Eur J Med Chem (1996) 31, 77-81 © Elsevier, Paris

New products

Growth inhibition of *Cryptococcus neoformans* by 2-(1-piperazinyl)-5-(1,2-diarylethyl)-4,6-dichloropyrimidines: synthesis and *in vitro* studies

Y Fellahi¹, D Mandin⁴, P Dubois², JE Ombetta-Goka³, J Guenzet¹, JP Chaumont⁴, Y Frangin^{1*}

¹Département de chimie, Faculté des sciences et techniques, Université François-Rabelais, Parc de Grandmont, 37200 Tours; ²Laboratoire de chimie analytique et service d'analyse chimique du vivant.

"Laboratoire de chimie analytique et service à analyse chimique du vivant,

Faculté des sciences pharmaceutiques, Université François-Rabelais; ³Laboratoire de chimie organique thérapeutique, Faculté des sciences pharmaceutiques, Université François-Rabelais, 31, av Monge, 37200 Tours; ⁴Laboratoire de botanique, Faculté de médecine et de pharmacie, 25030 Besançon Cedex, France

boraione de bolanique, racuite de médécine et de pharmacte, 25050 besançon Cedex, rrand

(Received 21 May 1995; accepted 11 September 1995)

Summary — 2-(1-Piperazinyl)-5-[1-(4-chlorophenyl)-2-phenylethyl]-4,6-dichloropyrimidine and 2-(1-piperazinyl)-5-[1-(4-chlorophenyl)-2-(3-chlorophenyl)ethyl]-4,6-dichloropyrimidine were synthesized *via* organozinc reagents. These new pyrimidine derivatives were tested against human mycoflora. Biological tests showed that these compounds are selective growth inhibitors of *Cryptococcus neoformans*.

pyrimidine derivative / Cryptococcus neoformans

Introduction

Infection with Cryptococcus neoformans has been diagnosed in an increasing number of immunocompromised patients, such as those with the acquired immunodeficiency syndrome (AIDS). This has led to the development of new antifungal agents for the inhibition of the growth of this yeast. Some of these agents are used for chemotherapy of cryptococcis in virus human immunodeficiency (HIV)-infected persons. Among the compounds tested against C neoformans, there is a great diversity of chemical structures such as trifluoroperazine and chlorpromazine [1], sodium diethyldithiocarbamate [2], a copyrine alkaloid, 3-methoxysampangine [3], α -difluoromethylornithine and cyclohexylamine [4], pradimicin derivative [5], azole derivatives [6-8], 1,2,4-triazino[5,6-b]indole compounds [9], a cyclic depsipeptide, aureobasidin A [10] and amphotericin-B [11].

In this paper, we show that other chemical series such as pyrimidine derivatives can inhibit growth of C neoformans. Moreover, we have observed that certain 2-(1-piperazinyl)-5-(1,2-diarylethyl)-4,6-di-

chloropyrimidines have a high selectivity against this yeast. The synthesis and *in vitro* studies of these compounds are described.

Chemistry

Scheme 1 shows the synthesis of different pyrimidine derivatives from 5-(4-chlorobenzylidene) barbituric acid 1. This precursor 1 was easily prepared by condensing barbituric acid with 4-chlorobenzaldehyde according to a previously described method [12]. The 5-[1-(4-chlorophenyl)-2-phenylethyl]barbituric acid 5-[1-(4-chlorophenyl)-2-(3-chlorophenyl)-2a and ethyl]barbituric acid 2b were obtained following the 1,4-addition of benzylzinc bromide or 3-chlorobenzylzinc bromide respectively to the same 5-(4-chlorobenzylidene) barbituric acid 1. In a previous paper [13] we proved that the benzylzinc bromide also undergoes hydrogen-metal exchange with both NH sites of the substrate 1. The reaction led to substantial yields of products 2 only if three molecular equivalents of the organozinc reagent were used. The reaction of a mixture of phosphorus oxychloride and phosphorus pentachloride with 5-(1,2-diarylethyl) barbituric acid 2a or 2b yielded 5-[1-(4-chlorophenyl)-2-phenylethyl]-2,4,6-trichloropyrimidine 3a or 5-[1-(4-chloro-

^{*}Correspondence and reprints

Scheme 1. Synthesis of 2-substituted-5-(1,2-diarylethyl)-4,6-dichloropyrimidine derivatives.

phenyl)-2-(3-chlorophenyl)ethyl]-2,4,6-trichloropyrimidine 3b, respectively. Compound 3a reacts at reflux of the solvent with an excess of concentrated ammonium hydroxide resulting in the corresponding 2amino-5-[1-(4-chlorophenyl)-2-phenylethyl]-4,6dichloropyrimidine 4a. The piperazinyl derivatives 5a and 5b were also prepared according to the procedure reported in scheme 1 by heating trichloropyrimidine 3a or 3b with an excess of piperazine at reflux of the ethanol. The same reaction of trichloropyrimidine 3a with N-methylpiperazine yielded 2-[1-(4-methylpiperazinyl)]-5-[1-(4-chlorophenyl)-2-phenylethyl]-4,6dichloropyrimidine 6a. The reaction of the compound 5a with methanesulfonyl chloride gave the product 7a resulting from methanesulfonation on the NH site of the substrate.

