Tetrahedron 70 (2014) 2134-2140

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

A synthesis of 5-hydroxysedamine using hydroformylation

Roderick W. Bates^{a,*}, Nur Filza bte Mohamed Aslam^{a,b}, Chi H. Tang^a, Oliver Simon^b

^a Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore ^b Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore 138670, Singapore

ARTICLE INFO

Article history Received 21 November 2013 Received in revised form 28 January 2014 Accepted 3 February 2014 Available online 7 February 2014

ABSTRACT

A synthesis of 5-hydroxysedamine, a Sedum alkaloid, has been completed using N,O-heterocycle chemistry to establish the aminoalcohol structure, hydroformylation to form the piperidine ring and diastereoselective dihydroxylation to introduce the 5-hydroxy group.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We have recently shown that the combination of tandem hydroformylation-condensation of N-tosyl homoallylic amines, followed by diastereoselective dihydroxylation, provides an efficient route to the synthesis of 3-hydroxypiperidines. This strategy was employed for the synthesis of pseudoconhydrine $\mathbf{1}^1$ and azimic acid 2^{2} . We have earlier shown that cyclofunctionalisation of Ohomoallyl and allenyl hydroxylamine derivatives stereoselectively provides isoxazolidines,³ which are useful intermediates for the synthesis of 1,3-aminoalcohols and their derivatives, such as monomorine,⁴ porantheridine⁵ and the Sedum alkaloids, sedamine⁶ and sedinine.⁷

We speculated that we could combine both of these methods in the synthesis of 5-hydroxysedamine **3**.⁸ Originally isolated from Sedum acre, this alkaloid is both a Sedum alkaloid,⁹ therefore containing a 1,3-aminoalcohol moiety, and a 3-hydroxypiperidine. The use of hydroformylation to construct the piperidine ring would require the synthesis of an allyl isoxazolidine. We have recently shown that these compounds are readily available by Sakurai reaction of the corresponding 3-methoxyisoxazolidines.¹⁰ This reaction favours formation of the *trans* isomer, corresponding to the anti-aminoalcohol. As 5-hvdroxysedamine possesses syn stereochemistry, an inversion of the alcohol group must be included in the synthetic pathway.

2. Results and discussion

The homoallylic alcohol $\mathbf{4}^{11}$ was converted to the *N*-tosyl hydroxylamine 7 through a Mitsunobu reaction¹² with N-hydroxvphthalimide, dephthaloylation and reprotection (Scheme 1). While our previous studies of the Sakurai reaction used carbamate protecting groups on nitrogen, we selected a tosyl group due to its greater robustness, the higher possibility of obtaining crystalline intermediates and to avoid issues with rotamer formation. Ozonolysis of hydroxylamine 7 in acidic methanol, followed by a dimethyl sulfide work up, gave 3-methoxyisoxazolidine 8 as an inconsequential 1.5:1 mixture of stereoisomers. Tosic acid monohydrate was used as the acid catalyst as amberlyst-15, which we used previously, did not result in complete conversion to the methoxy compound. Treatment of 3-methoxy isoxazolidine 8 with allyltrimethylsilane in the presence of boron trifluoride at -78 °C with slow warming to room temperature gave the allyl isoxazolidine 9 as a 7.5:1 mixture of stereoisomers. Pleasingly, this ratio is distinctly better than that obtained with carbamate protecting groups (3:1-4:1). The major isomer proved to be crystalline and was confirmed to be the *trans* isomer by X-ray crystallography (Fig. 1).¹³ Cleavage of the N–O bond was achieved in the usual way with molybdenum hexacarbonyl in wet acetonitrile¹⁴ to give the protected aminoalcohol 10a, which would be the intended hydroformvlation substrate.¹⁵

Hydroformylation of aminoalcohol 10a derivatives can, in principle, give rise to four products (Table 1). Ene-sulfonamide 11a is the desired product. *N*,*O*-Hemiaminal 12^{16} is the precursor of ene-sulfonamide 11a by dehydration. Bicyclic N,O-aminal 13 can arise by cyclisation of the benzylic alcohol group onto the enesulfonamide **11a**.¹⁷ The structure of bicyclic *N*,*O*-aminal **13** was also confirmed by X-ray crystallography (Fig. 2).¹² The pyrrolidines 14, the products of branched hydroformylation, can exist as a mixture of stereoisomers.

Tetrahedror

^{*} Corresponding author, E-mail address; roderick@ntu.edu.sg (R.W. Bates).

^{0040-4020/\$ -} see front matter © 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2014.02.001

Scheme 1. The synthesis of 5-hydroxysedamine.

Fig. 1. The X-ray structure of allyl isoxazolidine 9.

As expected, when triphenylphosphite was used as the ligand, appreciable amounts of the branched isomers **14** were formed. In addition, increasing the amount of this ligand caused an increase in the formation of the desired ene-sulfonamide **11a** at the expense of the *N*,*O*-hemiaminal **12**. At the highest phosphite loading employed, some of the bicyclic *N*,*O*-aminal **13** was also isolated.

Table	1

Hydroform	vlation o	falkono	10 a
пушотогни	ylation 0	I alkelle	IUd

Entry	Ligand (L)	L:Rh ratio	Solvent	Yields, %				Yields, %	
				11a	12	13	14		
1	P(OPh) ₃	3:1	THF	2	35	0	29		
2	P(OPh)₃	10:1	THF	19	27	0	18		
3	P(OPh) ₃	20:1	THF	48	0	18	23		
4	BIPHEPHOS	1:1	THF	75	0	12	0		
5	BIPHEPHOS	1:1	Toluene	45	0	20	0		

^a All reactions used $Rh_2(OAC)_4$ as the source of rhodium and were run for 22 h at 65 °C under 60 psi of 1:1 CO/H₂.

Fig. 2. The X-ray structure of bicyclic N,O-aminal 13.

When the bulky, bidentate phosphite ligand BIPHEPHOS¹⁸ was employed, as expected, formation of the branched products **14** was not observed. A somewhat higher yield of the desired enesulfonamide **11a** could be obtained in THF. This was accompanied by some formation of the bicyclic *N*,*O*-aminal **13**. We did experience some variability in yield and product distribution depending on the batch of BIPHEPHOS employed. The reaction in toluene proved lower yielding, but more reproducible.

Some of the undesired products could be converted to the desired ene-sulfonamide. Thus, treatment of the bicyclic *N*,*O*-aminal **13** with acetic anhydride in the presence of amberlyst-15 gave acetate **11c**. It is notable that amberlyst-15 proved effective for this ring opening while a series of Lewis acids were ineffective.¹⁹ Acetate **11c** could be converted to ene-sulfonamide **11a** by treatment with methanolic potassium carbonate. *N*,*O*-Hemiaminal **12** could be converted to the desired ene-sulfonamide **11a** by resubjecting this material to the hydroformylation conditions.

The rather complex results of hydroformylation of substrate **10a** stand in contrast to our previous experience. It is apparent that the hydroxy group in the aminoalcohol substrate introduces significant complication and is capable of interfering with the usual smooth running of the hydroformylation reaction. Accordingly, a cleaner hydroformylation was achieved when the original substrate **10a** was protected as its triethylsilyl ether **10b**.²⁰ With this substrate, hydroformylation proved less complex, however, to ensure that dehydration went to completion, a higher temperature (85 °C) was required. Under these conditions, ene-sulfonamide **11b** was obtained in 90% yield. At 65 °C, only a 30% yield was obtained, accompanied by a 58% yield of the corresponding hemiaminal. Deprotection of ene-sulfonamide **11b** then gave the desired ene-sulfonamide **11a**.

