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Summary: The diethylphospate ester of 1-(2-ethynylphenyl)-4-trimethylsilyl-4-(trimethylsilyloxy)-2-pentyn- 
1-ol solvolyzes in 9:1 THF-H20 to afford 5-(2-ethynylphenyl)-3-trimethylsilyl-3,4-pentadien-2-one which 

cyclizes in situ to 1-(2-naphthyl)-l-trimethylsilyl-2-propanone. Copyright © 1996 Elsevier Science Ltd 

Simple acyclic ene-yne-allene systems were shown independently by Saito I and Meyers 2 to undergo facile 

cycloaromatization to biradical species (eq. 1) which mimic to some extent 3 the DNA-cleaving ability of 

neocarzinostatin, a cyclic enediyne antibiotic whose action has been proposed to occur similarly via an ene- 

yne-[3]-cumulene cyclization. 4 Since then, the preparations of variously substituted acyclic ene-yne-allenes 

have been reported, and thermal cyclizations of these species have been observed to display characteristics of 

diradical intermediates. 5 However, the chemistries employed in these preparations are not compatible with 

physiological conditions. Other approaches have utilized inter -2b and intramolecular 6 thiolate addition as the 

trigger which generates the allenic functionality in situ, thereby mimicing the natural mode of neocarzinostatin 

activation. More recently, an in situ acid-catalyzed ionization approach to an ene-yne-allene appeared during 

our work in this area. 7 
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Our approach to in situ formation of an ene-yne-allene diyl precursor was based on earlier findings of 

facile elimination-trimethylsilyl (TMS) group migration within the propargylic framework of structures 
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similar to 3 (At = Ph, R = TMS, TMSOTf catalysis). 8 It was reasoned that an appropriately substituted allene 

precursor of this type could be solvolyticaUy triggered near neutral pH, thus affording a physiologically- 

compatible alternative to the natural process. 

Scheme 1 outlines the chemistry selected. 9 All steps to 3 and 4 proceeded in good yields, with the 

selective desilylation of 1 to 2 especially noteworthy. I0 The allenyl ketone 411 was first isolated after 

preparation from 3a in order to directly assess its cyclization behavior (Table 1). Use of 1,4-cyclohexadiene 

(CHD) as hydrogen donor in benzene resulted in a crude mixture consisting mostly of the expected 5.12 

Chromatographic purification (silica gel) of this material, however, led to desflylation,l 3 and quantitation was 

made on the basis of 614 thereby obtained. Further solvent selection was made with a view towards a 
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a) nBuLi, TI-IF, -78 °C. b) ~-iodobenzaldehyde, 77%. ¢) HCCTMS, Pd(PPh3) 4, CuI, Et3 N, 92%. 

d) KF, DMF-H20, 85%. e) 3a: TMS-imidazole, CH2CI2, 0 °C, 16h, 87%; 3b: LDA, -78 °C, then 

(EtO)2P(O)CI, 80%. f) 3a--~: TMSOTf, 0 °C, 91%. g) Table 1. h) H donor: CHD or THF. i) Silica gel. 
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hydrogen-donor system which could also ultimately serve as a good ionizing medium. 15 In THF, 4 was 

converted in 22% yield to 6, and in THF containing 10% H20 (v/v), a 16% yield of cycloaromatized product 

was isolated. It is of note that this latter yield of two-hydrogen capture product is considerably higher than 

that obtained by Meyers 2b from a terminally unsubstituted allene precursor.16 

Table 1. Cycloaromatization of 4. a 

Run Conditions Results b 

1 0.05M in benzene, 20 eq CHD, 60 *C, 1.5h 5 (--o 6, 52%) 

2 0.05M in THF, 45 °C, 5.5h 6, 22% 

3 0.09M in 9:1 TI-IF-H20, 45 °C, 3h 6, 16% 

a Reaction mixtures deoxygenated by Ar purge, b Yields of isolated material. 

To ascertain that phosphate 3b 17 was also capable of affording 4, a sample in hexane was filtered through a 

short column of Florisil: 4 of 90% NMR purity was directly obtained from solvent removal. Finally, the 

phosphate was subjected to solvolytic conditions in 9:1 THF-H20 (0.10M, 45 °C, 7h) and its disappearance 

followed by NMR spectroscopy (tl/2 ~ 1.5h) to ultimately yield 17% of 6 after isolation by silica gel 

chromatography. These results suggest that solvolytic triggering may be a viable alternative to the natural in 

vivo process which leads to diradical species. Moreover, perhaps because of the expected stability 18 of the 

substituted benzylic radical precursor to 5 (after initial hydrogen atom transfer to the aryl site), radical-radical 

combination 16 may be suppressed, and may thus allow for enhanced double-strand DNA cleavage. 
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