After purification, the purity of these products was checked on the basis of their elution profile in a capillary gas chromatography procedure. Yields of pyrimidine derivatives are reported in table I.

Pharmacology

In order to investigate the antifungal activity, the seven pyrimidine derivatives (3a, 3b, 4a, 5a, 6a, and 7a), were tested *in vitro* against six species of human mycoflora: Candida albicans, C neoformans, Aspergillus fumigatus, Scopulariopsis brevicaulis, Trichophyton rubrum, and T mentagrophytes.

Results and discussion

Scheme 1 shows a convenient method for the synthesis of 5-(1,2-diarylethyl)-2,4,6-trichloropyrimidines **3a** and **3b** from their corresponding 5-(1,2-diarylethyl) barbituric acids **2a** and **2b**.

¹H-NMR analysis of 5-substituted barbituric acids at 200 MHz showed a doublet in the range of chemical shifts $\delta = 3.40-3.50$ ppm for COCHCO proton. This doublet was well observed at $\delta = 3.41$ ppm with a coupling constant ${}^{3}J = 3.2$ Hz for 5-[1-(4-chlorophenyl)-2-(3-chlorophenyl)ethyl] barbituric acid 2b. The barbituric ring exhibited a broad singlet for the two NH protons at $\delta = 9.85$ ppm in acetone- d_6 as solvent for compound 2a and $\delta = 7.75$ ppm in CDCl₃ as solvent for compound 2b. As expected, these characteristic signals of the barbituric ring disappeared in the NMR spectra of the corresponding trichloropyrimidines 3a and 3b. The experimental protocol demonstrated that ¹H-NMR spectrum of the ethyl chain was characteristic of the 5-(1,2-diarylethyl)-2,4,6-trichloropyrimidines. In particular, the tertiary proton exhibited a multiplet at 3.80 ppm for barbituric acid 2a and 3.86 ppm for barbituric acid 2b, whereas its signal was a triplet at 5.14 ppm for trichloropyrimidine 3a and 5.13 ppm for trichloropyrimidine 3b with a coupling constant about 8.5 Hz. Compared to their precursors 3a and 3b, the 2-substituted dichloropyrimidine derivatives 4a, 5a, 5b, 6a and 7a retained the same NMR structure of the ethyl chain with small differences for the corresponding chemical shifts and coupling constants.

Mass spectra of dichloropyrimidines and trichloropyrimidines showed the expected fragments with isotopic peaks due to the presence of chlorine atoms 35 and 37 in their structure. For instance, 5-[1-(4chlorophenyl)-2-phenylethyl]-2,4,6-trichloropyrimidine **3a** displayed molecular isotopic peaks at m/z =396, 398, 400 and 402 and the fragment C₁₁H₁₅N₂Cl₄+ at m/z = 305, 307 and 309. For the 2-(1-piperazinyl)-5-[1-(4-chlorophenyl)-2-phenylethyl]-4,6-dichloropyrimidine **5a** the molecular isotopic peaks were at m/z =

			Ç.			
Compound	<u>X</u>	Y	Z	Yield (%)	Molecular formula	Analysis ^a
2a	Н	OH	ОН	75	C ₁₈ H ₁₅ ClN ₂ O ₃ (342.8)	
2b	CI	OH	OH	86	$C_{18}H_{14}Cl_2N_2O_3$ (377.2)	
3a	Н	Cl	Cl	50	$C_{18}H_{12}Cl_4N_2$ (398.1)	C, H, Cl, N
3b	Cl	Cl	Cl	53	C ₁₈ H ₁₁ Cl ₅ N ₂ (432.6)	C, H, Cl, N
4a	Н	\mathbf{NH}_2	Cl	84	C ₁₈ H ₁₄ Cl ₃ N ₃ (378.7)	C, H, Cl, N
5a	Н	N	Cl	74	$C_{22}H_{21}Cl_3N_4$ (447.8)	C, H, Cl, N
5b	Cl	NNH	Cl	84	$C_{22}H_{20}Cl_4N_4$ (482.2)	C, H, Cl, N
6a	Н	N N CH3	Cl	95	C ₂₃ H ₂₃ Cl ₃ N ₄ (461.8)	C, H, Cl, N
7a	н	N-SO2CH3	Cl	85	$C_{23}H_{23}Cl_3N_4O_2S$ (525.9)	C, H, Cl, N, S

^aAnalyses indicated by the symbols of the elements were within ±0.4% of chemical values.