The ene-sulfonamide **11a** represents the opportunity to carry out the necessary inversion of the alcohol to give the syn stereochemistry. Disappointingly, a Mitsunobu reaction with acetic acid in THF gave a substantial amount of the eliminated product 15b (30% yield), alongside the desired acetate (37%) and recovered starting material (16%). The formation of this alkene may be attributed to the steric hindrance around the reaction site. It is known that the balance of reactivity will be tipped in favour of substitution if a more acidic partner is employed.²¹ Gratifyingly, the use of chloroacetic acid²² ($pK_a=2.86$) in place of acetic acid gave an improved yield, 50%, of the desired substitution product **15a**. A further improvement to 70% was achieved by changing the solvent to toluene. Dihydroxylation of chloroacetate 15a then gave the diols 16 as an inseparable 4.6:1 mixture of stereoisomers and, based on our previous work, it was assumed that the *cis* isomer was the major product. This was subsequently confirmed by completion of the synthesis. Acetylation then allowed selective removal of the α acetoxy group under Kursanov–Parnes conditions.²³ Diester 18 could be obtained as a single diastereoisomer after careful column chromatography. Removal of all of the acyl groups and detosylation then gave des-methyl 5-hydroxysedamine 20. This compound was then methylated to give 5-hydroxysedamine **3** in 71% yield over two steps using the Eschweiler-Clarke reaction: reductive amination with a combination of formaldehyde and formic acid. It was notable that this reaction was much more effective using paraformaldehvde rather than formalin as the source of formaldehvde. We attribute this to the higher concentration of formaldehyde being generated in the absence of water, as it will not be lost due to hydrate formation. The spectroscopic data for our synthetic material was in excellent agreement with that reported. In addition, the specific rotation recorded for our material, $[\alpha]_D^{22}$ –55.3 (*c* 0.15, MeOH), is in good agreement with previous reports: $[\alpha]_D^{22} - 40$ (*c* 0.3, MeOH),^{8a} $[\alpha]_D^{22}$ –53 (c 0.3, MeOH),^{8b,d} $[\alpha]_D^{22}$ –51 (c 2.5 MeOH),^{8c} $[\alpha]_D^{22}$ –53.4 (c 0.5, MeOH)^{8e} The completion of the synthesis illustrates how these disparate synthetic methods, developed in this laboratory and elsewhere, can be brought together to synthesise complex alkaloids.

3. Experimental section

3.1. General

Unless otherwise indicated, all starting materials were obtained from commercial suppliers, and were used without further purification. Each reaction with air- and moisture-sensitive components was carried out under a nitrogen atmosphere unless otherwise indicated. Tetrahydrofuran was distilled from sodium/benzophenone, and dichloromethane was distilled from calcium hydride. Analytical thin-layer chromatography (TLC) was performed on Merck DC pre coated TLC plates with 0.25 mm Kieselgel 60 F₂₅₄. Visualization was performed with a 254 nm UV lamp, or stained with ammonium molybdate or potassium permanganate solution. Flash chromatography was performed using silica gel 60 (particle size 0.040-0.063) purchased from Merck. All melting points were measured on a Stanford Research Systems OptiMelt apparatus and are uncorrected. Optical rotations were measured on a Jasco P-1030 polarimeter using a 10 mm path-length cell at 589 nm. ¹H and ¹³C NMR spectra were recorded on a JEOL 400 MHz or JEOL 396 MHz spectrometer in CDCl₃. Chemical shifts are expressed in parts per million (δ) with solvent (δ 7.26 for ¹H, δ 77.0 for ¹³C) or Me₄Si (δ =0.00 ppm) as internal standards. Coupling constants (J) are reported in Hertz. IR spectra were obtained on a Jasco FT/IR-4100 spectrometer or Shimadzu IR Prestige-21 spectrometer and are reported in frequency of absorption (cm⁻¹). Low resolution mass spectrometry was obtained on a Waters Acquity UPLC PDA with ZQ2000 system. High-resolution mass spectra (HRMS) were acquired on a Waters Q-ToF Premier mass spectrometer in positive ion mode.

3.1.1. (R)-2-((1-Phenylbut-3-en-1-yl)oxy)isoindoline-1,3-dione (5). A stirred mixture of homoallylic alcohol 4 (8.00 g, 54.0 mmol), PPh₃ (17.0 g, 64.8 mmol) and *N*-hydroxyphthalimide (10.6 g, 64.8 mmol) in anhydrous THF (100 mL) was cooled to 0 °C in an icewater bath. A solution of DIAD (12.8 mL, 64.8 mmol) in anhydrous THF (20 mL) was added dropwise. The mixture was stirred at 0 °C for 1 h and then stirred at room temperature overnight. The mixture was concentrated in vacuo. The residue was dissolved in CH₂Cl₂ and absorbed onto silica. The residue was purified by flash chromatography with gradual elution (5-20% Ethyl Acetate/Hexane) to give the desired *N*-hydroxyphthalimide **5** derivative as a colourless solid (14.2 g, 90%); mp 85-86 °C; Rf 0.35 (20% Ethyl Acetate/Hexane); $[\alpha]_D^{22}$ +197.1 (*c* 0.11, CH₂Cl₂); ν_{max} (Nujol) 3404, 1728, 1643, 698 cm⁻¹; $\delta_{\rm H}$ (396 MHz, CDCl₃): 7.59–7.78 (4H, m), 7.46 (2H, dd, J 7.5, 2.0 Hz), 7.26-7.39 (3H, m), 5.78 (1H, ddt, J 17.0, 10.3, 7.0 Hz), 5.39 (1H, t, J 7.0 Hz), 4.99-5.22 (2H, m), 2.95 (1H, dt, J 14.4, 7.1 Hz), 2.72 (1H, dt, J 14.3, 6.9 Hz); δ_C (100 MHz, CDCl₃): 163.6, 137.4, 134.2, 133.0, 129.1, 128.8, 128.3, 128.1, 123.3, 118.0, 88.3, 39.2; MS (ESI +ve) m/z 131.5 (M⁺–C₈H₄NO₃, 100); HRMS (ESI) m/z calculated for C₁₈H₁₆O [M+H]⁺ 294.1130, found 294.1128.

3.1.2. (*R*)-O-(1-Phenylbut-3-en-1-yl)hydroxylamine (**6**). Hydrazine monohydrate (8.6 mL, 177 mmol) was added dropwise to a stirred solution of *N*-hydroxyphthalimide **5** (13.0 g, 44.3 mmol) in CH₂Cl₂ (350 mL) at room temperature. The mixture was stirred for 2 h, then filtered through a pad of Celite, washing with Et₂O (100 mL). The filtrate was concentrated *in vacuo* to give the desired hydroxylamine **6** (7.41 g, 100%) as a clear oil that was used without further purification; *R*_f0.15 (20% Ethyl Acetate/Hexane); $[\alpha]_D^{22}$ +68.3 (*c* 0.13, CH₂Cl₂); *v*_{max} (neat) 3420, 3317, 3075, 3030, 2905, 1641, 1585, 1454, 1184 cm⁻¹; δ_H (400 MHz, CDCl₃): 7.27–7.41 (5H, m), 5.76 (1H, dt, *J* 17.0, 10.1, 7.0 Hz), 5.24 (2H, br s), 4.99–5.13 (2H, m), 4.56 (1H, t, *J* 6.9 Hz), 2.59 (1H, dt, *J* 14.6, 7.3 Hz), 2.42 (1H, dt, *J* 14.0, 7.0 Hz); δ_C (100 MHz, CDCl₃): 141.3, 134.4, 128.4, 127.8, 126.7, 117.0, 86.6, 40.5; MS (ESI –ve) *m*/*z* 163.4 (M⁻, 100); HRMS (ESI) *m*/*z* calculated for C₁₀H₁₄O [M+H]⁺ 164.1075, found 164.1075.

