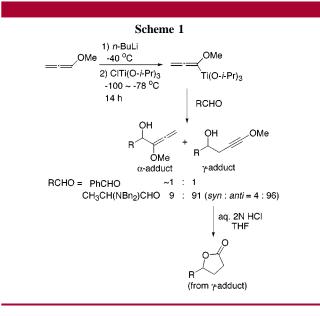
Preparation of Titanated Alkoxyallenes from 3-Alkoxy-2-propyn-1-yl Carbonates and (η^2 -Propene)Ti(O-*i*-Pr)₂ as an Efficient Ester Homoaldol Equivalent

Takeshi Hanazawa, Sentaro Okamoto, and Fumie Sato*

Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-850, Japan

fsato@bio.titech.ac.jp

Received June 1, 2000

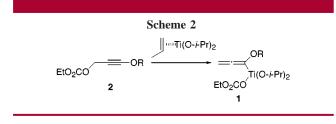

3-Alkoxy-2-propyn-1-yl carbonates (2) react with a divalent titanium reagent (η^2 -propene)Ti(O-*i*-Pr)₂ to afford titanated alkoxyallenes 1 which, in turn, react with aldehydes regiospecifically to provide the corresponding γ -addition products in good to excellent yields, thus affording a convenient method for synthesizing γ -hydroxy esters 3 and/or γ -butyrolactones 4.

In 1993, titanated methoxyallene was introduced as a novel ester homoenolate equivalent. Thus, Dorsch and co-workers reported that successive treatment of methoxyallene with *n*-butyllithium and ClTi(O-*i*-Pr)₃ furnishes titanated methoxyallene and that this reacts with some aldehydes with excellent regioselectivity to afford, after acidic hydration of the addition product, the corresponding γ -lactone as shown in Scheme 1.^{1–3} However, this method suffers from two drawbacks. First, to achieve a satisfactory yield and high γ -selectivity, the transmetalation reaction step from the lithium to the titanium needs to be carried out for as long as 14 hours at very low temperatures of -100 to -78 °C. Second, the regioselectivity is highly dependent on aldehydes; while the reaction with α -amino aldehydes afforded γ -addition products highly predominantly, the reaction with

(1) Hormuth, S.; Reissig, H.-U.; Dorsch, D. Angew. Chem., Int. Ed. Engl. 1993, 32, 1449.

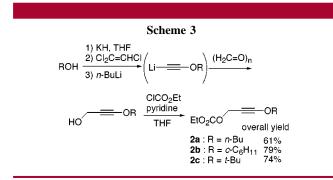
(2) Titanium ester homoenolates: Nakamura, E.; Oshino, H.; Kuwajima,
 I. J. Am. Chem. Soc. 1986, 108, 3745. Nakamura, E.; Kuwajima, I. J. Am.
 Chem. Soc. 1983, 105, 651. Goswami, R. J. Org. Chem. 1985, 50, 5907.

(3) Reviews for homoenolates and their equivalents, see: Kuwajima, I.; Nakamura, E. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 2, p 441. Kuwajima, I.; Nakamura, E. *Top. Curr. Chem.* **1990**, *155*, 1. Ryu, I.; Sonoda, N. *Synth. Org. Chem., Jpn.* **1985**, *43*, 112. Werstiuk, N. H. *Tetrahedron* **1983**, *39*, 205. Katritzky, A. R.; Piffl, M.; Lang, H.; Anders, E. *Chem. Rev.* **1999**, *99*, 665. See also: Hoppe, D. *Angew. Chem., Int. Ed. Engl.* **1984**, *23*, 932.


benzaldehyde provided almost equal amounts of the α - and γ -addition products (see Scheme 1).

