A CONVENIENT SYNTHETIC ROUTE TO 2-DIPHENYLPHOSPHINOYL 3-HYDROXY, AMINO AND ALKYL INDOLE DERIVATIVES

Axel Couture,* Enc Deniau, Yves Gimbert and Pierre Grandclaudon

Laboratorre de Chimie Organique Physique, URA CNRS 351, Université des Sciences et Technologies de Lille I, F - 59655 Villeneuve d'Ascq Cédex, France
(Recelved in Belgıum 19 November 1992)

Abstract

A series of 2-diphenylphosphinoyl-3-hydroxy, amino and alkyl indole derivatives have been efficiently prepared by base-induced intramolecular cyclization of aromatıc Horner-Wıttig reagents containing carboxamido, cyano and oxo groups, respectively.

The incorporation of the diphenylphosphino and diphenylphosphinoyl groups in aromatic and heteroaromatic systems continues to represent a challenge for organic chemists owing to the importance of this class of compounds, both as ligands in transition metal complexes and as intermediates in organic synthesis. ${ }^{1-5}$ The synthetic methodologies employed for the elaboration of such systems, albeit adequately described in the literature, remain limited in scope. They generally involve the reaction of an anion generated at a specific site in the heterocyclic substrate with chlorodiphenylphosphine. 6 Photostimulated substitution of halogenated derivatives by lithium or potassium diphenylphosphide under $\mathrm{S}_{\mathrm{RN}^{1}}$ conditions ${ }^{7,8}$ has also been shown to be effective. A major problem in
both these techniques is the necessity to fully protect base sensitive groups. These multistep reaction sequences usually result in decrease of overall yield.

For these different reasons it is necessary to further develop new routes to versatile functionally substituted aryl and heteroarylphosphine oxides. ${ }^{9}$ We wish to report in this paper a simple, convenient and general synthetic methodology for the elaboration of phosphorylated heterocyclic systems which also contain sensitive functional groups such as hydroxy and amino groups. The synthetic potential of the procedure has been further demonstrated by its extension to the preparation of alkyl substituted derivatives. Our investigation has been focused in particular on the construction of the indole nucleus, as this entity has been extensively studied by organic chemists in view of its presence in a large variety of alkaloids and biologically active compounds. 10-12

Our strategy which permits an efficient access to a wide variety of 2-phosphorylated-3-hydroxy, amino and also 3-alkyl indole derivatives is based upon the base-induced intramolecular cyclization of aromatic HornerWittig reagents substituted with carboxamido, cyano and oxo groups respectively.
synthesis of 2-diphenylphosphinoyl-3-hydroxy indole derivatives 2a,b :
The 3-hydroxy-2-phosphorylated indole derivatives $2 \mathrm{a}, \mathrm{b}$ are easily obtained by treatment of the Horner-Wittig reagents $1 \mathrm{a}, \mathrm{b}$ (scheme 1) readily accessible from the corresponding amines $3 \mathrm{a}, \mathrm{b}$ with n-butyllithium in tetrahydrofuran at $78^{\circ} \mathrm{C}$. These amines were prepared according to two different procedures depending on the nature of the substituent. The aromatic isopropylamine 3 a was obtained by reduction of the imine 5 obtained from the condensation of N, N-diethylanthranilamide ${ }^{13}$ with acetone (scheme 2, Table 1). Amine 3 b was prepared by reacting the sodıum salt of commercial isatoic anhydride with propargyl bromide followed by the baseinduced ring-opening of the intermediate anhydride 6. ${ }^{14}$ Treatment of the ester 7 with lithium diethylamide 13 gave the expected aromatic amine 3b in good overall yield (scheme 3, Table 1).

The Horner-Wittig reagents $1 \mathbf{a , b}$ are readily accessible according to the general procedure outlined in scheme 4 ($A=\operatorname{CONEt}_{2}$). This involves reaction of chlorodiphenylphosphine with the N, O-acetals obtained by treatment of the corresponding amines $3 a, b$ with paraformaldehyde in ethanol (Table 2). 15,26
Table 1. Analytical Data of the Starting Amıdes, Nitriles and Ketones Prepared