3.1.3. (R)-4-Methyl-N-((1-phenylbut-3-en-1-yl)oxy)benzenesulfonamide (7). Anhydrous sodium carbonate (4.88 g, 46.0 mmol) and tosyl chloride (8.77 g, 46.0 mmol) were added sequentially to a stirred solution of hydroxylamine 6 (5.00 g, 30.6 mmol) in CH₂Cl₂ (50 mL) and water (50 mL) at room temperature. The mixture was stirred overnight. The organic layer was separated, dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by flash chromatography with gradual elution (5-20% Ethyl Acetate/Hexane) to give the desired *N*-tosyl hydroxylamine 7 (9.48 g, 98%) as a clear oil; $R_f 0.32$ (20% Ethyl Acetate/Hexane); $[\alpha]_D^{22} + 102.8$ (c 0.34, CH₂Cl₂); v_{max} (neat) 3435, 3225, 3066, 3032, 2924, 1714, 1643, 1597, 1454, 1339, 1183 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃): 7.82 (2H, d, J 8.2 Hz), 7.23-7.40 (7H, m), 6.67 (1H, s), 5.77 (1H, ddt, J 17.2, 9.9, 7.0 Hz), 4.98–5.15 (3H, m), 2.65 (1H, dt, J 14.8, 7.5 Hz), 2.41–2.54 (4H, m); δ_C (100 MHz, CDCl₃) 144.8, 139.6, 133.8, 133.7, 129.6, 128.7, 128.4, 128.3, 127.1, 117.6, 88.0, 39.6, 21.7; MS (ESI +ve) m/z 131.5 $(M^+-C_7H_8NO_3S, 100)$, 148.6 $(M^+-C_7H_7NO_2S, 10)$; HRMS (ESI) m/zcalculated for C₁₇H₂₀NO₃S [M+H]⁺ 318.1164, found 318.1185.

3.1.4. (5*R*)-3-*Methoxy*-5-*phenyl*-2-*tosylisoxazolidine* (8). *p*-Toluenesulfonic acid monohydrate (230 mg, 1.2 mmol) was added to a solution of *N*-tosyl hydroxylamine **7** (7.66 g, 24.1 mmol) in MeOH (100 mL). The mixture was cooled to -78 °C and a stream of O₃/O₂ was passed through the mixture until the solution turned blue in colour. The flask was then purged with O₂ until the blue colour dissipated. Me₂S (2.4 mL, 28.9 mmol) was added and the reaction mixture was warmed to room temperature and stirred for a further 48 h. The reaction solvent was removed with a rotary evaporator and the residue was taken up in CH₂Cl₂ (100 mL) and washed with water (2×50 mL). The organic phase was dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was purified by flash chromatography with gradual elution (5–25% Ethyl Acetate/Hexane) to give methoxyisoxazolidine **8** (7.22 g, 90%) as a mixture of diastereomers (ratio=1.5:1) and as a clear oil; R_f 0.38, 0.33 (20% Ethyl Acetate/Hexane); ν_{max} (neat) 3500, 2957, 1635, 1597, 1456, 1368, 1333, 1224, 1183 cm⁻¹; MS (ESI +ve) *m*/*z* 302.9 (M⁺–OCH₃, 28); HRMS (ESI) *m*/*z* calculated for C₁₇H₁₉NO₄SNa [M+Na]⁺ 356.0932, found 356.0930.

 $\begin{array}{l} \textit{Minor diastereomer: } \delta_{H} \ (400 \ \text{MHz}, \ \text{CDCl}_{3}): \ 7.89 \ (2H, \ d, \ J \ 8.2 \ \text{Hz}), \\ 7.22-7.44 \ (7H, \ m), \ 5.71 \ (1H, \ dd, \ J \ 6.8, \ 2.7 \ \text{Hz}), \ 5.46 \ (1H, \ t, \ J \ 8.2 \ \text{Hz}), \\ 3.54 \ (3H, \ s), \ 2.98 \ (1H, \ dd, \ J \ 13.4, \ 8.4, \ 6.8 \ \text{Hz}), \ 2.42 \ (3H, \ s), \ 2.33 \ (1H, \ dd, \ J \ 13.4, \ 8.4, \ 6.8 \ \text{Hz}), \ 2.42 \ (3H, \ s), \ 2.33 \ (1H, \ dd, \ J \ 13.1, \ 8.2, \ 2.7 \ \text{Hz}), \ \delta_{C} \ (100 \ \text{MHz}, \ \text{CDCl}_{3}): \ 145.1, \ 137.6, \ 133.6, \ 129.7, \ 129.0, \ 128.7, \ 128.6, \ 127.5, \ 91.7, \ 84.7, \ 56.6, \ 44.0, \ 21.7. \end{array}$

Major diastereomer: $\delta_{\rm H}$ (400 MHz, CDCl₃): 7.82 (2H, d, *J* 8.2 Hz), 7.22–7.44 (7H, m), 5.51 (1H, d, *J* 5.4 Hz), 5.30 (1H, dd, *J* 11.9, 5.0 Hz), 3.54 (3H, s), 2.40–2.50 (4H, m), 2.08 (1H, ddd, *J* 12.3, 5.2 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃): 145.2, 136.4, 132.6, 129.6, 129.4, 128.8, 128.5, 127.4, 91.9, 83.2, 55.7, 43.0, 21.7.

3.1.5. (3*S*,5*R*)-3-*Allyl*-5-*phenyl*-2-*tosylisoxazolidine* (**9**). BF₃·Et₂O (4.4 mL, 36.0 mmol) was added dropwise to a stirred solution of methoxyisoxazolidine **8** (6.00 g, 18.0 mmol) and allyl-trimethylsilane (11.4 mL, 72.0 mmol) in anhydrous CH₂Cl₂ (60 mL) at -78 °C. The mixture was gradually warmed to room temperature and stirred until the reaction was shown to be complete by TLC analysis. The reaction mixture was cooled to -78 °C and quenched with Et₃N (2.5 mL, 18.0 mmol). The mixture was allowed to warm to room temperature and was washed with water (100 mL). The organic phase was dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by flash chromatography (5–20% Ethyl Acetate/Hexane) to give the *trans* isomer **9** (3.73 g, 60%) as a crystalline solid and the *cis* isomer (517 mg, 8%) as a pale yellow oil.

Major diastereomer: mp 72–77 °C; *R*_f 0.40 (20% Ethyl Acetate/ Hexane); $[\alpha]_D^{12}$ +85.7 (*c* 0.25, CH₂Cl₂); ν_{max} (neat) 3439, 2922, 2852, 1636, 1456, 1377 cm⁻¹; δ_{H} (400 MHz, CDCl₃): 7.80 (2H, d, *J* 8.2 Hz), 7.23–7.37 (7H, m), 5.90 (1H, ddt, *J* 17.1, 10.1, 7.0 Hz), 5.13–5.25 (3H, m), 4.39 (1H, q, *J* 7.0 Hz), 2.63 (1H, dt, *J* 14.2, 6.4 Hz), 2.39–2.48 (4H, m), 2.29–2.38 (1H, m), 2.19 (1H, td, *J* 11.8, 8.0 Hz); δ_{C} (100 MHz, CDCl₃): 144.9, 137.1, 133.7, 132.1, 129.6, 129.5, 128.5, 128.4, 127.2, 118.3, 82.9, 61.1, 40.5, 39.1, 21.7; MS (ESI +ve) *m/z*, 345.0 (M⁺+H, 100), 367.0 (M⁺+Na, 10); HRMS (ESI) *m/z* calculated for C₁₉H₂₂NO₃S [M+H]⁺ 344.1320, found 344.1311.

