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Abstract: A novel stereoselective synthesis of the 3-aryl-6-phenyl-
1-oxa-7-azaspiro[4.5]decane ring is reported. Palladium(0)-mediat-
ed cyclocarbonylation of g-iodoallylic alcohol is a key step in the
formation of the spirocyclic ring.
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The demonstration of antidepressant activity by substance
P (NK1 receptor) antagonists1 has significantly accelerat-
ed efforts in identification of new selective NK1 receptor
ligands. Since 1991, when the first non-peptidic antago-
nist was reported,2 numerous selective and structurally
diverse NK1 modulators have been identified and subse-
quently developed.3,4

As a part of our existing programme, we were interested
in examining conformationally restricted piperidine de-
rivatives. The 6-phenyl-1-oxa-7-azaspiro[4.5]decane ring
system can operate as a structural scaffold to dispose both
aromatic rings required for binding to the NK1 receptor.4e

Recently, the synthesis of spirocyclic NK1 receptor antag-
onist (+)-1 has been disclosed.5 In addition, two different
routes to the 6-phenyl-1-oxa-7-azaspiro[4.5]decane
scaffold have been published.6 We herein report an alter-

native approach to racemic 1 that was developed in our
laboratory.

We envisaged that 1 could be accessible from the spirocy-
clic lactone 2 through stereoselective manipulation of the
double bond (Scheme 1). Palladium(0)-mediated cyclo-
carbonylation of the propargyl alcohol 3 would be then re-
quired to form the spirocycle in 2. A further disconnection
at C4–C5 in 3 leads to the known ketone 47 and alkyne 5.

The synthesis began with the regioselective ortho-lithia-
tion of the hydroquinone derivative 68 (Scheme 2) fol-
lowed by treatment with N,N-dimethylformamide to give
the aldehyde 7 in 76% yield. The terminal acetylene at C2
was subsequently created by reaction of the aldehyde 7
with the Ohira reagent.9

Scheme 2 a) t-BuLi, THF, –78 °C; b) DMF, 76%; 
c) CH3COC(N2)PO(OMe)2, K2CO3, MeOH, r.t., 94%.
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Addition of the Grignard reagent, derived from alkyne 5,
to racemic ketone 4 was diastereoselective, affording the
adduct 3 as a single stereoisomer in 62% yield.10 Forma-
tion of the desired spirocyclic lactone 2 was accomplished
by a three-step sequence beginning with regioselective
and stereoselective hydroalumination of the propargyl al-
cohol 3 with Red-Al® followed by metal-halogen ex-
change using iodine. The vinyl iodide 8 was obtained as a
single isomer in 78% yield.11 Subsequently, palladium(0)-
mediated cyclocarbonylation12,13 of 8 provided the spiro-
cyclic lactone 2 in 68% yield (Scheme 3).14

Reduction of the double bond in the model lactone 915 us-
ing NaBH4 in the presence of a cat. amount of nickel(II)
chloride favoured the unwanted a isomer 10a (10a:10b =
2.5:1, Scheme 4). Several attempts were made to invert
the configuration at the C3 centre in 10a, but all were
largely unsuccessful. For example, treatment of the 2.5:1
mixture of 10a and 10b with cat. 1,8-diazabicyc-
lo[5.4.0]undec-1-ene (DBU) provided a 1:1.2 mixture of
10a and 10b.

Conformational analysis showed that in the preferred con-
formation of carbamate 10a the phenyl substituent occu-
pies a pseudo-axial position on the piperidine.5 Given the
relatively unhindered environment of the C3 phenyl ring
in this conformation, there is presumably little energetic
preference for either epimer, resulting in an equilibrium
ratio approaching unity. However, inversion of conforma-
tion of the piperidine ring would bring the two aryl rings

into much closer proximity, resulting in greater steric re-
pulsion in the case of the a-epimer. This would be expect-
ed to favour the desired b-epimer under conditions of
thermodynamic equilibration. To test this hypothesis, the
Boc protecting group in 10a,b (10a:10b = 1.3:1) was re-
moved and the resulting amino lactone subjected to 1,8-
diazabicyclo[5.4.0]undec-1-ene (DBU) promoted equili-
bration. This afforded a 10:1 mixture of diastereoisomeric
lactones 11b and 11a, respectively from which the re-
quired isomer 11b could be obtained in pure form simply
by crystallisation (Scheme 5).

By analogy, the Boc group in 2 was removed by treatment
with TFA and the double bond reduced with NaBH4 in the
presence of cat. nickel(II) chloride to give a 3:1 mixture of
diastereoisomers in favour of the a isomer 12a
(Scheme 6). DBU promoted epimerisation at C3 resulted
in a 1:10 mixture of 12a and 12b in favour of the desired
b isomer 12b, which crystallised from the reaction mix-
ture. To complete the synthesis, reduction of 12b with
LiAlH4 and subsequent cycloetherification of the result-
ing intermediate diol under Mitsunobu conditions afford-
ed the spirocyclic ether 1 in 55% yield.16

In conclusion, a new convergent synthesis of the 6-phe-
nyl-1-oxa-7-azaspiro[4.5]decane 1 has been developed al-
lowing its preparation with high diastereocontrol.

Scheme 3 EtMgBr, THF, then 4, 0 °C–r.t., 62%; b) Red-Al, Et2O, r.t., then I2, –78 °C–r.t., 78%; c) CO, [Ph3P]2PdCl2, N2H4, K2CO3, THF, 
50 °C, 68%.
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Scheme 4 a) NaBH4, NiCl2·hexahydrate (cat.), MeOH; b) DBU (cat.), CH2Cl2, r.t.; c) TFA, CH2Cl2, r.t., 88%.
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