Product	Yield ${ }^{\text {a }}$ (8)	$m p^{b, c}$ $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \mathrm{I}_{\mathrm{H}-\mathrm{NMR}}\left(\mathrm{CDCl}_{3} / \text { TMS }\right)^{\mathrm{d}} \\ & \delta \mathrm{ppm}, J(\mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & \text { MS }(70 \mathrm{eV})^{\mathrm{e}} \\ & m / z(\%) \end{aligned}$
3a	58	45-46	$\begin{aligned} & 1.14\left(\mathrm{t}, \mathrm{~J}=7.1,6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.17\left(\mathrm{~d}, J=6.2,6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 3.40\right. \\ & \left(\mathrm{q}, J=7.0,4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.36(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), \\ & 6.42-7.37\left(\mathrm{~m}, 4 \mathrm{H}_{\text {arom }}\right) \end{aligned}$	$\begin{aligned} & 234\left(\mathrm{M}^{+}, 25\right), 188(53), \\ & 161(100), 130(66) \end{aligned}$
3b	65	63-64	$\begin{aligned} & 1.15\left(t, J=7.0,6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.17(t, J=2.4,1 \mathrm{H}, \mathrm{HC}=3), 3.40(\mathrm{q}, \\ & \left.J=7.0,4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.89\left(\mathrm{dd}, J=2.4,5.4,2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}=5\right), 5.03 \\ & \text { (br. } \mathrm{B}, 1 \mathrm{H}, \mathrm{NH}), 6.53-7.43\left(\mathrm{~m}, 4 \mathrm{H}_{\text {arom }}\right) \end{aligned}$	$\begin{aligned} & 230\left(\mathrm{M}^{+}, 33\right), 188(42), \\ & 156(81), 130(100) \end{aligned}$
12	62	-	$\begin{aligned} & 1.26\left(\mathrm{~d}, \mathrm{~J}=6.2,6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) 2\right), 3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.33 \text { (br. s, } 1 \mathrm{H}, \\ & \mathrm{NH}), 6.42-7.58\left(\mathrm{~m}, 4 \mathrm{H}_{\text {arom }}\right) \end{aligned}$	$\begin{aligned} & 160\left(M^{+}, 26\right), 145(100), \\ & 118(19) \end{aligned}$
13	77	$\begin{gathered} 117-118 \\ \left(117-119^{29}\right) \end{gathered}$	$\begin{aligned} & 4.44\left(\mathrm{~d}, \mathrm{~J}=5.3,2 \mathrm{H}, \mathrm{NCH}_{2}\right), 5.01(\mathrm{br} . \mathrm{B}, 1 \mathrm{H}, \mathrm{NH}), 6.55-7.67(\mathrm{~m}, \\ & 9 \mathrm{H}_{\text {arom }} \end{aligned}$	$208\left(\mathrm{~K}^{+}, 40\right), 91$ (100)
14	60	$\begin{aligned} & 68-69 \\ & (6929) \end{aligned}$	$\begin{aligned} & 2.91\left(\mathrm{~d}, \mathrm{~J}=4.0,3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.68(\mathrm{br} . \mathrm{B}, 1 \mathrm{H}, \mathrm{NH}), 6.47-7.89(\mathrm{~m}, \\ & \left.4 \mathrm{H}_{\text {arom }}\right) \end{aligned}$	132 (${ }^{+}$, 100), 104 (51)
20	71	-	```1.15 (d, J = 7.1, 3H, CH(CH2 2.91 (s, 3H, NCH3), 3.49 (m, 1H, CH), 6.42-7.87 (m, 4Harom), 9.17 (br. s, 1H, NH)```	177 ($\left.\mathrm{M}^{+}, 52\right), 134$ (100)
21	68	-	$\begin{aligned} & 0.94\left(t, J=7.3,3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), \\ & 2.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.92\left(\mathrm{t}, \mathrm{~J}=7.5,2 \mathrm{H}, \mathrm{COCH}_{2}\right), 6.55-7.76(\mathrm{~m}, \\ & \left.4 \mathrm{H}_{\mathrm{arom}}\right), 8.83(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) \end{aligned}$	$191\left(M^{+}, 56\right), 134(100)$

scheme 1

scheme 2

scheme 3
Table 2. Analytical Data for the Phosphorylated Compounds 1a,b, 8a, c,d, 16, 17 Prepared