Minor diastereomer: R_f 0.46 (20% Ethyl Acetate/Hexane); $[\alpha]_D^{D2}$ -68.0 (*c* 0.20, CH₂Cl₂); ν_{max} (film) 3065, 2981, 2852, 1598, 1357, 1332 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃): 7.90 (2H, d, *J* 8.2 Hz), 7.27–7.41 (7H, m), 5.89 (1H, ddt, *J* 17.2, 10.2, 6.9 Hz), 5.13–5.21 (3H, m), 4.45 (1H, qd, *J* 7.8, 5.5 Hz), 2.64–2.83 (2H, m), 2.42–2.55 (4H, m), 2.08 (1H, ddd, *J* 12.5, 10.2, 7.5 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃): 144.9, 136.9, 133.7, 133.2, 129.7, 129.2, 128.6, 128.5, 127.8, 126.8, 118.2, 83.2, 60.0, 42.4, 40.4, 21.7; MS (ESI +ve) *m*/*z*, 345.0 (M⁺+H, 100), 240.8 (40), 173.6 (64), 155.5 (70); HRMS (ESI) *m*/*z* calculated for C₁₉H₂₂NO₃S [M+H]⁺ 344.1320, found 344.1319.

3.1.6. N - ((1R,3S) - 1 - Hydroxy - 1 - phenylhex - 5 - en - 3 - yl) - 4 - methylbenzenesulfonamide (**10a**). Mo(CO)₆ (692 mg, 2.62 mmol) was added to a solution of isoxazolidine**9**(3.01 g, 8.76 mmol) in acetonitrile (28 mL) and water (4 mL). The mixture was stirred at room temperature for 15 min, and NaBH₄ (758 mg, 13.1 mmol) was added in one portion. The reaction mixture was heated at 90 °C overnight. The mixture was cooled to room temperature and concentrated*in vacuo*. The residue was diluted with Et₂O (20 mL) and

the resulting mixture was filtered through a pad of Celite, washing with Et₂O (2×20 mL). The filtrate was concentrated *in vacuo*. The residue was purified by flash chromatography with gradual elution (5–30% Ethyl Acetate/Hexane) to give the desired 1,3-aminoalcohol **10a** (2.00 g, 66%) as a colourless solid; mp 92–93 °C; R_f 0.13 (20% Ethyl Acetate/Hexane); $[\alpha]_D^{22}$ +30.6 (*c* 0.12, CH₂Cl₂); ν_{max} (Nujol mull) 3446, 1638, 1597, 1317, 1155 cm⁻¹; δ_H (396 MHz, CDCl₃): 7.70–7.91 (2H, m), 7.11–7.45 (7H, m), 5.40–5.54 (1H, m), 4.71–5.07 (4H, m), 3.61–3.72 (1H, m), 2.87 (1H, br s), 2.45 (3H, s), 1.97–2.18 (2H, m), 1.70–1.82 (1H, m), 1.54–1.68 (1H, m); δ_C (100 MHz, CDCl₃): 144.1, 143.5, 137.7, 132.9, 129.7, 128.4, 127.3, 127.2, 125.5, 119.1, 70.0, 50.5, 43.9, 39.4, 21.5; MS (ESI –ve) *m*/*z*, 345.00 (M⁻–H, 100); HRMS (ESI) *m*/*z* calculated for C₁₉H₂₄NO₃S [M+H]⁺ 346.1477, found 346.1468.

3.1.7. 4-Methyl-N-((1R,3S)-1-phenyl-1-((triethylsilyl)oxy)hex-5-en-3-yl)benzenesulfonamide (10b). Triethylamine (380 µL, 4.1 mmol) was added dropwise to a solution of aminoalcohol 10a (1.00 g, 2.9 mmol) and chlorotriethylsilane (420 µL, 3.5 mmol) in CH₂Cl₂ (15 mL) at 0 °C. Once addition was complete, the mixture was warmed to room temperature and stirred overnight. The mixture was diluted with CH2Cl2 (20 mL) and washed with saturated aqueous NH₄Cl (20 mL). The organic phase was washed with brine (10 mL), dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by flash chromatography (10% Ethyl Acetate/ Hexane) to give the desired silyl ether 10b (1.22 g, 91%) as a clear oil; $R_f 0.43$ (20% Ethyl Acetate/Hexane); $[\alpha]_D^{22}$ +28.7 (*c* 0.25, CH₂Cl₂); v_{max} (film) 3284, 2954, 2911, 2876, 1454, 1415, 1329, 1160, 1092 cm⁻¹; $\delta_{\rm H}$ (396 MHz, CDCl₃): 7.72 (2H, d, / 8.2 Hz), 7.29 (2H, d, / 8.2 Hz), 7.18-7.23 (3H, m), 7.03-7.09 (2H, m), 5.51-5.69 (2H, m), 4.93-5.07 (2H, m), 4.87 (1H, dd, / 7.7, 4.1 Hz), 3.28-3.38 (1H, m), 2.44 (3H, s), 2.18-2.38 (2H, m), 1.58-1.79 (2H, m), 0.83-0.92 (9H, m), 0.42–0.60 (6H, m); δ_C (100 MHz, CDCl₃): 143.9, 143.1, 138.2, 133.8, 129.6, 128.2, 127.4, 127.2, 125.7, 118.2, 73.0, 51.2, 42.8, 38.9, 21.5, 6.7, 4.7; MS (ESI –ve) m/z 459.1 (M⁻–H, 88), 345.0 (30), 171.6 (44), 117.3 (100); HRMS (ESI) *m*/*z* calculated for C₂₅H₃₈NO₃SSi [M+H]⁺ 460.2342, found 460.2328.

3.1.8. (S)-2-((R)-2-Phenyl-2-((triethylsilyl)oxy)ethyl)-1-tosyl-1,2,3,4tetrahydropyridine (11b). In a Fisher–Porter tube, silyl ether 10b (500 mg, 1.09 mmol), Rh₂(OAc)₄ (4 mg, 0.01 mmol) and BIPHEPHOS (17 mg, 0.02 mmol) were dissolved in anhydrous toluene (20 mL). The mixture was purged with H_2/CO (1:1) three times and then charged with H₂ (30 psi) and CO (30 psi). The mixture was stirred at 85 °C for 22 h. The mixture was allowed to cool to room temperature, the pressure was vented and the mixture was concentrated in vacuo. The residue was purified by flash chromatography with gradual elution (5-15% Ethyl Acetate/Hexane) to give the desired ene-sulfonamide **11b** (466 mg, 91%) as a clear oil; $R_f 0.58$ (20% Ethyl Acetate/Hexane); $[\alpha]_D^{22}$ –218.8 (*c* 0.18, CH₂Cl₂); ν_{max} (film) 2952, 2912, 2875, 1643, 1449, 1358, 1166, 1095 cm $^{-1}$; $\delta_{\rm H}$ (396 MHz, CDCl₃): 7.64 (2H, d, J 8.2 Hz), 7.20-7.34 (7H, m), 6.58 (1H, d, J 8.2 Hz), 4.99-5.05 (1H, m), 4.96 (1H, dd, J 9.1, 3.2 Hz), 4.12 (1H, m), 2.42 (3H, s), 1.61-1.94 (5H, m), 1.39-1.53 (1H, m), 0.85-0.92 (9H, m), 0.37–0.73 (6H, m); δ_C (100 MHz, CDCl₃): 145.5, 143.3, 136.0, 129.6, 128.1, 127.2, 127.0, 126.0, 123.7, 110.0, 72.3, 50.6, 44.1, 24.2, 21.5, 17.3, 6.9, 4.9; MS (ESI –ve) m/z 341.0 (M⁻–OTES, 100), 236.8 (95); HRMS (ESI) m/z calculated for C₂₆H₃₈NO₃SSiNa [M+Na]⁺ 494.2161, found 494.2165.

