A TOTAL SYNTHESIS OF GPI ANCHOR OF TRYPANOSOMA BRUCEI1)

Chikara Murakata and Tomoya Ogawa* RIKEN (The Institute of Physical and Chemical Research), Wako-shi, Saitama, 351-01 Japan

Abstract: A first total synthesis of GPI anchor of *Trypanosoma brucei* is achieved by employing H-phosphonate strategy to introduce two phosphodiester functions into the glycoheptaosyl core intermediate.

In order to develop an efficient synthetic route to the glycophosphatidylinositol (GPI) anchor 1^2 we have described stereocontrolled approaches to both glycoheptaosyl core³ 2 and glycobiosyl phosphatidylinositol¹ part structure of 1 As part of our project on synthetic studies on GPI anchors, we describe here a first total synthesis of GPI anchor 1 of *Trypanosoma brucei*

Strategic bond disconnection of 1 may be designed either at the dotted line (a) or (b) in order to introduce regioselectively two different kinds of phosphodiester functions to the two hydroxyl groups at C-6⁵ and C-1¹ of the glycoheptaosyl core structure 2 In harmony with this retrosynthetic consideration, we have already reported³ the synthesis of a properly protected glycoheptaose derivative 5

To start with, we planned to introduce a phosphodiester function at C-6⁵ hydroxyl group of 6 that was quantitatively obtained (NaOMe in 2:1 MeOH-THF) from acetate 5. Conversion of 6 into 10 was efficiently achieved by use of phosphitylation⁵ approach. In the first step, Nbenzyloxycarbonyl-2-aminoethanol was treated with bifunctional phosphitylating reagent chloro-2-cyanoethoxy-N,N-diisopropylaminophosphine⁶ in the presence of iPr₂NEt in CH₂Cl₂ for 30 min at 20° to afford after SiO₂ chromatography monofunctional phosphitylating agent 9⁴ in 88% yield Subsequent tetrazole mediated coupling between 6 and 9 in 5:1 (ClCH₂)₂-CH₃CN for 40 min at 20° gave the intermediate phosphite triester that was oxidized *in situ* with m-ClPhCO₃H⁷ for 20 min at 0° to afford 10⁴ as a diastereometric mixture in 97% yield The structure of 10 was firmly confirmed by conversion into free phosphodiester 3^4 via 11^4 in two steps in 85% overall yield, (1) DBU in CH₂Cl₂ for 2h at 20°; (2) Pd(OH)₂/C and H₂ in 5:5:1 MeOH-THF-H₂O \rightarrow 1.1:1 MeOH-THF-H₂O for 6h at 20°. However, attempted removal of methoxybenzyl group at O-1¹ of 10 by either (NH4)₂Ce(NO₃)₆⁸ or TMSOTf⁹ failed in our hands to give the desired key intermediate 12

According to the difficulty met with for the conversion of 10 into 12, an alternative strategy was now pursued. The order of the introduction of phosphodiester functions at $O-1^{1}$ and $O-6^{5}$ of the glycoheptaosyl core 5 was to be reversed. First, acetyl group at $O-6^{5}$ of 5 was exchanged with monochloroacetyl group to secure in later stage of the synthesis a facile selective removal of $O-6^{5}$ protective group in the presence of diacyl functions of glycerol moiety Treatment of 6 with (ClCH₂CO)₂O¹⁰ in the presence of 2 equivalents of pyridine in (CH₂Cl)₂ gave a quantitative yield of 7⁴ that was further converted into alcohol 8⁴ in 90% yield by treatment with 15 equivalents of TMSOTf⁹ in CH₂Cl₂ for 20 min at 0°.

Formation of the phosphodiester linkage between 8 and 1,2-diacyl-sn-glycerol was executed by use of the H-phosphonate approach¹¹ that had been shown highly efficient in the case of a model reaction¹ using a glycobiosyl-myo-inositol derivative. Coupling of 8 with Hphosphonate 13^1 in the presence of pivaloyl chloride in pyridine for 1 5 h at 20° gave a 64% yield of 14^4 , that was completely deblocked in 3 steps via 15^4 and 16^4 to afford 4^4 in 59% overall yield, (1) (NH₂)₂CS¹² in 1.1 EtOH-THF, reflux for 5h; (2) I₂ in 50:1 pyridine-water; (3) Pd(OH)₂/C and H₂ in 45.35:1 CHCl₃-MeOH-H₂O for 4.5 h at 20°