Product			Yielda (\%)	$m p^{b, c}$ $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 1_{\mathrm{H}-\mathrm{NMR}}\left(\mathrm{CDCl}_{3} / \text { TMS }\right)^{\mathrm{d}, \mathrm{e}} \\ & \delta \mathrm{ppm}, J(\mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & \text { Ms }(70 \mathrm{eV})^{\mathrm{f}} \\ & m / z(\%) \end{aligned}$
13	${ }_{1}-\mathrm{Pr}$	-	72	75-76	0.93 and 1.13 (two $t, J=7.1,6 \mathrm{H}, \mathrm{CH}_{3}$), 0.93 and 1.28 (two br. s , $6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$), 2.71, 3.14 and 3.78 (three br. $\mathrm{s}, 4 \mathrm{H}$, CH_{2}), 3.88 and 4.66 (two br. s, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{P}$), $4.19(\mathrm{~m}, 1 \mathrm{H}$, CH), 6.84-7.71 ($\mathrm{m}, 14 \mathrm{H}_{\text {arom }}$)	$\begin{aligned} & 448\left(M^{+}, 2\right), 247(100), \\ & 201(16) \end{aligned}$
16	$\mathrm{HC} \equiv \mathrm{CCH}_{2}$	-	68	141-142	0.85 and 1.13 (two $t, J=7.1,6 \mathrm{H}, \mathrm{CH}_{3}$), 2.15 ($t, J=2.4$, HCE), $2.68,2.96,3.24$ and 3.65 (four br. $\mathrm{g}, 4 \mathrm{H}, \mathrm{CH}_{2}$), 4.10 (br. s, $1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=$), 4.30 (br. s, $3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C} \equiv+\mathrm{NCH}_{2} \mathrm{P}$), 6.917.78 ($\mathrm{m}, 14 \mathrm{H}_{\text {arom }}$)	```444 (M+, 2), 402 (7), 243 (25), 201 (22), 86 (100)```
8 a	2-Pr	-	75	120-121	1.05 and 1.36 (two $\left.\left.d, J=6.7,6 H, C H\left(\mathrm{CH}_{3}\right)\right)_{2}\right), 3.67(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}), 4.15$ ($\mathrm{d}, \mathrm{J}=7.5,2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{P}$), 6.87-8.02 ($\mathrm{m}, 14 \mathrm{H}$ arom)	$\begin{aligned} & 374\left(\mathrm{M}^{+}, 45\right), 201(17), \\ & 173(100) \end{aligned}$
8c	PhCH_{2}	-	73	101-102	$\begin{aligned} & 4.31\left(\mathrm{~d}, \mathrm{~J}=2.9,2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{P}\right), 4.74\left(\mathrm{~B}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 6.85- \\ & 7.87\left(\mathrm{~m}, 19 \mathrm{H}_{\text {arom }}\right) \end{aligned}$	$\begin{aligned} & 422\left(M^{+}, 43\right), 221(18), \\ & 173(100) \end{aligned}$
8d	Ke	-	78	115-116	$\begin{aligned} & 3.20\left(\mathrm{~B}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.45\left(\mathrm{~d}, \mathrm{~J}=3.7,2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{P}\right), 6.65- \\ & 7.93\left(\mathrm{~m}, 14 \mathrm{H}_{\text {arom }}\right) \end{aligned}$	$\begin{aligned} & 346\left(\mathrm{M}^{+}, 45\right), 201(92), \\ & 145 \text { (100) } \end{aligned}$
16	Me	${ }_{1-P r}$	55	-	```0.65 (d, J = 7.0, 6H, CH(CH3}\mp@subsup{)}{2}{\prime}),2.90(B, 3H, NCH3), 3.1 (m, 1H, CH), 3.90(d, J = 4.0, 2H, NCH2P), 6.85-7.65 (m, 14Harom)```	$\begin{aligned} & 391\left(M^{+}, 1\right), 348(2), \\ & 190(75), 91(100) \end{aligned}$
17	Me	$n-\mathrm{Bu}$	52	62-63	$\begin{aligned} & 0.93\left(t, J=7.2,3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.33(\mathrm{~m}, 2 \mathrm{H}, \\ & \left.\mathrm{CH}_{2}\right), 2.65\left(\mathrm{t}, J=7.0,2 \mathrm{H}, \mathrm{COCH}_{2}\right), 3.06\left(\mathrm{~B}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), \\ & 3.98\left(\mathrm{~d}, J=4.8,2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{P}\right), 6.87-7.95\left(\mathrm{~m}, 14 \mathrm{H}_{\mathrm{arom}}\right) \end{aligned}$	405 ($\left.\mathrm{M}^{+}, 1\right), 387$ (2)

[^0]
schome 4

The formation of the heteroaromatic B-hydroxydiphenylphosphine oxides 2a,b obtained by basic treatment of the open systems $1 a, b$ is actually the combined result of the nucleophilicity of the transient carbanions of $1 a, b$, a property mainly used thusfar for enamines synthesis, ${ }^{16}$ and of the sensitivity of the carboxamido group with respect to nucleophilic attacks ${ }^{27,28}$. Representative exemples of compounds which have been prepared by this method are presented in Table 3. It can be seen that this simple procedure furnishes the cyclocondensation products $2 \mathrm{a}, \mathrm{b}$ in excellent yields.