446, 448 and 450 and the fragment $C_{15}H_{14}N_4Cl_3^+$ at m/z = 355, 357 and 359.

Among the seven pyrimidine derivatives used for biological tests, we observed an antifungal activity with 2-(1-piperazinyl)-5-(1,2-diarylethyl)-4,6-dichloropyrimidines 5a and 5b. Moreover, this activity was very specific to C neoformans colonies with a minimum inhibitory concentration of 150 µg/ml for the two growth inhibitors 5a and 5b. There was no antifungal activity with the trichloropyrimidines 3a and 3b used as precursors of the products 5a and 5b. No antifungal activity was observed with 2-amino-5-[1-(4-chlorophenyl)-2-phenylethyl]-4,6-dichloropyrimidine 4a, the N-methyl derivative 6a and the Nmethanesulfonyl derivative 7a. This suggested that 2-(1-piperazinyl)-4,6-dichloropyrimidine group, with a free NH site, was the active part of the cryptococcis growth inhibitors. These preliminary results, which showed a high specific activity of pyrimidine derivatives 5a and 5b against C neoformans, encouraged us to continue this work in order to increase their inhibition and improve the understanding of the structure-activity relationships.

Experimental protocols

Chemistry

Infrared spectra were recorded on a Perkin-Elmer IR 1310 spectrometer and ultraviolet spectra on a Secomam S 1000 spectrometer. ¹H-NMR spectra were recorded on a Bruker AM 200 (200 MHz) spectrometer using CDCl₃, acetone- d_6 or DMSO- d_6 as solvent and tetramethylsilane as internal standard; mass spectra were obtained on a Hewlett Packard HP5989 A spectrometer (electronic impact at 70 eV). Thin layer chromatography analysis was conducted using silica gel $60F_{254}$. TLC plates were purchased from Merck; compounds were revealed by UV detection. Melting points were not corrected. The purity of the synthesized compounds was verified by gas chromatography (GC, HP 5890A, II) coupled with mass spectrometry.

A 25 m x 0.2 mm fused silica capillary column OVI (HP_1) Hewlett Packard was directly inserted into the ion source of the HP quadrupole mass spectrometer through a heated (250°C) interface box. Helium was used as carrier gas with a flow rate through the column of 0.7 ml/min. The temperature remained at 70°C for 1 min and was then programmed up to 300°C at 10°C/min. The final time was 60 min. The temperature of the ion source was 200°C and the energy of bombarding electrons was 70 eV. Elemental analyses were within ±0.4% of theoretical values and were determined in the Laboratory of the Service Central d'Analyse du CNRS (Vernaison, France).

5-(4-Chlorobenzylidene)barbituric acid 1

Compound 1 was obtained according to a described method [12] by condensing the 4-chlorobenzaldehyde from Janssen (7.0 g, 50 mmol) with barbituric acid from Janssen (6.4 g, 50 mmol) dissolved in hot water (60 ml). The precipitate was filtered off, washed with small quantities of hot water and dried. Compound 1 (11.5 g, 92% yield) was characterized; IR (KBr) 3270 (NH), 1755, 1700, 1645 (C=O), 1593, 1570, 1547 (aromatic ring) cm⁻¹; ¹H-NMR (DMSO- d_6) δ ppm: 7.29 (m, 2H arom, $^{3}J = 8.5$ Hz); 7.84 (d, 2H arom, $^{3}J = 8.5$ Hz); 8.00 (s, 1H, Ar-CH=); 11.02 (s, 1H, NH); 11.17 (s, 1H, NH).

Preparation of organozinc reagents

According to the procedure described by Gaudemar [14] benzylzinc bromide or 3-chlorobenzylzinc bromide was ob-

tained by reaction between benzylbromide from Aldrich (7.18 g, 42 mmol) or 3-chlorobenzyl bromide from Aldrich (8.63 g, 42 mmol) and zinc from Labosi (2.75 g, 42 mmol) in dry tetrahydrofuran (THF, 20 ml) at 25–30°C, blanketed under nitrogen gas. The organozinc reagents were used *in situ* for the synthesis of compounds 2a and 2b.

