A New Route to 5,6-Dihydropyrimidin-4(3H)-ones

Lucjan Strekowski,* Rebecca A. Watson, Michelle A. Faunce

Department of Chemistry, Georgia State University, Atlanta, GA 30303, U.S.A.

The addition reaction of 2,4-bis(methylthio)pyrimidine or 2,4-dimethoxypyrimidine with organolithium reagents produces unstable 6-substituted 2,4-bis(methylthio)-5,6-dihydropyrimidines and 2,4-dimethoxy-5,6-dihydropyrimidines, respectively. The regioselective hydrolysis of these addition products gives the respective 6-substituted 2-methylthio-5,6-dihydropyrimidin-4(3*H*)ones and 6-substituted 2-methoxy-5,6-dihydropyrimidin-4(3*H*)ones. The methoxy products can be hydrolyzed further to 6-substituted dihydrouracils.

5,6-Dihydropyrimidin-4-ones have been obtained through condensations of 3-aminopropanoic acids with 1-(*N*-alkyliminomethyl)imidazoles¹ or ethyl benzimidate,² cycloaddition of amidines to diphenylcyclopropenone,³ condensation of a nonenolizable dimethyl derivative of ethyl acetoacetate with 2-alkylisothioureas or 2-methylisourea,⁴ and in several related preparations.⁵

We have found that 5,6-dihydropyrimidin-4-(3H)ones 5a-d are easily prepared through the addition reaction of organolithium reagents with readily available 2,4-bis(methylthio)pyrimidine (1), followed by regioselective hydrolysis of the resultant dihydropyrimidines 4a-d (Table 1). In the same way, the addition reaction with 2,4-dimethoxypyrimidine (2) is followed by hydrolysis of the intermediate dihydropyrimidines 4e, f to furnish the respective 5,6-dihydropyrimidin-4(3H)ones 5e, f. In agreement with the regioselective, hydrolytical removal of the 4-SCH₃ or 4-OCH₃ group in 4, both intermediate dihydropyrimidines 4c and 4g are hydrolyzed to the same dihydropyrimidinone 5c. The two-step transformations are conveniently conducted in one reaction vessel without isolation of dihydropyrimidines 4. Modest yields of 5 are obtained but this inconvenience is offset by simplicity of the experimental procedure.

Dihydropyrimidinones 5 can be hydrolyzed further to dihydrouracils 6 which are convenient precursors in the preparation of β -amino acids. Thus, compounds 5b and 5f were hydrolyzed to the known dihydrouracils 6b and 6c, respectively. In a similar way, hydrolysis of 5a and 5e gave dihydrouracil 6a. However, good yields of 6 were obtained from methoxy compounds only.

Due to hydrolytical instability and ease of polymerization, even at $-20\,^{\circ}$ C, the oily intermediate dihydropyrimidines **4a**, **b**, **c**

4	X ¹	X ²	R
a	SCH ₃	SCH ₃	n-C ₄ H ₉
b	SCH ₃	SCH ₃	C ₆ H ₅
c	SCH_3	SCH ₃	2-thienyl
d	SCH ₃	SCH ₃	2-thiazolyl
e	OCH_3	OCH_3	n - C_4H_9
f	OCH_3	OCH ₃	2-thienyl
g	SCH ₃	OCH ₃	2-thienyl
5	X ¹	R	
a	SCH ₃	n-C₄H _o	
b	SCH_3	C_6H_5	
c	SCH_3	2-thienyl	
d	SCH ₃	2-thiazolyl	
e	OCH_3	n-C ₄ H ₉	
f	OCH_3	2-thienyl	

and 4e, f, g could not be fully characterized. However, the more stable and crystalline thiazolyl derivative 4d was obtained in an analytically pure form. As shown by 1H -NMR spectroscopy, compound 4d is a 5,6-dihydro tautomer. Thus, it did not exchange deuterons for protons upon treatment of a CDCl₃ solution with D₂O, and gave an ABX pattern for 5,5-H₂ (AB) and 6-H (X) (Table 2). Since similar spectra were obtained for other crude adducts 4, all these compounds are probably 5,6-dihydro tautomers. This is an interesting observation because all known examples of similar addition reactions with other pyrimidines do not produce a 5,6-dihydropyrimidine, a 1,6(or 3,4)-dihydro derivative being the isomer most frequently observed.