3.1.9. (R)-1-Phenyl-2-((S)-1-tosyl-1,2,3,4-tetrahydropyridin-2-yl) ethanol (**11a**) by desilylation. A solution of ene-sulfonamide **11b** (465 mg, 0.99 mmol) in 10% methanolic NaOH (10 mL) was stirred at room temperature overnight. The mixture was diluted with CH₂Cl₂ (20 mL) and washed with water (2×10 mL). The organic phase was dried over MgSO₄, filtered and concentrated *in vacuo*.

The residue was purified by flash chromatography (20% Ethyl Acetate/Hexane) to give the desired alcohol **11a** (340 mg, 96%) as a colourless solid; mp 117–119 °C; R_f 0.24 (20% Ethyl Acetate/Hexane); $[\alpha]_D^{22}$ –213.7 (*c* 0.35, CH₂Cl₂); ν_{max} (film) 3443, 1645, 1597, 1338, 1163, 1101, 922 cm⁻¹; δ_H (396 MHz, CDCl₃): 7.71 (2H, d, *J* 8.6 Hz), 7.23–7.42 (7H, m), 6.66 (1H, d, *J* 8.2 Hz), 5.12 (1H, t, *J* 5.9 Hz), 5.02 (1H, dd, *J* 11.1, 2.0 Hz), 4.30 (1H, d, *J* 10.9 Hz), 3.63 (1H, d, *J* 4.5 Hz), 2.44 (3H, s), 1.73–1.98 (3H, m), 1.37–1.53 (1H, m), 0.80–0.99 (2H, m); δ_C (100 MHz, CDCl₃): 144.2, 143.8, 135.1, 129.8, 128.3, 127.2, 127.1, 125.7, 123.1, 110.9, 69.2, 49.7, 41.6, 23.8, 21.6, 17.5; MS (ESI +ve) *m*/*z* 381.0 (M⁺ +Na, 10), 341.0 (M⁺–OH, 100); HRMS (ESI) *m*/*z* calculated for C₂₀H₂₄NO₃S [M+H]⁺ 358.1477, found 358.1461.

3.1.10. (R)-1-Phenyl-2-((S)-1-tosyl-1,2,3,4-tetrahydropyridin-2-yl) ethanol (**11a**) by saponification. K_2CO_3 (21 mg, 0.15 mmol) was added to a solution of acetate **11c** (50 mg, 0.13 mmol) in MeOH (5 mL) and CH₂Cl₂ (2 mL). The reaction mixture was stirred at room temperature for 2 h, then concentrated *in vacuo*. The residue was taken up in CH₂Cl₂ (5 mL) and washed with water (3 mL). The organic phase was dried over MgSO₄, filtered and concentrated *in vacuo* to give the desired alcohol **11a** (46 mg, 100%) as a colourless solid, identical to that described above.

3.1.11. (*R*)-1-Phenyl-2-((*S*)-1-tosyl-1,2,3,4-tetrahydropyridin-2-yl) ethanol (**11a**) and (1*S*,3*S*,5*S*)-3-phenyl-9-tosyl-2-oxa-9-azabicyclo [3.3.1]nonane (**13**) by hydroformylation. In a Fisher–Porter tube, aminoalcohol **10a** (100 mg, 0.29 mmol), $Rh_2(OAC)_4$ (1 mg, 0.03 mmol) and BIPHEPHOS (5 mg, 0.06 mmol) was dissolved in anhydrous toluene (5 mL). The mixture was purged with H₂/CO (1:1) three times and then charged with H₂ (30 psi) and CO (30 psi). The reaction mixture was heated to 65 °C and stirred for 22 h. The reaction mixture was allowed to cool to room temperature, the pressure was vented and the mixture was concentrated *in vacuo*. The residue was purified by flash chromatography with gradual elution (5–25% Ethyl Acetate/Hexane) to give two products, the desired ene-sulfonamide **11a** (47 mg, 46%), identical to that described above, and bicyclic acetal **13** (36 mg, 35%).

Bicyclic acetal **13**: mp 138–142 °C; *R*_f 0.31 (20% Ethyl Acetate/ Hexane); $[\alpha]_{D}^{22}$ +3.83 (*c* 0.37, CH₂Cl₂); *v*_{max} (film) 2921, 1704, 1643, 1598, 1347, 1163 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃): 7.86 (2H, d, *J* 8.2 Hz), 7.33 (2H, d, *J* 8.2 Hz), 7.12–7.20 (3H, m), 6.72 (2H, dd, *J* 7.5, 2.1 Hz), 5.74 (1H, m), 5.38 (1H, dd, *J* 12.4, 4.1 Hz), 4.26 (1H, m), 2.46 (3H, s), 2.13–2.33 (4H, m), 1.87–1.99 (2H, m), 1.77 (1H, td, *J* 12.8, 5.9 Hz), 1.17–1.26 (1H, m); $\delta_{\rm C}$ (100 MHz, CDCl₃): 143.3, 142.6, 138.7, 129.8, 128.1, 127.9, 127.6, 125.6, 79.0, 73.2, 47.6, 35.6, 30.7, 30.3, 21.5, 20.2; MS (ESI +ve) *m/z* 381.0 (M⁺ +Na, 10), 341.0 (40), 254.8 (100), 236.8 (58); HRMS (ESI) *m/z* calculated for C₂₀H₂₃NO₃S [M+H]⁺ 358.1477, found 358.1493.

3.1.12. (S)-1-Phenyl-2-((S)-1-tosyl-1,2,3,4-tetrahydropyridin-2-yl) ethyl acetate (11c). Amberlyst-A15 (12 mg) and Ac₂O (120 µL, 1.21 mmol) were added to a solution of the bicyclic acetal (289 mg, 0.81 mmol) in CH₂Cl₂ (10 mL). The reaction mixture was stirred at room temperature overnight. The mixture was filtered and concentrated in vacuo. The residue was purified by flash chromatography (10–20% Ethyl Acetate/Hexane) to give acetate 11c as a colourless powder in (224 mg, 70%); mp 171–175 °C; *R*_f 0.27 (20% Ethyl Acetate/Hexane); $[\alpha]_D^{22}$ –169 (*c* 0.11, CH₂Cl₂); ν_{max} (Nujol) 3422, 2361, 1738, 1647, 1597, 1365, 1337, 1231, 1161 cm $^{-1};~\delta_{\rm H}$ (396 MHz, CDCl₃): 7.62 (2H, d, J 8.2 Hz), 7.35 (4H, m), 7.28-7.31 (3H, m), 6.60 (1H, d, J 8.6 Hz), 5.82 (1H, dd, J 9.5, 4.5 Hz), 4.95-5.20 (1H, m), 4.10 (1H, dd, J 7.7, 3.6 Hz), 2.42 (3H, s), 2.08-2.25 (3H, s), 1.76–2.05 (4H, m), 1.40–1.52 (1H, m), 0.83–0.98 (1H, m); $\delta_{\rm C}$ (100 MHz, CDCl₃): 170.1, 143.4, 140.6, 135.8, 129.6, 128.5, 127.9, 127.1, 126.5, 123.5, 109.9, 72.9, 49.5, 38.2, 23.3, 21.5, 21.2, 17.3; MS (ESI +ve) m/z 340.1 (M⁺–OAc, 30); HRMS (ESI) m/z calculated for C₂₂H₂₆NO₄S [M+H]⁺ 400.1583, found 400.1592.