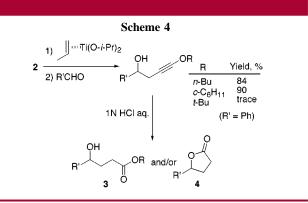
Recently, we developed an efficient and practical method for preparing allenyltitanium complexes by the reaction of

LETTERS 2000 Vol. 2, No. 15 2369–2371


ORGANIC

propargyl alcohol derivatives such as acetates or carbonates with the divalent titanium reagent (η^2 -propene)Ti(O-*i*-Pr)₂, generated in situ from Ti(O-*i*-Pr)₄ and 2 equiv of *i*-PrMgX, which proceeds via an oxidative addition pathway.^{4,5} We anticipated that titanated alkoxyallenes **1** with a different kind of alkoxy group might be prepared from (η^2 -propene)Ti(O*i*-Pr)₂ and readily available 3-alkoxy-2-propyn-1-yl carbonates (**2**) (Scheme 2) and that among the obtained titanated

alkoxyallenes we could find one having the proper OR moiety which would react with aldehydes with excellent γ -selectivity, irrespective of the aldehyde.


The compounds **2a**, **2b**, and **2c** where RO is *n*-BuO, c-C₆H₁₁O, and *t*-BuO, respectively, were synthesized starting from 1,1,2-trichloroethylene, paraformaldehyde, and the corresponding alcohol according to the reported two-step reaction sequence shown in Scheme 3.⁶ The successive

treatment of **2a** or **2b** with $(\eta^2\text{-propene})\text{Ti}(\text{O-}i\text{-}\text{Pr})_2$ and benzaldehyde provided the corresponding γ -addition product exclusively in excellent yield as shown in Scheme 4 (α addition product was not observed); however, the anticipated titanated alkoxyallene was scarcely generated from **2c** under the same reaction conditions presumably due to the larger steric requirement of the tertiary alkoxy group. The γ -addition products obtained here could be easily converted to

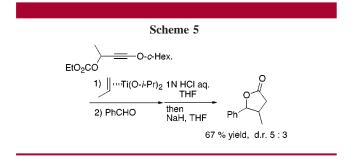
(5) For reviews for synthetic reactions mediated by (η^2 -propene)Ti(O*i*-Pr)₂, see: Sato, F.; Urabe, H.; Okamoto, S. *Pure Appl. Chem.* **1999**, *71*, 1511. Sato, F.; Urabe, H.; Okamoto, S. *Synlett* **2000**, 753. Sato, F.; Urabe, H.; Okamoto, S. *J. Synth. Org. Chem. Jpn.* **1998**, *56*, 424.

(6) Porter, N. A.; Dussault, P.; Breyer, R. A.; Kaplan, J.; Morelli, J. *Chem. Res. Toxicol.* **1990**, *3*, 236. Moyano, A.; Charbonnier, F.; Greene, A. E. J. Org. Chem. **1987**, *52*, 2919.

the corresponding γ -hydroxy ester **3** and/or γ -lactone **4** by treatment with aqueous 1 N HCl as shown in Scheme 4. These results strongly indicated that titanated alkoxyallenes **1** with primary and secondary alkoxy groups can be readily prepared from the corresponding **2** and that they serve as an efficient ester homoenolate equivalent. Compound **2a** seemed to be somewhat unstable for column chromatography on silica gel, and thus, the isolated yield of **2a** was lower than that of **2b** as shown in Scheme 3. We, therefore, used titanium reagent **1b** derived from **2b** for further reaction with other aldehydes. The results are summarized in Table 1.

 Table 1. Reaction of Alkoxyallenyltitanium 1b with Carbonyl Compounds

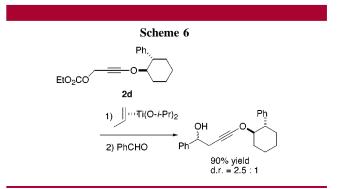
Entr	y Carbonyl Y Compound Wo	ork-up ^a	Product(s) [3 : 4]	Total Yield %
1	PhCHO	A	3 + 4 [3 : 1]	81
2		в	4	72
3	<i>п</i> -С ₇ Н ₁₅ СНО	A	3 + 4 [3∶1]	77
4		В	4	70
5	<i>с</i> -С ₆ Н ₁₁ СНО	В	4	74
6	⊘=o	A		trace
7 ^b	<i>p</i> -NCC ₆ H ₄ CHO	В	4	52
8	p-AcOC ₆ H₄CHO	В	4	69
9		A	3 + 4 [3 : 1] ^c	78
10	→CHO NBn ₂	A (<i>syn</i> :	3 anti = 6:9	76 94) ^d


^{*a*} Workup conditions: A, 1 N HCl (aq), THF, room temperature, 1 h; B, 1 N HCl (aq), THF, room temperature then, after extractive workup, the crude product was treated with NaH, THF, 0 °C to room temperature. ^{*b*} The aldehyde was added to the reaction mixture as a THF solution. ^{*c*} Both **3** and **4** thus obtained consist of two diastereomers in a ratio of 60:40. ^{*d*} Similar diastereoselectivity was reported in the reaction shown in Scheme 1.