Table 1. Syntheses of Dihydropyrimidinones 5a-f

Reaction of Compounds 1, 2, 3 with R-Li				Hydrolysis of 4		
Pyri- midine	Organolithium Reagent	Conditions Temperature, Time	Product	Conditions pH, Temperature, Time	Product	Yield ^{a, b} (%)
l	Butyllithium	0°C, 1 h	4a	4.0, 50°C, 1h	5a	45
	Phenyllithium	23°C, 1 h	4b	6.0, 50 °C, 1 h	5b	48
	2-Thienyllithium	23°C, 1 h	4c	6.0, 50 °C, 1 h	5c	49
	2-Thiazolyllithium	-10° C, 1 h	4d ^a	1.0, 50°C, 2 h	5d	60
	Butyllithium	-20° C, 0.5 h	4e	7.0, 25 °C, 24 h	5e	41
	2-Thienyllithium	23°C, 0.5 h	4f	6.0, 25°C, 1 h	5f	51
	2-Thienyllithium	0°C, 1 h	4g	4.0, 30 °C, 1 h	5e	46

^a Satisfactory microanalyses were obtained: $C \pm 0.2$, $H \pm 0.1$, $N \pm 0.2$.

b Yield of products isolated by flash chromatography 14 and based on pyrimidines 1, 2, 3.

580 Communications SYNTHESIS

The 5,6-saturation site is retained in the hydrolysis products 5. The 1 H-NMR spectra of 5 taken in an anhydrous CDCl₃ or DMSO- d_6 solution (Table 2) gave the ABX patterns for 5,5-H₂ and 6-H, similar to those of 4, and a slightly broadened singlet for N-H. Sharp two doublets for H-6 in 5b, c, d, f were observed, which strongly suggested the location of the imino proton 3-H in 5. Accordingly, dihydrouracils 6b and 6c (Table 2) gave two broad doublets for 6-H due to additional coupling with the adjacent imino proton. The location of the imino proton 3-H

in 5 was confirmed with the help of proton nuclear Overhauser difference spectroscopy. Thus, irradiation of 6-H in 5b gave strong NOE signals to 5,5-H₂ of the pyrimidine ring and *ortho*-protons of the phenyl ring, but not to N—H of the pyrimidine. In the same way, irradiation of the imino proton 3-H resulted in an NOE signal at the methylthio group but not at 6-H. It should be noted that under similar conditions we have observed NOE interactions between N—H and 6-H for 1,6-dihydro-pyrimidines.⁹