Synthesis of 3-amino-2-diphenylphosphinoyl indole derivatives 9a,c,d :

The presence of the cyano group in the parent models $8 a, c, d$ (scheme 5) requires use of lithium diisopropylamide as the base for the annelation reaction. The intramolecular attack of the prealably generated carbanion of the Horner-Wittig reagents $8 \mathrm{a}, \mathrm{c}, \mathrm{d}$ on the cyano group gives rise almost quantitatively to the indolic B-amino-diphenylphosphine oxides ga,c,d (Table 3). This type of reaction has been already applied for the construction of various aminated heterocyclic systems. 19,20

The starting compounds $8 a, c, d$ were readily prepared from the corresponding aromatic amınes 12, 13, 14 according to the general protocol described for carboxamides $1 a, b$ in scheme 4 ($A=C N$) (Table 2). Initially N-isopropyl and N-benzylanthranilonitrile, 12 and 13 respectively, were obtained by reduction with NaBH_{4} of the imines resulting from the condensation between anthranılonitrile and acetone or benzaldehyde (scheme 6, Table 1). N-methylanthranilonitrile 14 was obtained by dehydration of the primary amide 15^{17} (scheme 7) arising from ring opening of N-methylisatoic anhydride upon treatment with ammonia. ${ }^{18}$

acheme 5

scheme 6

Table 3. Analytical Data for the Phosphorylated Indoles $2 \mathrm{a}, \mathrm{b}, 9 \mathrm{a}, \mathrm{c}, \mathrm{d}, 18$, 19 Prepared

$\begin{gathered} \text { Prod- } \\ \text { uct } \end{gathered}$			Yield (8)	$m^{a, b}$ $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \mathbf{l}_{\mathrm{H}-\mathrm{NMR}}\left(\mathrm{CDCl}_{3} \text { or } d_{6} \text {-DMSO/TMS }\right)^{\mathrm{C}, \mathrm{~d}} \\ & \delta \mathrm{ppm}, \mathrm{~J}(\mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & \text { MS }(70 \mathrm{eV})^{e} \\ & m / z(8) \end{aligned}$
2a	1-Pr	-	91	200-201	$\begin{aligned} & 1.16\left(\mathrm{~d}, \mathrm{~J}=7.2,6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) 2\right), 3.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.92- \\ & 8.12(\mathrm{~m}, 14 \mathrm{H} \text { arom}), 10.21 \text { (br. } \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) \end{aligned}$	$\begin{aligned} & 375\left(\mathrm{~N}^{+}, 48\right), 332(21), \\ & 201(29), 185(100) \end{aligned}$
2b	HC= CCH_{2}	-	85	185-186	$\begin{aligned} & 2.00(\mathrm{t}, \mathrm{~J}=2.5, \mathrm{HC} \equiv), 4.38\left(\mathrm{~d}, \mathrm{~J}=2.5,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv\right) \text {, } \\ & \left.6.82-8.14\left(\mathrm{~m}, 14 \mathrm{H}_{\text {arom }}\right), 10.10 \text { (br. s, } 1 \mathrm{H}, \mathrm{oH}\right) \end{aligned}$	$\begin{aligned} & 371\left(\mathrm{~N}^{+}, 31\right), 332(10), \\ & 201(72), 185(100) \end{aligned}$
9a	${ }_{1-\mathrm{Pr}}$	-	91	110-111	$\begin{aligned} & \left.1.22\left(\mathrm{~d}, \mathrm{~J}=8.4,6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.14 \text { (br. } \mathrm{s}, 2 \mathrm{H}, \mathrm{NH} 2\right), \\ & 4.48(\mathrm{~m}, \mathrm{H}, \mathrm{CH}), 7.03-8.07\left(\mathrm{~m}, 14 \mathrm{H}_{\text {arom }}\right) \end{aligned}$	$\begin{aligned} & 374\left(\mathrm{M}^{+}, 73\right), 201(36), \\ & 173(47), 86(100) \end{aligned}$
9 c	PhCH_{2}	-	92	123-124	```4.10 (br. s, 2H, NH2), 5.27 (8, 2H, NCH2Ph), 6.53-7.88 (m, 19Harom)```	$\begin{aligned} & 422\left(M^{+}, 84\right), 331(100), \\ & 221(36), 201(22) \end{aligned}$
9d	Me	-	93	138-139	$\begin{aligned} & 3.43\left(\mathrm{~B}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.00\left(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.02-7.97 \\ & \left(\mathrm{~m}, 14 \mathrm{H}_{\text {arom }}\right) \end{aligned}$	$\begin{aligned} & 346\left(\mathrm{M}^{+}, 41\right), 201(11), \\ & 145(20), 91(100) \end{aligned}$
18	Me	${ }^{1-P r}$	90	174-175	$\begin{aligned} & 0.54\left(\mathrm{~d}, J=6.6,3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.60(\mathrm{~d}, J=6.6,3 \mathrm{H}, \\ & \left.\mathrm{CH}\left(\mathrm{CH}_{3}\right) 2\right), 1.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.62- \\ & 7.90\left(\mathrm{~m}, 14 \mathrm{H}_{\text {arom }}\right) \end{aligned}$	$\begin{aligned} & 373\left(\mathrm{M}^{+}, 38\right), 358(26), \\ & 201(100), 172(28) \end{aligned}$
19	ме	n-Bu	87	113-114	$\begin{aligned} & 0.75\left(\mathrm{t}, \mathrm{~J}=7.4,3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.45 \\ & \left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.13\left(\mathrm{t}, \mathrm{~J}=8.2,2 \mathrm{H}, \mathrm{COCH}_{2}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}, \\ & \left.\mathrm{NCH}_{3}\right), 6.97-7.99\left(\mathrm{~m}, 14 \mathrm{H}_{\text {arom }}\right) \end{aligned}$	$\begin{aligned} & 387\left(\mathrm{M}^{+}, 75\right), 344(95), \\ & 201(75), 144(100) \end{aligned}$