3.1.13. (S)-1-Phenyl-2-((S)-1-tosyl-1,2,3,4-tetrahydropyridin-2-yl) ethyl 2-chloroacetate (**15a**). DIAD (710 μ L, 3.57 mmol) was added dropwise to a solution of ene-sulfonamide **11a** (639 mg, 1.79 mmol), PPh₃ (939 mg, 3.57 mmol) and chloroacetic acid (338 mg, 3.57 mmol) in toluene at 0 °C. The mixture was stirred at 0 °C for 1 h and then allowed to warm to room temperature and stirred overnight. The mixture was concentrated *in vacuo*. The residue was dissolved in CH₂Cl₂ and absorbed onto silica, then purified by flash chromatography with gradual elution (5–15% Ethyl Acetate/Hexane) to give chloroacetate **15a** (540 mg, 70%) as a clear oil and alkene **15b** (100 mg, 17%) as a colourless powder.

Chloroacetate **15a**: R_f 0.32 (20% Ethyl Acetate/Hexane); $[\alpha]_{P}^{22}$ -221.2 (*c* 0.14, CH₂Cl₂); ν_{max} (film) 2961, 2926, 1759, 1644, 1340, 1165 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃): 7.63 (2H, d, *J* 8.2 Hz), 7.23–7.44 (7H, m), 6.62 (1H, d, *J* 7.8 Hz), 5.94 (1H, dd, *J* 9.1, 4.6 Hz), 4.98–5.10 (1H, m), 3.96–4.21 (3H, m), 2.29–2.49 (4H, m), 1.77–1.97 (3H, m), 1.55 (1H, m), 0.82–1.00 (1H, m); $\delta_{\rm C}$ (100 MHz, CDCl₃): 166.6, 143.5, 139.4, 135.8, 129.7, 128.6, 128.5, 126.9, 126.8, 123.6, 109.1, 75.4, 49.8, 41.1, 38.3, 22.8, 21.5, 17.1; MS (ESI +ve) *m/z* 236.8 (100), 341.0 (M⁺-C₂H₂O₂Cl, 90), 435.0/437.0 (M⁺+H, 23), 457.0/459 (M⁺+Na, 23); HRMS (ESI) *m/z* calculated for C₂₂H₂₅NO₄S³⁵Cl [M+H]⁺ 434.1193, found 434.1189.

Alkene **15b**: mp 108–110 °C; $R_f 0.45$ (20% Ethyl Acetate/Hexane); $[\alpha]_D^{22}$ –188.1 (c 0.09, CH₂Cl₂); ν_{max} (film) 2927, 2193, 2021, 1648, 1596, 1494, 1359, 1339, 1163, 1098 cm⁻¹; δ_H (400 MHz, CDCl₃): 7.68 (2H, d, J 7.8 Hz), 7.17–7.32 (7H, m), 6.73 (1H, d, J 8.2 Hz), 6.48 (1H, d, J 16.0 Hz), 5.93 (1H, dd, J 15.8, 5.7 Hz), 5.02 (1H, t, J 6.9 Hz), 4.74 (1H, m), 2.36 (3H, s), 1.69–2.09 (4H, m), 1.31–1.47 (2H, m); δ_C (100 MHz, CDCl₃): 143.4, 136.5, 136.4, 131.4, 129.6, 128.4, 127.5, 127.1, 126.4, 126.2, 123.7, 108.2, 54.4, 25.5, 21.5, 17.5; MS (ESI +ve) m/z 241.0 (M⁺ +H, 30), 169-7 (45), 143.6 (100); HRMS (ESI) m/z calculated for C₂₀H₂₂NO₂S [M+H]⁺ 340.1371, found 340.1377.

3.1.14. (25,35,65)-6-((5)-2-(2-Chloroacetoxy)-2-phenylethyl)-1tosylpiperidine-2,3-diyl diacetat (**17**). MeSO₂NH₂ (166 mg, 1.74 mmol) was added to a solution of ene-sulfonamide **15a** (250 mg, 0.58 mmol) in THF (18 mL) with stirring. When the MeSO₂NH₂ had completely dissolved, NMO (410 μ L of a 50% aqueous solution, 1.74 mmol), H₂O (2 mL) and K₂OsO₄·2H₂O (21 mg, 0.06 mmol) were added. The mixture was stirred at room temperature for 48 h. The reaction mixture was taken up in EtOAc (30 mL) and quenched with saturated aqueous Na₂S₂O₃ (15 mL). The organic phase was dried over MgSO₄, filtered and concentrated *in vacuo* to give diols **16** (271 mg, 0.58 mmol) as a mixture of diastereomers (ratio=4.6:1) that was used without further purification.

Ac₂O (120 µL, 1.28 mmol), triethylamine (210 µL, 1.45 mmol) and DMAP (1 mg, 0.01 mmol) were added to the solution of the crude diols in anhydrous CH₂Cl₂ (15 mL). The mixture was stirred at room temperature for 3 h. The mixture was diluted with saturated aqueous NH₄Cl (15 mL) and CH₂Cl₂ (10 mL). The organic phase was dried over MgSO₄, filtered and concentrated *in vacuo*. The crude residue was purified by flash chromatography (25% Ethyl Acetate/ Hexane) to give the desired diacetates **17** (268 mg, 83%) as a crystalline solid and as an inseparable mixture of diastereomers (ratio=4.6:1); mp 135–140 °C; *R*f 0.27 (40% Ethyl Acetate/Hexane); ν_{max} (film) 2952, 2373, 2364, 1747, 1362, 1240, 1165 cm⁻¹.

Major diastereomer: $\delta_{\rm H}$ (396 MHz, CDCl₃): 7.72 (2H, d, *J* 8.6 Hz), 7.27–7.40 (7H, m), 6.82 (1H, d, *J* 3.6 Hz), 5.82 (1H, dd, *J* 10.4, 3.6 Hz), 4.66 (1H, dt, *J* 11.9, 4.2 Hz), 3.98–4.26 (3H, m), 2.44 (3H, s), 2.29–2.41 (1H, m), 2.12–2.28 (1H, m), 1.96 (3H, s), 1.95 (3H, s), 1.78–1.89 (2H, m), 1.59–1.71 (2H, m); $\delta_{\rm C}$ (100 MHz, CDCl₃): 169.8, 168.9, 166.9, 144.1, 139.1, 137.2, 129.9, 128.8, 128.6, 127.3, 126.4, 75.8,

75.4, 69.4, 48.9, 41.0, 39.6, 26.0, 21.6, 21.0, 20.7, 19.0; MS (ESI +ve) m/z 575.1/577.1 (M⁺+Na, 14), 493.0/495.0 (M⁺-OAc, 44), 399.0 (M⁺-C₄H₄O₄³⁵Cl, 100), 351.0 (45), 294.9 (90); HRMS (ESI) m/z calculated for C₂₆H₃₀NO₈S³⁵Cl [M+H]⁺ 552.1459, found 552.1474.

3.1.15. (S)-2-((2S,5S)-5-Acetoxy-1-tosylpiperidin-2-yl)-1-phenylethyl 2-chloroacetate (**18**). Et₃SiH (580 μ L, 3.63 mmol) and trifluoroacetic acid (30 μ L, 0.36 mmol) were added to a solution of diacetates **17** (200 mg, 0.36 mmol) in anhydrous CH₂Cl₂ (10 mL). The mixture was stirred at room temperature overnight. The mixture was diluted with water (5 mL) and extracted with CH₂Cl₂ (5 mL). The organic phase was dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was purified by flash chromatography (10–20% Ethyl Acetate/Hexane) to give the two isomers as clear oils: major isomer **18** (75 mg, 42%), minor isomer (33 mg, 18%).

