl₅ et à partir d'une nouvelle indexation de spectre, Werder et al.[12] ont proposé pour la constante Nb-Cl une valeur moyenne de 2,2 mdynes/Å.

Lorsqu'on passe de la molécule de NbCl₅ à l'ion NbCl₆⁻ la constante de force de la liaison niobium-chlore diminue donc d'environ 10%. Vu la grande similitude des spectres des ions TaCl₆⁻ et NbCl₆⁻, on peut admettre une variation semblable pour la liaison Ta-Cl.

- 1.4. Spectre de vibration du composé PaCl₅. 3NOCl. Le spectre Raman du pentachlorure de protactinium présente 3 raies caractéristiques:
- deux raies situées vers 367 et 324 cm⁻¹ correspondant aux vibrations de valence des liaisons Pa-Cl:
- une raie d'intensité moyenne située vers 139 cm⁻¹ qui correspond à une vibration de déformation d'angle Cl-Pa-Cl.

Le spectre Raman du composé PaCl₅. 3NOCl est caracterisé par quatre raies situées respectivement vers 2203 cm⁻¹, 353 et 275 et 140 cm⁻¹.

La raie vers 2203 cm^{-1} est attribuable comme pour les composés obtenus avec le niobium et le tantale à la présence d'un groupement ionique NO^+ , de sorte que ce composé peut être formulé $(NO^+)_3$ $[PaCl_8]^{3-}$.

Contrairement au Nb et au Ta, le protactinium peut former en effet un anion complexe chloré qui présente une coordinence de 8. On peut alors envisager pour $PaCl_8^{3-}$ soit une structure cubique (O_h) , soit une structure D_{4d} (antiprisme

^{11.} G. N. Krynauw, C. W. F. T. Pistorius et M. C. Pistorius, Z. phys. Chem. 43, 213 (1964).

^{12.} R. D. Werder, R. A. Frey et Hs. H. Günthard, J. chem. Phys. 47, 4159 (1967).

d'Archimède), soit une structure D_{2d} (dodécaèdre), soit une structure C_{2v} (prisme trigonal à faces centrées). Le nombre restreint de raies observées conduit à considerer la structure cubique comme étant la plus probable.

Dans ces conditions, les 21 vibrations fondamentales de l'ion $PaCl_8^{3-}$ se repartissent suivant la représentation irréductible du groupe O_h de la façon suivante:

$$\Gamma = A_{1g} + A_{2u} + E_g + E_u + 2F_{1u} + 2F_{2g} + F_{2u}.$$

Le spectre Raman doit alors comporter 2 raies correspondant aux vibrations de valence Pa-Cl ν_1 et ν_7 et 2 raies correspondant aux vibrations de déformation Cl-Pa-Cl ν_3 et ν_8 . Le spectre i.r. comportera deux bandes caractéristiques des vibrations ν_5 et ν_6 , les vibrations A_{2u} , E_u et F_{2u} étant inactives en i.r. et Raman. Dans le cas de l'ion PaCl₈³⁻ les raies situées vers 353 et 275 cm⁻¹ doivent alors être attribuées respectivement aux vibrations ν_1 et ν_7 alors que la raie vers 140 cm⁻¹ peut être assignée soit à la vibration de déformation ν_8 , soit à la vibration ν_3 . L'une de ces deux vibrations étant inférieure à 130 cm⁻¹, elle n'a pu être mise en évidence experimentalement à cause de sa proximité de la raie excitatrice. D'autre part, nous n'avons pas réussi à enregistrer un spectre infrarouge avec la faible quantité de produit synthétisé.