[^1]Synthesis of 3-alkyl-2-diphenylphosphinoyl indole derivatives 18, 19 :
The elaboration of precursors 16, 17 (Table 2) required the preliminary synthesis of the corresponding aromatic ketones 20, 21 respectively. These compounds were prepared by treatment of N methylanthranilonitrile 15 with isopropylmagnesium bromide or with n butyllıthium in ether (scheme 8, Table 1).

The incorporation of the diphenylphosphinoylmethyl group in the parent ketones 20, 21 was achieved according to the general reaction pathway (scheme 4, A = COR). However, the yields were appreciably lower than for the carboxamido and cyano derivatives (Table 2). This may be the consequence of secondary interactions due to the enolisation character of the parent ketones. On the other hand the base-induced intramolecular cyclization of the diphenylphosphine oxides 16 and 17 (scheme 9) was accomplished with lithium dilsopropylamide in THF at low temperature and was shown to be remarkably efficient. The 2-diphenylphosphinoyl-3isopropyl and 3 -butyl indoles, 18 and 19 respectively, were indeed obtained with yields superior to 85% after recrystallization (Table 3).

These reactions illustrate the versatility and the synthetic potential of the procedure described in this paper. First it constitutes a conceptually and experimentally simple new approach to the indole skeleton. It also represents a method of choice for the simultaneous introduction in the heterocyclic nucleus of versatile functionally substituents, namely hydroxy and amino, with the diphenylphosphinoyl group. The presence of these two entities in the heterocyclic framework can be undoubtedly interesting for further synthetic planning both in the field of organic ${ }^{21,22}$ and organometallic chemistry. ${ }^{9,23,24}$ Furthermore the scope of these reactions can be broadened to include the preparation of 2 -phosphorylated-3-alkyl indole derivatives. The easy availability of the starting materials, the simplicity of this short and clean procedure and the high yields of annelation products render this process particularly attractive and should be undoubtedly extended to other heterocyclic systems.