5-(1,2-Diarylethyl)barbituric acids 2a and 2b

According to a described method [13] a solution of benzylzinc bromide or 3-chlorobenzylzinc bromide (42 mmol) in THF was cooled to 0°C and the 5-(4-chlorobenzylidene) barbituric acid 1 (2.50 g, 10 mmol) was added while stirring and cooling. The temperature of the mixture quickly rose to 30°C. When it began to fall the cooling bath was removed. After stirring at room temperature for 1 h, the mixture was hydrolysed with crushed ice (30 g) and concentrated hydrochloric acid (5 ml); ether (30 ml) was then added. The two phases were separated and the aqueous layer was extracted with ether (4 x 20 ml). The combined organic phase was washed with brine (50 ml), dried with anhydrous sodium sulfate and evaporated to give the crude solid product 2a or 2b. For purification, the crude product was dissolved in aqueous 2 N sodium hydroxide (40 ml). The aqueous layer was washed with ether (40 ml). Strong hydrochloric acid (10 ml) was then added to precipitate product 2a or 2b. This product was dissolved in ether (100 ml), washed with brine $(4 \times 20 \text{ ml})$ and dried with anhydrous sodium sulfate. The solvent was removed under vacuum.

5-[1-(4-Chlorophenyl)-2-phenylethyl]barbituric acid 2a. The reaction of benzylzinc bromide with 5-(4-chlorobenzylidene) barbituric acid 1 yielded compound 2a (2.57 g, 75% yield); mp: 124–126°C; IR (KBr) 3200 (NH), 3045 (CH arom), 2920, 2840 (CH, CH₂), 1755, 1705, 1695 (C=O), 1595, 1570, 1490 (aromatic rings) cm⁻¹; UV (EtOH) 209, 212, 216, 267 nm; ¹H-NMR (acetone- d_6) δ ppm: 3.07 (dd, 1H, 2J = 13.8 Hz, 3J = 6.7 Hz, Ar-CH); 3.42–3.55 (m, 2H, Ar-CH and COCHCO); 3.80 (m, 1H, Ar CH); 6.89–7.27 (m, 9H arom); 9.85 (broad s, 2H, 2NH).

5-[1-(4-Chlorophenyl)-2-(3-chlorophenyl)ethyl] barbituric acid 2b. The reaction of 3-chlorobenzylzinc bromide with 5-(4chlorobenzylidene) barbituric acid 1 yielded compound 2b (3.24 g, 86% yield); mp: 118–122°C; IR (CHCl₃) 3210, 3100 (NH), 2910, 2860 (CH, CH₂), 1705 (C=O), 1595, 1570, 1490 (aromatic rings) cm⁻¹; UV (EtOH) 212, 216, 265 nm; ¹H-NMR (CDCl₃) δ ppm: 3.08 (dd, 1H, ²J = 13.8 Hz, ³J = 6.0 Hz, Ar-CH); 3.41 (d, 1H, ³J = 3.2 Hz, CO-CH-CO); 3.54 (dd, 1H, ²J = 13.8 Hz, ³J = 10.7 Hz, Ar-CH); 3.86 (m, 1H, Ar-CH); 7.08 (d, 2H arom, ³J = 8.5 Hz); 7.17 (m, 4H arom); 7.32 (d, 2H arom, ³J = 8.5 Hz); 7.75 (broad s, 2H, 2NH).

5-(1,2-Diarylethyl)-2,4,6-trichloropyrimidines 3a and 3b

According to a described method [15] a mixture of barbituric acid 2a or 2b (5 mmol) and phosphorus oxychloride from Prolabo (1.53 g, 10 mmol) was heated at reflux ($105^{\circ}C$) overnight. After cooling to room temperature, phosphorus pentachloride from Janssen (3.12 g, 15 mmol) was added. Refluxing was then continued overnight. After cooling, the reaction mixture was poured onto ice and allowed to stand 30 min. Product 3a or 3b was extracted with ether (3 x 20 ml), decolorized with charcoal and then filtered. The organic layer was treated by 2 N sodium hydroxide (10 ml) and washed with brine until neutrality. The organic phase was then dried with anhydrous sodium sulfate and the solvent was removed. The residue was purified by recrystallization.

5-[1-(4-Chlorophenyl)-2-phenylethyl]-2,4,6-trichloropyrimidine 3a. The reaction with barbituric acid 2a (1.71 g) yielded **3a** (1.0 g, 50% yield); mp: 142–143°C (EtOH); silica-gel preparative TLC (*n*-hexane/CHCl₃ 80:20; $R_f = 0.57$). GC/MS: $R_1 = 24.9$ min; IR (KBr) 3030 (CH arom), 2930 (CH, CH₂), 1600, 1525, 1495 (aromatic rings) cm⁻¹; UV (EtOH) 270 nm; ¹H-NMR (CDCl₃) δ ppm: 3.58 (d, 2H, $^{3}J = 8.6$ Hz, Ar-CH₂); 5.14 (t, 1H, $^{3}J = 8.6$ Hz, Ar-CH); 7.00–7.36 (m, 9H arom); MS *m*/z M⁺⁺: 396 (2.8%, C₁₈H₁₂N₂³⁵Cl₄⁺⁺); M⁺⁺ + 2: 398 (3.9%, C₁₈H₁₂N₂³⁵Cl₃³⁷Cl⁺⁺); M⁺⁺ + 4: 400 (1.8%, C₁₈H₁₂N₂³⁵Cl₂³⁷Cl₂⁻⁺); M⁺⁺ + 6: 402 (0.4%, C₁₈H₁₂N₂³⁵Cl₃³⁷Cl⁺); 307 (8.5%, C₁₁H₅N₂³⁵Cl₃³⁷Cl⁺); 309 (4%, C₁₁H₅N₂³⁵Cl₂³⁷Cl₂⁺); 174 (4.8%, C₁₀H₅N³⁵Cl⁺); 65 (12.2%, C₅H₅⁺).