It can be seen from Table 1 that **1b** reacts with a variety of aldehydes at the γ -position exclusively, thus affording **3**

⁽⁴⁾ Nakagawa, T.; Kasatkin, A.; Sato, F. *Tetrahedron Lett.* **1995**, *36*, 3207. Yoshida, Y.; Nakagawa, T.; Sato, F. *Synlett* **1996**, 437. Kasatkin, A.; Sato, F. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 2848. An, D. K.; Okamoto, S.; Sato, F. *Tetrahedron Lett.* **1998**, *39*, 4861. An, D. K.; Hirakawa, K.; Okamoto, S.; Sato, F. *Tetrahedron Lett.* **1999**, *40*, 3737. Okamoto, S.; An, D. K.; Sato, F. *Tetrahedron Lett.* **1998**, *39*, 4551. An, D. K.; Okamoto, S.; Sato, F. *Tetrahedron Lett.* **1998**, *39*, 4555.

and/or **4** in excellent yield. However, ketones did not react even though the reaction temperature was warmed to room temperature, presumably owing to their steric hindrance (entry 6). The results shown in Table 1 indicate the following other characteristic features of the reaction: **1b** works as highly chemoselective ester homoenolate equivalent; thus, functional groups present in aldehydes such as a cyano or an ester group were tolerated (entries 7 and 8). For the diasteroselectivity of the reaction with α -substituted aldehydes, the reaction with α -amino aldehydes proceeded with high diastereoselectivity to afford an *anti*-addition product highly predominantly (entry 10), as is the case shown in Scheme 1,¹ while α -silyloxy aldehydes gave a rather low selectivity (entry 9).


The reaction can be extended to the preparation of a β -substituted ester homoenolate equivalent. Thus, as shown in Scheme 5, reaction of the carbonates with a substituent

at the propargyl position with $(\eta^2$ -propene)Ti(O-*i*-Pr)₂ and the following treatment with aldehydes afforded β , γ -disubstituted γ -lactones.⁷

Similarly, successive treatment of propargyl carbonate **2d** derived from *trans*-2-phenylcyclohexanol with (η^2 -propene)-Ti(O-*i*-Pr)₂ and benzaldehyde afforded a diastereomeric

mixture of the corresponding addition products in a ratio of 2.5:1 (Scheme 6).^{7–9} Although the diastereoselectivity was

moderate, it may be improved by selecting a proper chiral alkoxy group, and further investigation to this end is underway in our laboratory.

In summary, a convenient ester homoenolate equivalent, titanated alkoxyallenes, can be readily prepared from 3-alkoxy-2-propyn-1-yl carbonates and $(\eta^2$ -propene)Ti(O-*i*-Pr)₂.

Supporting Information Available: Experimental procedures and ¹H NMR and ¹³C NMR data for compounds **2b**, **3** ($\mathbf{R'} = \mathbf{Ph}$), and **4** ($\mathbf{R'} = \mathbf{Ph}$). This material is available free of charge via the Internet at http://pubs.acs.org.

OL006142F

⁽⁷⁾ The starting carbonate for the reaction of Scheme 5 and Scheme 6 could readily be prepared from the corresponding alcohol and aldehyde according to a similar procedure shown in Scheme 3 in 70% and 72% overall yield, respectively.

⁽⁸⁾ The ratio was determined by ¹H and ¹³C NMR analyses. The stereochemistries of the products were not determined.

⁽⁹⁾ For a review of chiral homoenolate equivalents, see: Ahlbrecht, H.; Beyer, U. *Synthesis* **1999**, 365.