21
scheme 8

scheme 9

EXPERIMESNAMI

2-N-isopropylamino-N',N'-diethylbensamide 3a
A solution of 2 -amino-N,N-diethylbenzamide ${ }^{13}(1.92 \mathrm{~g}, 10 \mathrm{mmol})$ in acetone (50 mL) with molecular sieves 4 A was kept in the refrigerator for 2 days. The reaction mixture was filtered on Celite ${ }^{R}$ and evaporated in vacuo to dryness. The crude imine 5 thus obtained was dissolved in absolute methanol (50 mL) and subsequently treated with $\mathrm{NaBH}_{4}(760 \mathrm{mg}, 20$ mmol) under N_{2} in an ice-cooled flask. After stirring the mixture for an hour, water (50 mL) was added and the reaction product extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 50 \mathrm{~mL}$), then dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent furnished the crude oily amine 3 a which was finally purified by column chromatography on silica using a mixture acetone-hexane as eluent (Table 1).

2-N-propargylamino-N', N^{\prime}-diethylbenzamide 3b
N-propargylisatoic anhydride 6 was prepared according to a reported procedure. ${ }^{14}$ The ring opening of this compound with NaOH in methanol ${ }^{25}$ led to the ester 7 which was distilled in vacuo (5.10^{-3} torr). The ester 7 was subsequently treated with lithium diethylamide in tetrahydrofuran following a procedure already described by us for the synthesis of N,Ndiethylanthranilamide 4 (Table 1). ${ }^{13}$

2-N-isopropylaminobenzonitrile 12
This compound was obtained from the commercial 2-aminobenzonitrile (anthranilonitrile) by condensation with acetone in the presence of molecular sieves $4 \AA$. The mixture was worked up and the crude imine treated with NaBH_{4} as previously described for 3a. The product 12 was purified by vacuum distillation (Table 1).

2-N-benzylaminobenzonitrile 13
A mixture of anthranilonitrile ($1.18 \mathrm{~g}, 10 \mathrm{mmol}$), benzaldehyde (1.17 g, 11 mmol) in toluene (100 mL) was refluxed for 2 h in a Dean-Stark apparatus in the presence of a catalytic amount of p-toluenesulfonic acid. The solvent was evaporated in vacuo and the crude product was subsequently treated with $\mathrm{NaBH}_{4}(760 \mathrm{mg}, 20 \mathrm{mmol})$ in MeOH as described above for 3a. The classical work-up furnished an oily product which slowly solidified on standing and was finally recrystallized from hexane-toluene (Table 1).

2-N-methylaminobenzonitrile 14

Inıtially, 2-N-methylaminobenzamide 15 was prepared by treatment of commercial N-methylisatolc anhydride with ammonia. ${ }^{18}$ Subsequent dehydration of 15 with POCl_{3} in pyridine was carried out by adapting an already reported procedure (Table 1). ${ }^{17}$

2-N-methylaminophenyl isopropyl ketone 20
To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of N-methylanthranilonitrile (5.7 g, 28 mmol) in dry $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added dropwise $i-\mathrm{PrMgCl}\left(2 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 39 \mathrm{~mL}$, 78 mmol) with stirring under argon. The mixture was warmed to room temperature and stirring was continued for 5 h . The solution was recooled $\left(0^{\circ} \mathrm{C}\right)$ and 50 mL of $10 \% \mathrm{HCl}$ was slowly added. The reaction mixture was stirred for an additional 3 hours and then made basic by addition of solid NaOH . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent furnished an oily product which was finally purified by flash column chromatography on silica gel using 15% EtOAC in hexane as eluent. The ketone 20 could be used directly for the next step but an analytical sample of 20 was obtained by bulb to bulb distillation (Table 1).

2-N-methylaminophenyl butyl ketone 21

This compound was prepared as described above for the isopropyl derivative 20 , starting from N-methylanthranilonitrile (5.7 g, 28 mmol) and a commercial solution of $n-B u L i(1.6 \mathrm{M}$ in hexane, $52.5 \mathrm{~mL}, 84 \mathrm{mmol})$ (Table 1).