Il est intéressant cependant de comparer le spectre Raman de notre complexe à ceux des ions UCl_6^- et UCl_8^{3-} (Tableau 6) dont nous avons également pu enregistrer le spectre infrarouge jusqu'à 70 cm⁻¹. Le spectre Raman de l'ion UCl_6^- présente 3 raies importantes vers 343, 277 et 136 cm⁻¹ que l'on peut attribuer respectivement aux vibrations de valence $U-Cl \nu_1$ et ν_2 et à la vibration

	I.R.	Raman	
	(cm ⁻¹)	(cm ⁻¹)	Indexation
		2203 m	ν(NO ⁺)
		353 m	$\nu(\text{Pa-Cl}) \ \nu_1(A_{1g})$
(NO) ₃ PaCl ₈		275 f	$\nu(Pa-Cl) \ \nu_7(F_{2g})$
		140 F	δ (Cl-Pa-Cl) $\nu_8(F_{2g}$ ou $\nu_3(E_g$
		343 F	$\nu(U-Cl) \ \nu_1(A_{1g})$
	312 TF [13]		$\nu(U-Cl) \nu_3(F_{1u})$
UCl ₆ ~	275 ép	277 m	$\nu(U-Cl) \ \nu_2(E_g)$
		136 F	$\delta(\text{Cl-U-Cl}) \ \nu_5(\text{F}_{2g})$
	127 F	125 f	δ (Cl-U-Cl) ν_4 (F _{1u}
		342 TF	$\nu(\text{U-Cl}) \ \nu_1(\text{A}_{1g})$
1101 %-	315 TF [13]		$\nu(U-Cl) \ \nu_5(F_{1u})$
	265 TF	270 m	$\nu(U-Cl) \ \nu_7(F_{2g})$
UCl ₈ ³-	119 F		$\delta(\text{Cl-U-Cl}) \ \nu_{\theta}(\text{F}_{1u})$
	90 f		$\delta(\text{Cl-U-Cl}) \ \nu_8(\text{F}_{2g})$
			ou $\nu_3(\mathbf{E}_q)$

Tableau 6. Spectres de vibration des ions PaCl₈³⁻, UCl₆⁻ et UCl₈³⁻

^{13.} Voir K. W. Bagnall, D. Brown et J. G. H. du Preez, J. chem. Soc. 1964, 2603.

de déformation Cl-U-Cl ν_5 . Dans le cas de l'ion UCl_8^{3-} , les vibrations de déformation Cl-U-Cl n'ont cependant pas pu être détectées. En particulier, les spectres i.r. permettent de distinguer les structures UCl_6^- et UCl_8^{3-} grâce à l'apparition dans le spectre des bandes théoriquement actives en Raman. Cette perturbation des règles de sélection provient probablement comme dans le cas des complexes de niobium et de tantale d'une déformation éventuelle des édifices formés par les atomes de chlore autour de l'atome d'uranium.

CONCLUSIONS

La réaction du chlorure de nitrosyle liquide avec les pentachlorures de niobium et de tantale à 20° fournit des composés d'addition 1:1 du type M^VCl₅. NOCl. L'étude spectrophotométrique par les techniques infrarouge et Raman met en évidence la nature ionique de ces corps et permet de les formuler comme des hexachlorométallates de nitrosonium, NO+MCl₆⁻. Dans le cas du dérivé de tantale, cette formule est, en plus, confirmée par son isotypie avec NH₄TaCl₈. Le spectre observé dans le domaine 400-100 cm⁻¹ est en accord, en première approximation, avec la symétrie de base O_h proposée pour l'anion MCl₆⁻ dans les complexes nitrosylés. Cependant, l'apparition de plusieurs bandes supplémentaires non admises par les règles de sélection suggère une déformation de l'octaèdre de MCl₆⁻ qui semble être plus prononcée dans le complexe de niobium que dans le composé de tantale.

Le complexe obtenu avec le pentachlorure de protactinium dans des conditions de synthèse voisines répond à la formule PaCl₅.3NOCl. La présence d'une seule raie à 2203 cm⁻¹ dans le domaine 2400–1550 cm⁻¹ du spectre Raman de ce corps confirme sa nature également ionique et conduit à le formuler (NO)₃ PaCl₈. Néanmoins, le spectre Raman n'a pas pu établir d'une façon décisive la structure de l'anion dans ce complexe.