5-[1-(4-Chlorophenyl)-2-(3-chlorophenyl)ethyl]-2,4,6-trichloropyrimidine **3 b**. The reaction with barbituric acid **2b** (1.88 g) yielded **3b** (1.15 g, 53% yield); GC/MS: $R_1 = 26.1$ min; IR (KBr) 3025 (CH arom), 2920 (CH, CH₂), 1600, 1550, 1495 (aromatic rings), cm⁻¹; UV (EtOH) 270 nm; ¹H-NMR (CDCl₃) δ ppm: 3.53 (d, 2H, $^{3}J = 8.4$ Hz, Ar-CH₂); 5.13 (t, 1H, $^{3}J =$ 8.4 Hz, Ar-CH); 6.86–7.29 (m, 8H arom); MS m/z M⁺: 430 (8.5%, C₁₈H₁₁N₂³⁵Cl₅⁺⁺); M⁺⁺ + 2: 432 (13.6%, C₁₈H₁₁-N₂³⁵Cl₄³⁷Cl⁺⁺); M⁺⁺ + 4: 434 (8.7%, C₁₈H₁₁N₂³⁵Cl₃³⁷Cl₂⁺⁺); M⁺⁺ + 6: 436 (2.7%, C₁₈H₁₁N₂³⁵Cl₂³⁷Cl₃⁺⁺); M⁺⁺ + 8: 438 (0.6%, C₁₈H₁₁N₂³⁵Cl³⁷Cl⁺); 305 (76%, C₁₁H₅N₂³⁵Cl₄³⁷Cl₂⁺); 307 (100%, C₁₁H₅N₂³⁵Cl³⁷Cl₃⁺); 269 (8.3%, C₁₁H₄N₂³⁵Cl₃⁺); 271 (8.8%, C₁₁H₄N₂³⁵Cl₂³⁷Cl⁺); 125 (16.9%, C₇H₆³⁵Cl⁺); 127 (5.6%, C₇H₃³⁷Cl⁺).

2-Amino-5-[1-(4-chlorophenyl)-2-phenylethyl]-4,6-dichloropyrimidine 4a

Trichloropyrimidine **3a** (184 mg, 462 μmol) was stirred at reflux for 15 h with 28% ammonium hydroxide (10 ml) and ethanol (35 ml). After cooling, ethanol was removed under vacuum and the aqueous layer was then extracted with chloroform (6 x 20 ml). The combined organic layer was washed with brine (5 x 10 ml) and dried with Na₂SO₄. The solvent was evaporated and the residue recrystallized from acetone. Product **4a** (146 mg, 385 μmol) was obtained with 84% yield. GC/MS: $R_1 = 27.2$ min; IR (KBr) 3317, 3190 (NH₂), 3032 (CH arom), 2968, 2937 (CH, CH₂), 1632, 1568, 1552, 1540, 1496 (aromatic rings) cm⁻¹; ¹H-NMR (CDCl₃) δ ppm: 3.49 (d, 2H, $^{3}J = 8.1$ Hz, Ar-CH₂); 4.98 (t, 1H, $^{3}J = 8.1$ Hz, Ar-CH); 5.24 (s, 2H, NH₂); 6.95–7.65 (m, 9H arom); MS *mlz* M⁺⁺: 377 (3.8%, C₁₈H₁₄N₃³⁵Cl₃⁻⁺); M⁺⁺ + 2: 379 (3.7%, C₁₈H₁₄N₃³⁵Cl₃⁻⁷Cl⁺⁺); M⁺⁺ + 4: 381 (1.2%, C₁₈H₁₄N₃³⁵Cl³⁷Cl₂⁺⁺); M⁺⁺ + 6: 383 (0.1%, C₁₈H₁₄N₃³⁵Cl₃⁻⁷Cl⁺); 290 (30.7%, C₁₁H₇N₃³⁵Cl₃⁻⁷Cl₂⁺); 292 (3.4%, C₁₁H₇N₃³⁷Cl₃⁺); 216 (12.8%, C₁₁H₇N₃³⁵Cl₃⁺); 218 (12.6%, C₁₁H₇N₃³⁷Cl⁺); 180 (6.7% C₁₁H₆N₃⁺); 91 (16.5%, C₇H₇⁺); 65 (9.8%, C₅H₅⁺).