General procedure for the preparation of the phosphorylated carboxamides, nitriles and ketones $1 a, b, 8 a, c, d, 16,17$ respectively

A solution of the approprıate carboxamides ${ }^{26}$, nitriles or ketones $3 \mathrm{a}, \mathrm{b}, 12,13,14,20,21$ (30 mmol) and paraformaldehyde (1.35 g) in a mixture of EtOH (20 mL) and toluene (50 mL) was refluxed overnight. The solvent and the excess paraformaldehyde were removed in vacuo (5.10 ${ }^{-2}$ torr). The mixture was dissolved in THF (10 mL) and chlorodiphenylphosphine ($7.2 \mathrm{~g}, 30 \mathrm{mmol}$) was slowly added in an atmosphere of dry N_{2}. The solution was stirred at room temperature for $1 \mathrm{~h}, \mathrm{~K}_{2} \mathrm{CO}_{3}$ (7 g) was added and stirring was maintained for 15 mn . The reaction mixture was filtered on celite ${ }^{R}$ and then poured on petroleum ether (500 mL) with vigourous stirring. The product was collected by suction, then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by column chromatography on silica gel using 50\%
acetone in hexane as eluent. The sollds were usually recrystallized from hexane-toluene (Table 2).

General procedure for the preparation of the 2-diphenylphosphinoyl-3nyaroxyindole derivatives 2a,b

A solution of n-BuLi in hexane ($1.6 \mathrm{M}, 3.4 \mathrm{~mL}, 5.5 \mathrm{mmol}$) was slowly added, with stirring under Ar, to a solution of $1 \mathrm{a}, \mathrm{b}$ (5 mmol) in anhydrous THF (20 mL) at $-78^{\circ} \mathrm{C}$. The deep-red colored solution was stirred for 0.5 h at the same temperature, warmed to $-30^{\circ} \mathrm{C}$ and then quenched with water (30 mL). The aqueous layer was extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were washed with brine, then dried over MgSO_{4} and evaporated in vacuo to give the phosphorylated hydroxyindole derıvatıves 2a,b. Trituration of the crude olly products with $\mathrm{Et}_{2} \mathrm{O}$ induced solidification and recrystallization of the solids in hexane-toluene furnished analytically pure samples of $2 \mathrm{a}, \mathrm{b}$. Yıelds reported in Table 3 have been evaluated after recrystallization.

General procedure for the preparation of the 2-diphenylphosphinoyl-3-amino and 3-alkyl indole derivatives 9a, c, a and 18, 19

A solution of lithium diisopropylamide (LDA) was prepared at $-78^{\circ} \mathrm{C}$ by the slow addition under Ar of n -BuLi in hexane ($1.6 \mathrm{M}, 3.4 \mathrm{~mL}, 5.5 \mathrm{mmol}$) to a solution of disopropylamine ($560 \mathrm{mg}, 5.5 \mathrm{mmol}$) in THF (10 mL). The mixture was stirred for 15 mn and a solution of the compounds $8 \mathrm{a}, \mathrm{c}, \mathrm{d}$ or 16, 17 (5 mmol) in THF (10 mL) was added dropwise. The solution was stirred for 0.5 h , then warmed to $-30^{\circ} \mathrm{C}$. Work-up and isolation of the reaction products were carried out as described above for compounds $2 a, b$ (Table 3).