Table 2. Properties of Compounds 4d, 5a-f, 6a, b, c

Compound	m. p. (°C)	Molecular Formula or m.p. (°C) reported	MS m/e (%)	lR (Nujol) v (cm ⁻¹)	1 H-NMR 4 δ (ppm)
4d	113~114	C ₉ H ₁₁ N ₃ S ₃ (257.4)	257 (56), 137 (100)		2.43 (2d, 5-H, A); 2.46 (s, 3 H) 3.04 (2d, 5-H, B); 4.84 (2d, 6-H X); 7.29 (d, 1 H, J = 3 Hz); 7.75 (d, 1 H, J = 3 Hz); J _{AB} = 1 Hz
5a	74 - 76	C ₀ H ₁₆ N ₂ OS (200.3)	200 (19), 143 (100)	1692, 1628	$J_{AX} = 13.5 \text{ Hz}, J_{BX} = 5.4 \text{ Hz}$ 0.85-1.7 (m, 9H); 2.26 (2d, 5-H A); $2.43 \text{ (s, 3H); } 2.55 \text{ (2d, 5-H}$ B); $3.62 \text{ (m, 6-H, X); } 8.93 \text{ (br. s}$ 1H); $J_{AB} = 16 \text{ Hz}, J_{AX} = 11 \text{ Hz}$
5h	164.5-165.5	$C_{14}H_{12}N_2OS$ (220.1)	220 (100), 131 (68) ^b	1697, 1629	$J_{\text{BX}} = 5.6 \text{ Hz}$ 2.49 (s, 3 H); 2.51 (2d, 5-H, A) 2.82 (2d, 5-H, B); 4.83 (2d, 6-H X); 7.24 - 7.42 (m, 5 H); 8.30 (br. s 1H); $J_{\text{AR}} = 16 \text{ Hz}$. $J_{\text{AX}} = 11 \text{ Hz}$
5e	163164	$C_9H_{10}N_2OS_2$ (226.3)	226 (91), 211 (100), 137 (77) ^b	1693, 1628	$J_{\text{BX}} = 5.4 \text{ Hz}$ 2.38 (s, 3 H); 2.52 (2d, 5-H, A) 2.82 (2d, 5-H, B); 5.07 (2d, 6-H X); 7.00 (d, 2H, $J = 4 \text{ Hz}$); 7.38 (t, 1H, $J = 4 \text{ Hz}$); 10.85 (br. s 1H); $J_{\text{AB}} = 16 \text{ Hz}$, $J_{\text{AX}} = 11 \text{ Hz}$
5d	143~144	C ₈ H ₉ N ₃ OS ₂ (227.3)	227 (100), 138 (83) ^h	1699, 1629	$J_{\text{BX}} = 5.4 \text{ Hz}$ 2.42 (8, 3H); 2.61 (2d, 5-H, A). 2.86 (2d, 5-H, B); 5.14 (2d, 6-H X); 7.64 (d, 1H, $J = 3 \text{ Hz}$); 7.77 (d, 1H, $J = 3 \text{ Hz}$); 10.95 (br. s 1H); $J_{\text{AB}} = 16 \text{ Hz}$, $J_{\text{AX}} = 11 \text{ Hz}$
5e	oil	$C_9H_{16}N_2O_2$ (184.2)	184 (20), 127 (100)	1711, 1678	$J_{BX} = 5.4 \text{ Hz}$ 0.9 - 1.7 (m, 9 H); 2.15 (2d, 5-H) A); $2.63 \text{ (2d, 5-H, B); } 3.50 \text{ (m, 6 H, X); } 3.77 \text{ (s, 3 H); } 8.90 \text{ (br. s)}$ $1 \text{ H); } J_{AB} = 15 \text{ Hz, } J_{AX} = 9 \text{ Hz}$ $J_{BX} = 6 \text{ Hz}$
5f	141-143	$C_9H_{10}N_2O_2S$ (210.0)	210 (100), 137 (8) ^b	1716, 1671	2.50 (2d, 5-H, A); 2.80 (2d, 5-H B); 3.77 (s, 3 H); 4.92 (2d, 6-H X); 6.73-7.20 (m, 3 H); 8.30 (br. s 1 H); $J_{AB} = 17$ Hz, $J_{AX} = 9$ Hz $J_{BX} = 6$ Hz
6a	170-171	$C_8H_{14}N_2O_2^{\ c}$ (170.2)			0.6-1.6 (m, 9H); 2.20 (2d, 5-H A); 2.60 (2d, 5-H, B); 3.35 (m, 6 H); 7.50 (br. s, 12H); 9.90 (br. s 1H); $I_{AB} = 16$ Hz, $J_{AX} = 8$ Hz $J_{BX} = 3$ Hz
6b	216 -218	217-217.57			2.60 (2d, 5-H, A); 3.11 (2d, 5-H B); 4.92 (2br. d, 6-H, X); 7.25 7.45 (m, 5H); 7.50 (br. s, 1H) 10.00 (br. s, 1H); $J_{AB} = 16$ Hz $J_{AX} = 5$ Hz, $J_{BX} = 6$ Hz
6с	243245	244~244.5 ^{7,8}			2.59 (2d, 5-H, A); 3.03 (2d, 5-H B); 4.89 (2br. d, 6-H, X); 6.97 (m 2H); 7.42 (m, 1H); 8.15 (br. s 1H); 10.13 (br. s, 1H); J_{AB} = 16 Hz. J_{AX} = 5 Hz, J_{BX} = 6 Hz

^a Compounds 4d, 5a, b, e, f: CDCl₃/TMS; Compounds 5c, d and 6a, b, c: DMSO-d₆/TMS.

b A possible structure is R—CH=CH—C=O resulting from the expulsion of X¹—CHN₂ and 5-H from the molecular ion. The exact mass of this ion for **5b** was measured using a peak matching technique: C₉H₇O, calc. 131.0497, found 131.0495.

calc. C 56.45 H 8.29 N 16.46
found 56.58 8.24 16.30.

Melting points are uncorrected. Mass, IR, and ¹H-NMR spectra were recorded on Varian MAT 112S (70 eV), Perkin-Elmer 283, and JEOL GX-270 (270 MHz) spectrometers, respectively.