2-(1-Piperazinyl)-5-(1,2-diarylethyl)-4,6-dichloropyrimidines **5a** and **5b**

Trichloropyrimidine **3a** (2.79 g, 7 mmol) or trichloropyrimidine **3b** (3.03 g, 7 mmol) and piperazine from Aldrich (1.20 g, 14 mmol) in absolute ethanol (30 ml) were heated at reflux for 15 h. The organic layer was then removed under vacuum. The residue was treated with 2 N sodium hydroxide (40 ml) and the solid dissolved in CH₂Cl₂ (6 x 20 ml). The combined organic layer was washed with brine (5 x 10 ml) and dried with Na₂SO₄. The solvent was evaporated to give product **5a** or **5b**, respectively.

2-(1-Piperazinyl)-5-[1-(4-chlorophenyl)-2-phenylethyl]-4,6dichloropyrimidine 5a. The reaction yielded product 5a (2.10 g; 67% yield); mp: 80–82°C; GC/MS: $R_t = 30.7$ min; UV (EtOH) 261 nm; lR (KBr): 3330 (NH), 3090, 3020 (CH arom), 2830 (CH, CH₂), 1565, 1515, 1480 (aromatic rings) cm⁻¹; ¹H-NMR (CDCl₃) δ ppm: 166 (s, 1H, NH); 2.80 (t, 4H, ³*J* = 5.0 Hz, CH₂NCH₂); 3.49 (d, 1H, ³*J* = 6.7 Hz, Ar-CH); 3.50 (d, 1H, ³*J* = 9.5 Hz, Ar-CH); 3.63 (t, 4H, ³*J* = 5.0 Hz, CH₂NCH₂); 4.98 (m, 1H, Ar-CH); 7.08–7.20 (m, 9H arom); MS *m*/*z* M⁺⁺ : 446 (5.3%, C₂₂H₂₁N₄³⁵Cl₃⁻⁺); M⁺⁺ + 2: 448 (6%, C₂₂H₂₁N₄⁻⁵Cl₂³⁷Cl⁺⁺); M⁺⁺ + 4: 450 (0.9%, C₂₂H₂₁N₄¹⁵Cl₃³⁷Cl₂⁺); 355 (100%, C₁₅H₁₄N₄³⁵Cl₃⁻³⁷(196.1%, C₁₅H₁₄N₄³⁵Cl₃⁻³⁷Cl⁺); 313 (8.5%, C₁₃H₁₀N₃³⁵Cl₃⁻⁺); 91 (15.1%, C₇H₄⁺); 84 (29.4%, C₄H₈N₂⁻⁺); 69 (47%, C₄H₇N⁺⁺); 56 (49%, C₂H₄N₂⁺⁺).

2-(1-Piperazinyl)-5-[1-(4-chlorophenyl)-2-(3-chlorophenyl)ethyl]4,6-dichloropyrimidine **5b**. The reaction yielded product **5b** (2.85 g; 84% yield); mp: 110-114°C. Silica-gel preparative TLC (CH₃CN /28% NH₃: 90/10; R_i : 0.59); GC/MS: R_i = 32.9 min; UV (EtOH) 274 nm; IR (KBr): 3430 (NH), 3020 (CH arom), 2920, 2830 (CH, CH₂), 1565, 1515, 1480 (aromatic rings) cm⁻¹; ¹H-NMR (CDCl₃) δ ppm: 1.55 (s, 1H, NH); 2.78 (t, 4H, ³J = 5.0 Hz, CH₂NCH₂); 3.47 (d, 2H, ³J = 7.8 Hz, Ar-CH₂), 3.61 (t, 4H, ³J = 5.0 Hz, CH₂NCH₂); 4.95 (t, 1H, ³J = 7.8 Hz, Ar-CH₂), 7.00-7.20 (m, 8H arom); MS *m*/2 M⁺⁺ 480 (6.9%, C₂₂H₂₀N₄³⁵Cl₄⁺⁺); M⁺⁺ + 2: 482 (8.8%, C₂₂H₂₀N₄³⁵Cl₃⁻³7Cl⁺⁺); M⁺⁺ + 6: 486 (0.96%, C₂₂H₂₀N₄³⁵Cl₃⁻³⁷Cl⁺⁺); 355 (100%, C₁₅H₁₄N₄⁻³⁵Cl₃⁻³⁷Cl⁺⁺); 351 (4%, C₁₅H₁₄N₄⁻³⁵Cl₃⁻⁷Cl⁺⁺); 351 (4%, C₁₅H₁₄N₄⁻³⁷Cl³⁺); 125 (13.6%, C₇H₆³⁵Cl⁺).