Major isomer: R_f 0.36 (40% Ethyl Acetate/Hexane); $[\alpha]_D^{22}$ -44.5 (*c* 0.38, CH₂Cl₂); ν_{max} (film) 3449, 2594, 1759, 1732, 1597, 1494, 1454, 1342, 1242, 1161 cm⁻¹; δ_H (396 MHz, CDCl₃): 7.67 (2H, d, *J* 8.2 Hz), 7.21–7.32 (7H, m), 5.77 (1H, dd, *J* 8.6, 5.0 Hz), 4.31 (1H, tt, *J* 10.3, 4.9 Hz), 3.89–4.13 (4H, m), 2.86 (1H, dd, *J* 14.0, 11.3 Hz), 2.36 (3H, s), 2.24–2.33 (1H, m), 1.94 (3H, s), 1.87 (1H, ddd, *J* 14.5, 6.8, 5.0 Hz), 1.69–1.79 (1H, m), 1.34–1.45 (3H, m); δ_C (100 MHz, CDCl₃): 169.9, 166.6, 143.6, 139.0, 137.9, 129.9, 128.7, 128.6, 127.0, 126.7, 76.0, 67.4, 49.1, 43.3, 41.1, 36.3, 26.1, 24.5, 21.5, 21.0; MS (ESI +ve) *m/z* 399.0 (M⁺–C₂H₂O₂Cl, 15), 269.9 (100), 236.8 (15); HRMS (ESI) *m/z* calculated for C₂₄H₂₉NO₆S³⁵Cl [M+H]⁺ 494.1404, found 494.1397.

Minor isomer: R_f 0.40 (40% Ethyl Acetate/Hexane); $[\alpha]_D^{F2} - 87.33$ (c 0.21, CH₂Cl₂); ν_{max} (film) 2962, 1758, 1347, 1213, 1163 cm⁻¹; $\delta_{\rm H}$ (396 MHz, CDCl₃): 7.64 (2H, d, *J* 8.2 Hz), 7.28–7.45 (7H, m), 6.62 (1H, s), 5.95 (1H, dd, *J* 8.6, 5.0 Hz), 4.16 (1H, d, *J* 16.0 Hz), 4.05 (1H, d, *J* 12.0 Hz), 3.91–4.00 (1H, m), 2.36–2.48 (4H, m), 2.10–2.29 (4H, m), 1.82–1.96 (2H, m), 1.51 (1H, dd, *J* 13.8, 6.6 Hz), 0.80–1.00 (3H, m); $\delta_{\rm C}$ (100 MHz, CDCl₃): 169.5, 166.5, 143.9, 139.1, 137.0, 135.0, 129.8, 128.6, 128.5, 127.1, 126.8, 115.9, 75.4, 49.6, 41.1, 37.9, 22.5, 21.5, 20.7, 20.4; MS (ESI +ve) m/z 399.0 (M⁺–C₂H₂O₂³⁵Cl, 100), 357.0 (36), 294.9 (42); HRMS (ESI) m/z calculated for C₂₄H₂₉NO₆S³⁵Cl [M+H]⁺ 494.1404, found 494.1409.

3.1.16. (3S,6S)-6-((S)-2-Hydroxy-2-phenylethyl)-1-tosylpiperidin-3ol (19). K₂CO₃ (31 mg, 0.23 mmol) was added to a stirred solution of piperidine 18 (45 mg, 0.09 mmol) in methanol (5 mL). The mixture was stirred at room temperature for 2 h. The reaction mixture was concentrated in vacuo. The residue was taken up in EtOAc (5 mL) and washed with water (3 mL). The organic phase was dried over MgSO₄, filtered and concentrated in vacuo to give piperidinol 19 as a colourless oil (34 mg, 100%), which was used without further purification; *R*_f 0.06 (40% Ethyl Acetate/Hexane); $[\alpha]_D^{22}$ –56.2 (*c* 0.10, CH₂Cl₂); ν_{max} (film) 3451, 2925, 2854, 1598, 1454, 1330, 1154 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃): 7.73 (2H, d, J 8.2 Hz), 7.26-7.37 (7H, m), 4.71 (1H, dd, J 8.9, 4.3 Hz), 4.20-4.30 (1H, m), 3.92 (1H, ddd, / 14.0, 4.3, 0.9 Hz), 3.36–3.54 (1H, m), 2.77 (1H, dd, / 13.7, 11.0 Hz), 2.42 (3H, s), 2.27 (1H, d, J 5.5 Hz), 1.93-2.03 (1H, m), 1.75–1.90 (2H, m), 1.30–1.51 (3H, m); δ_{C} (100 MHz, CDCl₃): 144.2, 143.4, 137.9, 129.8, 128.6, 127.7, 127.1, 125.8, 72.3, 66.1, 49.6, 46.6, 38.9, 28.2, 26.5, 21.5; MS (ESI +ve) m/z 399.0 (M⁺+Na, 10), 254.8 (100), 114.3 (68); HRMS (ESI) m/z calculated for C₂₀H₂₅NO₄SNa [M+Na]⁺ 398.1402, found 398.1430.

3.1.17. (–)-5-Hydroxysedamine (**3**). Activated Mg turnings (24 mg, 1.00 mmol) were added in 5 mg portions every hour to a solution of *N*-tosylpiperidinol **19** (19 mg, 0.05 mmol) in anhydrous MeOH (4 mL) as the mixture was being sonicated in an ultrasonic cleaning bath. Once the reaction was complete as determined by TLC analysis, the reaction mixture was acidified with 2 M HCl and washed with CH_2Cl_2 (5 mL). The aqueous layer was neutralized with 2 M NaOH and extracted with CH_2Cl_2 (2×5 mL). The organic layer was

dried over MgSO₄, filtered and concentrated *in vacuo* to give piperidinol **20** as a pale yellow oil, which was used without further purification.

Formic acid (20 µL, 0.50 mmol) and paraformaldehyde (15 mg, 0.50 mmol) were added to a solution of piperidinol **20** (11 mg. 0.05 mmol) in dioxane (3 mL). The reaction mixture was heated and stirred at 100 °C overnight. The mixture was cooled to room temperature, filtered and concentrated in vacuo. The residue was dissolved in MeOH (5 mL) and Et₃N (110 µL, 0.80 mmol) was added. The mixture was stirred for 2 h at room temperature. The reaction mixture was concentrated in vacuo and the crude product was purified by flash chromatography (10% MeOH/CHCl₃ with 1% Et₃N) to give 5-hydroxysedamine **3** as a yellow oil (8.3 mg, 71%); R_f 0.04 (10% MeOH/CHCl₃ with 1% Et₃N); $[\alpha]_D^{22}$ –55.3 (c 0.15, MeOH); ν_{max} (film) 3343, 2934, 2802, 1600, 1451, 1253, 1058 cm⁻¹; $\delta_{\rm H}$ (396 MHz, CDCl₃): 7.19–7.43 (5H, m), 4.87 (1H, dd, J 10.4, 2.3 Hz), 3.88 (1H, tt, J 7.5, 3.6 Hz), 2.88 (1H, dd, J 12.7, 7.7 Hz), 2.66–2.74 (1H, m), 2.59 (1H, dd, J 13.1, 3.6 Hz), 2.48 (3H, s), 2.17 (1H, ddd, J 14.2, 10.3, 8.2 Hz), 1.91 (1H, ddt, J 13.4, 8.9, 4.5 Hz), 1.67-1.76 (1H, m), 1.53-1.66 (2H, m), 1.49 (1H, ddd, *J* 14.2, 5.5, 2.8 Hz); δ_C (100 MHz, CDCl₃): 145.0, 128.2, 127.2, 125.4, 73.3, 63.6, 59.7, 57.5, 42.4, 39.6, 30.1, 24.0; MS (ESI +ve) *m*/*z* 236.9 (M⁺+H, 80), 114.4 (100); HRMS (ESI) *m*/*z* calculated for C₁₄H₂₂NO₂ [M+H]⁺ 236.1651, found 236.1642.