Butyllithium (2.6 molar in hexanes) and phenyllithium (1.8 molar in cyclohexane/ether) were obtained from Aldrich. 2,4-Bis(methylthio)pyrimidine, 10 2,4-dimethoxypyrimidine, 11 and 4-methoxy-2-methylthiopyrimidine 12 were prepared, and 2-thienyllithium and 2-thiazolyllithium 13 in ether were generated as described. Ether was distilled from sodium benzophenone ketyl immediately before use.

5,6-Dihydropyrimidin-4(3H)ones (5a-f); General Procedure:

To a stirred solution of an organolithium reagent R-Li (10 mmol) in ether (50 ml) under nitrogen atmosphere at $-40\,^{\circ}\text{C}$ is added dropwise a solution of pyrimidine 1, 2, or 3 (9.6 mmol) in ether (5 ml). The mixture is allowed to react under the conditions given in Table 1. The mixture is then quenched with water (2 ml) in tetrahydrofuran (5 ml) at $-10\,^{\circ}\text{C}$ and concentrated to a volume of 20 ml on a rotary evaporator at 23 °C. Crude dihydropyrimidines 4a-g are hydrolyzed in 50:50 ethanol/water (50 ml) in the presence of hydrochloric acid under the conditions given in Table 1. The solution is neutralized with diluted ammonium hydroxide, concentrated to a volume of 25 ml, and extracted with dichloromethane (3 × 25 ml). Products 5a-f are isolated by flash chromatography, ¹⁴ eluting typically with 97:3 dichloromethane/ethanol, and crystallized from ethanol.

2,4-Bis(methylthio)-6-(2-thiazolyl)-5,6-dihydropyrimidine (4d):

2,4-Bis(methylthio)pyrimidine (1) is reacted with 2-thiazolyllithium and the reaction mixture is quenched with water as described above. The ether layer is separated, the aqueous residue is extracted with dichloromethane (2 × 10 ml), and the organic solutions containing 4d are combined. Product 4d is isolated by flash chromatography eluting with 98:2 dichloromethane/ethanol, and crystallized from ethanol; yield 82%; m.p. 113-114°C.

Dihydrouracils 6; General Procedure:

A solution of a compound 5 (3 mmol) in 2 normal hydrochloric acid (3 ml) is heated at 60 °C for 1.5 h. After cooling, the precipitated dihydrouracil 6 is isolated by filtration and washed with cold water; yields: 5% (6a from 5a), 56% (6a from 5e), 5% (6b from 5b), 52% (6c from 5f).

Acknowledgement is made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

Received: 29 August 1986 (Revised form: 22 January 1987)

- (1) Ito, Y., Inubushi, Y., Saegusa, T. Synth. Commun. 1974, 4, 289.
- (2) Ried, W., Piechaczek, D. Liebigs Ann. Chem. 1966, 696, 97.
- (3) Eicher, T., Franke, G. Liebigs Ann. Chem. 1981, 1337. Eicher, T., Franke, G., Abdesaken, F. Tetrahedron Lett. 1977, 4067.
- (4) James, S.R., Reese, C.B. Tetrahedron Lett. 1975, 2915.
- (5) Brown, D.J. The Pyrimidines, Wiley-Interscience, New York, 1985
- (6) Rachina, V., Blagoeva, I. Synthesis 1982, 967.
- (7) Sandakhchiev, L.S., Mamaev, V.P. Izv. Sib. Otd. Akad. Nauk SSSR 1961, 72; C. A. 1962, 56, 2448.
- (8) Birkhofer, L., Storch, I. Chem. Ber. 1953, 86, 592.
- (9) Strekowski, L., Watson, R. J. Org. Chem. 1986, 51, 3226.
- (10) Stanovnik, B., Tišler, M., Hribar, A., Barlin, G.B., Brown, D.J. Aust. J. Chem. 1981, 34, 1729.
- (11) Johnson, T.B., Hilbert, G.E. J. Am. Chem. Soc. 1930, 52, 2001.
- (12) Gacek, M., Undheim, K. Acta Chem. Scand. Ser. B 1982, 36, 15.
- (13) Brown, D.J., Cowden, W.B., Strekowski, L. Aust. J. Chem. 1982, 35, 1209.
- (14) Still, W.C., Kahn, M., Mitra, A. J. Org. Chem. 1978, 43, 2923.