2-[1-(4-Methylpiperazinyl)]-5-[1-(4-chlorophenyl)-2-phenylethyl]-4,6-dichloropyrimidine **6a**

5-[1-(4-Chlorophenyl)-2-phenylethyl]-2,4,6-trichloropyrimidine 3a (200 mg, 0.5 mmol) was stirred at reflux for 15 h with N-methylpiperazine from Aldrich (111 µl, 100 mg, 1 mmol) and absolute ethanol (6 ml). After cooling, the solvent was removed under vacuum. The residue was dissolved in CH₂Cl₂ (10 ml). The organic layer was treated with 2 N NaOH (2 x 10 ml), washed with brine (4 x 5 ml) and dried with Na_2SO_4 . The solvent was evaporated to give product **6a**. The residue was purified by flash chromatography, silica-gel 230-400 Mesh from Merck; the eluent was $\tilde{C}H_2Cl_2/MeOH$: 9/1; $R_f = 0.78$. Purification gave compound 6a (142 mg; 63% yield); GC/MS; $R_t = 30.17 \text{ min}; \ ^1\text{H-NMR} (\text{CDCl}_3) \delta \text{ ppm}: 2.22 \text{ (s, 3H, N-CH}_3);$ 2.32 (t, 4H, ${}^{3}J$ = 5.0 Hz, CH₂NCH₂); 3.47 (d, 1H, ${}^{3}J$ = 6.5 Hz, Ar-CH); 3.48 (d, 1H, ${}^{3}J$ = 9.5 Hz, Ar-CH); 3.66 (t, 4H, ${}^{3}J$ = 5.0 Hz, CH_2NCH_2); 4.95 (dd, 1H, ${}^{3}J = 6.5$ Hz, ${}^{3}J = 9.5$ Hz, Ar-CH), 7.05-6.15 (m, 9H arom); MS m/z M*+: 460 (8.3%, C_1), 1.0.-0.13 (iii, 9H atom); WIS 1.02 M⁺⁺⁺ 400 (8.5%, C₂₃H₂₃N₄³⁵Cl₃⁺⁺); M⁺⁺ + 2: 462 (7.8%, C₂₃H₂₃N₄³⁵Cl₂³⁷Cl⁺⁺); M⁺⁺ + 4: 464 (2.7%, C₂₃H₂₃N₄³⁵Cl³⁷Cl₂⁺⁺); M⁺⁺ + 6: 466 (0.2%, C₂₃H₂₃N₄³⁷Cl₃⁺⁺); 369 (57.6%, C₁₆H₁₆N₄³⁵Cl₃⁺⁺); 371 (56.2%, C₁₆H₁₆N₄³⁵Cl₂³⁷Cl₁⁺⁺); 373 (18.1%, C₁₆H₁₆N₄³⁵Cl₃³⁷Cl₂⁺); 371 (56.2%, C₁₆H₁₆N₄³⁵Cl₃²⁷Cl₂⁺⁺); 312 (7.7%, C₁₃H₉N₃³⁵Cl₃⁺⁺); 314 (7.5%, C₁₆H₁₆N₄³⁵Cl₁³⁷Cl₁⁺⁺); 316 (2.8%, C H N ³⁵Cl₃²⁷Cl₃⁺⁺); 314 (7.5%, C H N ³⁵Cl₃³⁷Cl₃⁺⁺); 316 (2.8%, C H N ³⁵Cl₃²⁷Cl₃⁺⁺); 314 (7.5%, C H N ³⁵Cl₃³⁷Cl₃⁺⁺); 316 (2.8%, C H N ³⁵Cl₃²⁷Cl₃⁺⁺); 316 (2.8%, C H N ³⁵Cl₃²⁷Cl₃⁺⁺); 316 (2.8%, C H N ³⁵Cl₃³⁷Cl₃⁺⁺); 314 (7.5%, C H N ³⁵Cl₃³⁷Cl₃⁺⁺); 316 (2.8%, C H N ³⁵Cl₃³⁷Cl₃⁺⁺); 314 (7.5%). $\dot{C}_{13}H_9N_3^{35}\dot{C}l_2^{37}Cl^+);\ 316\ (2.8\%,\ \dot{C}_{13}H_9N_3^{35}\dot{C}l_3^{37}\dot{C}l_2^+);\ 318\ (1\%,$ $C_{13}H_9N_3^{37}Cl_3^+$); 98 (32.2%, $C_5H_{10}N_2^{++}$); 91 (13.9%, $C_7H_7^+$); 83 (22.7%, $C_4H_7N_2^+$); 70 (100%, $C_4H_8N^+$); 58 (47.7%, $C_3H_8N^{-+}$); 56 (12.2%, $C_2H_4N_2^{+}$); 43 (50.7%, $C_2H_5N^{+}$); 42 (46.6%, $C_2H_4N^+$).