Acknowledgements

We thank Nanyang Technological University and the Singapore Ministry of Education Academic Research Fund Tier 1 (grant RG62/ 10) for financial support of this work. NFMA thanks the Economic Development Board and Novartis for an EDB IPP Scholarship.

References and notes

- 1. Bates, R. W.; Kasinathan, S.; Straub, B. F. J. Org. Chem. 2011, 76, 6844.
- 2. Bates, R. W.; Kasinathan, S. Tetrahedron 2013, 69, 3088.
- Bates, R. W.; Boonsombat, J.; Lu, Y.; Nemeth, J. A.; Sa-Ei, K.; Song, P.; Cai, M. P.; Cranwell, P. B.; Winbush, S. Pure Appl. Chem. 2008, 80, 681.
- 4. Bates, R. W.; Song, P. Synthesis 2009, 655.
- 5. Bates, R. W.; Lu, Y. J. Org. Chem. 2009, 74, 9460.
- (a) Bates, R. W.; Boonsombat, J. Org. Biomol. Chem. 2005, 3, 520; (b) Bates, R. W.; Nemeth, J.; Snell, R. Synthesis 2008, 1033.
- 7. Bates, R. W.; Lu, Y. Org. Lett. 2010, 12, 3938.
- (a) Ibebeke-Bomangwa, W.; Hootelé, C. Tetrahedron 1987, 43, 935 For previous syntheses of this alkaloid, see: (b) Plehiers, M.; Hootelé, C. Tetrahedron Lett. 1993, 34, 7569; (c) Herdeis, C.; Held, W. A.; Kirfel, A.; Schwabenländer, F. Liebigs Ann. Chem. 1995, 1295; (d) Plehiers, M.; Hootelé, C. Can. J. Chem. 1996, 74, 2444; (e) Liu, G.; Meng, J.; Feng, C. G.; Huang, P. Q. Tetrahedron: Asymmetry 2008, 19, 1297.
- 9. Bates, R. W.; Sa-Ei, K. Tetrahedron 2002, 58, 5957.
- (a) Bates, R. W.; Tang, C. H.; Tan, Y.; bte Buang, S. N. Synlett 2012, 2266 For reviews of the use of iminium ions, see: (b) Yazici, A.; Pyne, S. G. Synthesis 2009, 339; (c) Yazici, A.; Pyne, S. G. Synthesis 2009, 513; (d) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56, 3817.
- 11. (*R*)-Styrene oxide, prepared by the method of Jacobsen (Schaus, S. E.; Brandes, B. D; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E.N. *J. Am. Chem. Soc.* **2002**, *124*, 1307), was subjected to ring opening with lithium acetylide ethylene diamine complex, followed by partial reduction using Lindlar's catalyst. Lindlar's catalyst prepared by the reported procedure (Lindlar, H.; Dubuis, R. Organic Syntheses; Wiley & Sons: New York, NY, 1973; Collect. Vol. 5., p 880) gave superior and more reproducible results compared to commercial material.
- 12. Grochowski, E.; Jurczak, J. Synthesis 1976, 682.
- Details of the X-ray structure determinations for compounds 9 and 13 have been deposited with the Cambridge Crystallographic Database, CCDC 949998 and CCDC 967456, respectively, and may be obtained at http://www.ccdc.cam. ac.uk.
- (a) Cicchi, S.; Got, A.; Brandi, A.; Guarna, A.; Sarlos, F. D. Tetrahedron Lett. 1990, 31, 3351; (b) Zhang, D.; Süling, C.; Miller, M. J. J. Org. Chem. 1998, 63, 885; (c) Mulvihill, M. J.; Gage, J. L.; Miller, M. J. J. Org. Chem. 1998, 63, 3357; (d) Li, F.; Brogan, J. B.; Gage, J. L.; Zhang, D.; Miller, M. J. J. Org. Chem. 2004, 69, 4538; (e) Yang, Y.-K.; Choi, J.-H.; Tae, J. J. Org. Chem. 2005, 70, 6995; (f) Calvet, G.; Blanchard, N.; Kouklovsky, C. Synthesis 2005, 19, 3346.
- For reviews of hydroformylation, see: (a) Hydroformylation for Organic Synthesis; Taddei, M., Ed.; Springer: Berlin, Germany, 2013; (b) Franke, R.; Selent, D.; Börner, A. Chem. Rev. 2012, 112, 5675; (c) Breit, B.; Seiche, W. Synthesis 2001, 1

For a recent application to *sedum* alkaloids, see: (d) Spangenberg, T.; Airiau, A.; Thuong, M. B. T.; Donnard, M.; Billet, M.; Mann, A. Synlett 2008, 2859.

- Intuong, M. B. 1; Donnard, M.; Biller, M.; Mann, A. Synlett 2008, 2859.
 16. Piperidine 12: mp 139–140 °C; R_f 0.13 (20% Ethyl Acetate/Hexane); v_{max} (film) 3519, 2947, 1598, 1491, 1325, 1158 cm⁻¹; δ_H (396 MHz, CDCl₃): 7.68–7.74 (2H, m), 7.39–7.45 (2H, m), 7.21–7.30 (5H, m), 5.53–5.59 (1H, m), 4.99–5.08 (1H, m), 4.25–4.37 (1H, m), 3.78 (1H, d, J 4.1 Hz), 2.92 (1H, br s), 2.64 (1H, ddd, J 14. 0, 11.6, 2.5 Hz), 2.44 (3H, s), 1.79-1.98 (2H, m), 1.52-1.69 (4H, m), 1.16-1.44 (2H, m); δ_C (100 MHz, CDCl₃): 144.3, 143.7, 137.7, 130.0, 128.3, 126.9, 126.5, 125.6, 69. 9, 69.8, 50.0, 45.2, 30.1, 28.8, 21.5, 13.1; MS (ESI +ve) *m*/*z* 39.0 (M⁺+Na, 18), 341.0 (26), 254.8 (100), 236.8 (44), 155.5 (40); HRMS (ESI) *m*/*z* calculated for $C_{20}H_{26}NO_4S [M+H]^+$ 376.1583, found 376.1578.
- 17. Such compounds can be useful intermediates in their own right: see Ref. 5
- 18. Cuny, G. D.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115, 2066.
- Some acetate **11c** could be observed by TLC when BiCl₃ was used; no product 19. was observed using several lanthanide triflates, Sc(OTf)₃ or In(OTf)₃.
- 20. We were unable to protect the alcohol as a TBS ether using TBS chloride, presumably due to steric hindrance, and considered the TMS ether as potentially too lable. As Kocienski has pointed out, the 'ratio of pleasure to pain is quite favourable with TES ethers'. Prot. Groups, Kocienski, P. J. Thieme, p 195.
- Martin, S. F.; Dodge, J. A. *Tetrahedron Lett.* **1991**, 32, 3017.
 Saïah, M.; Bessodes, M.; Antonakis, K. *Tetrahedron Lett.* **1992**, 33, 4317.
- 23. Kursanov, D. N.; Parnes, Z. N.; Loim, N. M. Synthesis 1974, 633.