REPERENCES

1. Lampin, J.P.; Mathey, F. Fr Demande 2242 398/1975 (Chem. Abstr. 1975, 83, 164369s).
2. Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, H.; Akutagawa, S.; Noyori, R. J. Org. Chem. 1986, 51, 629.
3. Rosini, C.; Franzini, L.; Raffaellı, A.; Salvadori, P. Synthesis 1992, 503.
4. Badener, A.; Lindner, E. Coord. Chem. Rev. 1991, 108, 27.
5. Southern, T.G. Polyhedron 1989, 8, 407.
6. Brown, J.m.; Canning, L.R. J. Chem. Soc., Chem. Commun. 1983, 460.
7. Swartz, J.E.; Bunnet, J.F. J. Org. Chem. 1979, 44, 340.
8. Rossi, R.A.; de Rossi, R.H. Aromatic Substitution by the $S_{R N}{ }^{1}$ Mechanism; Caserio, M.C. Ed.; ACS Monograph 178: Washington D.C., 1983.
9. Ravindar, V.; Hemling, H.; Schumann, H.; Blum, J. Synth. Commun. 1992, 841 and 1453.
10. Sundberg, J.R. in The Chemistry of Indoles; Academic Press: New York and London, 1970 ; p. 164.
11. Dumas, D.J.; Bradford, J.C.; Rozitis, J. J. Med. Chem. 1977, 20, 537.
12. Ho, C.Y.; Haegman, W.E.; Persico, F. J. Med. Chem. 1986, 29, 118.
13. Couture, A.; Cornet, H.; Grandclaudon, P. Synthesis 1991, 1009.
14. Hardtmann, G.E.; Koletar, G.; Pfister, O.R. J. Heterocycl. Chem. 1975, 12, 565.
15. Broekhof, N.L.J.M.; van der Gen, A. Recl. Trav. Chim. Pays Bas 1984, 103, 305 and references cited therein.
16. Broekhof, N.L.J.M.; Jonkers, F.L.; van der Gen, A. Tetrahedron Lett. 1981, 2671.
17. Taylor, E.C.; Ravindranathan, R.V. J. Org. Chem. 1962, 27, 2622.
18. Staiger, R.P.; Miller, E.B. J. Org. Chem. 1959, 24, 1214.
19. Strekowski, L.; Suk-Bin, K.; Cegla, M.T.; Harden, D.B. Heterocycles 1989, 29. 538.
20. Vinick, F.J.; Desai, M.C.; Yung, S.; Thadeio, P. Tetrahedron Lett. 1989, 787.
21. Cavalla, D.; Warren, S. Tetrahedron Lett. 1983, 285.
22. Cavalla, D.; Cruse, w.B.; Warren, S. J. Chem. Soc., Perkin Trans I 1987, 1883.
23. Schvets, A.A.; Popov, L.D.; Kogan, V.A.; Lıtvinov, V.V.; Etmetchenko, L.N. Zh. Obshch. Khim. 1988, 58, 104.
24. Bhattacharya, A.K.; Roy, N.K. in The Chemistry of Organophosphorus Compounds; Hartley, F.R. Ed.; John Wiley and Sons Ltd: Chichester, 1992; vol. 2, pp. 195-285.
25. Stalger, R.P.; Moyer, C.L.; Pitcher, G.R. J. Chem. and Eng. Data 1963, 8, 454.
26. Couture, A.; Deniau, E.; Grandclaudon, P. Synthesis, in press.
27. Jahangir; Clark, R.D. J. Org. Chem. 1987, 52, 5378.
28. Date, M.; Watanabe, M.; Furukawa, S. Chem. Pharm. Bull. 1990, 38, 902
29. Bergman, J.; Brynolf, A.; Vuorinen, E. Tetrahedron 1986, 42, 3869.

[^0]: a overall yield. b Uncorrected. C Satisfactory microanalysis obtained: $C \pm 0.31, \quad \mathrm{H} \pm 0.24, \mathrm{~N} \pm 0.25,0 \pm 0.31, \mathrm{P} \pm 0.27$. d Recorded on a Bruker $A M 400 \mathrm{WB}$. e IR (KBr or neat) $1 \mathrm{a}, \mathrm{b}\rangle_{\mathrm{CO}}=1620, \downarrow_{\mathrm{PO}}=1180 \mathrm{~cm}^{-1} ; 8 \mathrm{a}, \mathrm{c}, \mathrm{d} \boldsymbol{\nu}_{\mathrm{CN}}=2215, \boldsymbol{\nu}_{\mathrm{PO}}=1180 \mathrm{~cm}{ }^{-1}$; $\left.16,17 \dot{\partial}_{C O}=1680,\right\rangle_{P O}=1180 \mathrm{~cm}^{-1}$. f Obtained on a Riber $10-10$ spectrometer.

[^1]: a Uncorrected. b Satisfactory microanalysis obtained: $C \pm 0.35, \mathrm{H} \pm 0.34, \mathrm{~N} \pm 0.32,0 \pm 0.23, \mathrm{P} \pm 0.29$. c Recorded on a Bruker AM 400 WB in CDCl_{3} for $2 \mathrm{a}, \mathrm{b}$ and $9 \mathrm{a}, \mathrm{c}, \mathrm{d}$; in d_{6}-DMSO for 18 and 19. d IR (KBr) $2 \mathrm{a}, \mathrm{b} \quad \boldsymbol{\nu}_{\mathrm{OH}}=1620, \boldsymbol{\lambda}_{\mathrm{PO}}=1160 \mathrm{~cm} \mathrm{~m}^{-1}$; $\left.9 \mathrm{a}, \mathrm{c}, \mathrm{d} \boldsymbol{\gamma}_{\mathrm{NH}}=3450,3315,3210,\right\rangle_{\mathrm{PO}}=1160 \mathrm{~cm}^{-1} ; 18,19 \boldsymbol{\lambda}_{\mathrm{PO}}=1160 \mathrm{~cm}^{-1}$. e obtained on a Riber 10-10 spectrometer.