2-[1(4-Methanesulfonylpiperazinyl)]-5-[1-(4-chlorophenyl)-2-phenylethyl]-4,6-dichloropyrimidine 7a

2-(1-Piperazinyl)-5-[1-(4-chlorophenyl)-2-phenylethyl]-4,6dichloropyrimidine 5a (100 mg, 223 μ mol) was stirred at room temperature for 30 min with CH₂Cl₂ (4 ml) and CH₃SO₂Cl (400 µl, 590 mg, 5.1 mmol). The mixture was then stirred at room temperature for 30 min with 10% aqueous Na₂CO₃ (4 ml). The two phases were separated and the aqueous layer extracted with CH₂Cl₂ (2 x 5 ml). The combined organic phase was washed with brine (3 x 5 ml) and dried with Na₂SO₄. The solvent was removed under vacuum and the residue was washed with ether and filtered to give compound **7a** (99.7 mg, 85% yield) which was purified by silica-gel TLC (the eluent was CHCl₃: $R_f = 0.55$); IR (CHCl₃): 3090, 3020 (CH arom), 2950 (CH, CH₂, CH₃), 1565, 1515, 1490 (aromatic rings), 1350, 1150 (SO₂) cm⁻¹; ¹H-NMR (CDCl₃) & ppm: 2.70 (s, 3H, SO₂CH₃); 3.18 (t, 4H, ³J = 5.0 Hz, CH₂NCH₂); 3.50 (d, 1H, ³J = 7.0 Hz, Ar-CH); 3.51 (d, 1H, ³J = 9.5 Hz, Ar-CH); 3.80 (t, 4H, ³J = 5.0 Hz, CH₂NCH₂); 5.00 (dd, 1H, ³J = 7.0 Hz, ³J = 9.5 Hz, Ar-CH); 7.10–7.20 (m, 9H arom).

Pharmacological evaluation

Test organisms were provided by the Laboratory of Microbiology, Besançon Hospital (CHR) (France) and the Laboratory of Microbiology, Faculty of Pharmacy (Professor Senet), University of Angers (France).

Fungi were grown on Sabouraud 1.5% dextrose Agar (bioMerieux, France) plates. The compound suspensions were added at increasing concentrations first to the sterilized culture broth, kept at 40°C, and then distributed into Petri plates before solidification. Fungi (yeasts and Aspergillus) were inoculated by spore dissemination and Trichophyton mycelium disposition in center plates. These methods were described previously [16]. Cultures were incubated for 24–36 h at 37°C (yeasts and A fumigatus) and for 10 d at 25°C (dermatophytes and Scopulariopsis). The lowest concentration of compounds that completely inhibited fungal growth was considered to be the minimum inhibitory concentration (MIC), expressed in $\mu g/ml$. The experiments were performed and compared to control tests.

References

- 1 Eilam Y, Polacheck I, Ben-Gigi G, Chernichovsky D (1987) Antimicrob Agents Chemother 31, 834-836
- 2 Allerberger F, Reisinger EC, Söldner B, Dierich MP (1989) Mycoses 32, 527-530
- 3 Liu S, Oguntimein B, Hufford CD, Clark AM (1990) Antimicrob Agents Chemother 34, 529-533
- 4 Pfaller MA, Riley J, Gerarden T (1990) Mycopathol 112, 27-32
- 5 Oki T, Kakushima M, Hirano M et al (1992) J Antibiotics 45, 1512-1517
- 6 Wright KA, Perfect JR, Ritter W (1990) J Antimicrob Chemother 26, 387– 397
- 7 Allendoerfer R, Yates RR, Marquis AJ, Loebenberg D, Rinaldi MG, Graybill JR (1992) Antimicrob Agents Chemother 36, 217-219
- 8 Peng T, Galgiani JN (1993) Antimicrob Agents Chemother 37, 2126-2131
- 9 Kinsman OS, Livermore DG, Smith C (1993) Antimicrob Agents Chemother 37, 1243–1246
- 10 Takesako K, Kuroda H, Inoue T et al (1993) J Antibiotics 46, 1414-1420
- 11 Stansell JD (1993) Semin Respir Infect 8, 116-123
- 12 Speer H, Dabovich TC (1955) Org Synth Coll III, 39-41
- 13 Frangin Y, Guimbal C, Wissocq F, Zamarlik H (1986) Synthesis 12, 1046-1050
- 14 Gaudemar M (1962) Bull Soc Chim Fr 974-979
- 15 Gershon H, Braun R, Scala A, Rodin R (1964) J Med Chem 7, 808-811
- 15 Gershon H, Braun K, Scala A, Kouni K (1904) J Med Chem 7,
- 16 Viollon C (1993) Thesis, Besançon, France