Having the designed key intermediate 15 synthesized, formation of the phosphodiester function between the 2-aminoethanol derivative and 15 was now examined. It was to be noted that application of the phosphitylating reagent 9 in this specific case failed to give the desired phosphite intermediate. However, H-phosphonate approach was found to be highly efficient. Treatment of N-benzyloxycarbonyl-2-aminoethanol with a bifunctional phosphitylating reagent NCCH₂CH₂OP(NiPr₂) 2^{13} in the presence of 1H-tetrazole in CH₃CN for 20min at 20° gave diakloxy N,N-diisopropylphosphine intermediate that was *in situ* treated with H₂O and 1H-tetrazole for 30 min at 20° to afford 18⁴ in 59% yield after SiO₂ chromatography in 97:3 CHCl₃-MeOH. Unstable Hphosphonate 17⁴ was obtained by treatment of 18 with DBU in CH₂Cl₂ for 16h at 20° in 38% yield after SiO₂ chromatography in 7.3 CHCl₃-MeOH and was used immediately for the next step

Crucial coupling between 15 and 17 was executed in the presence of pivaloyl chloride in pyridine for 15 h at 20°. Purification of the product by Bio-Beads SX-2 in 3:1 EtOAc-toluene and subsequent preparative SiO₂ tlc in 9:1 toluene-acetone afforded a 40% yield of the desired 19^4 as a mixture of four diastereoisomers. Oxidation of 19 with I₂ in 50:1 pyridine-H₂O for 2.5 h at 20° gave 20^4 in 68% yield. Complete deprotection of 20 by hydrogenolysis in the presence of 20% Pd(OH)₂/C in 45:35.1 CHCl₃-MeOH-H₂O for 3.5 h at 20° gave the product which was purified by treatment with Amberlite IRC50(Na⁺) and then by Sephadex G-25 in H₂O to afford the target molecule 1^4 in 23% yield.

In conclusion, a first total synthesis of GPI anchor 1 of *Trypanosoma brucei* was achieved by employing highly stereocontrolled glycosylation methods to construct a key glycoheptaosyl core derivative 5^3 with proper protective groups on 23 hydroxy groups and then by taking advantage of a highly efficient H-phosphonate strategy for the formation of two phosphodiester functions. Obviously, the synthetic strategy developed in this paper should be applicable to the synthesis of other groups of GPI anchors and their analogues of biological significance.

Acknowledgment. We thank Dr. J Uzawa and Mrs. T Chijimatsu for recording and measuring the n.m.r. spectra and Ms. M. Yoshida and her staff for the elemental analyses. We also thank Ms. A. Takahashi and Ms. K. Moriwaki for their technical assistance.

Reference and Notes

- 1 Part 78 in the series "Synthetic Studies on Cell-Surface Glycans". For part 77, see C. Murakata and T Ogawa, *Tetrahedron Lett.*, in press.
- 2 M A. J Ferguson, S W Homans, R. A. Dwek, and T W Rademacher, Science, 239 753 (1988), B Schmitz, R. A. Klein, I. A. Duncan, H. Egge, J. Gunawan, and J. Peter-Katalinic, Biochem Biophys Res. Commun, 146 1055 (1987), S W. Homans, M A. J. Ferguson, R A. Dwek, T. W. Rademacher, R. Anand, and A F. Williams, Nature, 337 269 (1988).
- 3 C Murakata and T. Ogawa, Tetrahedron Lett, 31, 2439 (1990)
- 4 All new compounds were characterized by TLC and NMR(500 MHz) as well as by combustion

analysis. Physical data for key compounds are given below. Values of $[\alpha]_D$ and $\delta_H C P$ were recorded for solutions in CHCl3 and CDCl3, respectively, at $23^{\circ}\pm 3^{\circ}$, unless noted otherwise 1 RF 0.68 in 3:2:2 1 H₂O-EtOH-BuOH-28%NH4OH, $\delta_{\rm H}$ (49:1, DMSOd₆-D₂O, 60°) 5 266 (bs, 1³), 5 091 $(m, 2^g)$, 5.019 (bs, 1²), 4.987 (bs, 1⁴), 4.902 (d, 3 3 Hz, 1⁶), 4.826 (s, 1⁵), 4.648 (bs, 1⁷), 4.312 (dd. 3.1 and 12.3 Hz, 1^g), 4.095 (dd, 7.1 and 11.9 Hz, 1^g), 1.245 (m, CH₂ x 20), 0.856 (t, 7.0 Hz, CH₂CH₃ x 2); δp (49:1 DMSOd₆-D₂O) -0.818 and -0.018. 3 [α]_D +90.3° (c 0.3, H₂O); δ_H 5.385 (d, 3.7 Hz, 1²), 5.300 (d. 2.3 Hz, 1³), 5 199 (d, 40 Hz, 1⁶), 5.094 (d, 1.3 Hz, 1⁴), 5.039 (d, 1.5 Hz, 1⁵), 4.973 (d, 3.7 Hz, 17); δp (D₂O) 1.092. 4: δH (49.1 DMSOd₆-D₂O, 60°) 5.235 (s, 1³), 5.086 (m, 2^g), 4.942 (d, 40 Hz, 1²). 4 903 (d 3.9 Hz, 1^{6}), 4 893 (d, 1.5 Hz, 1^{4}), 4 855 (s, 1^{5}), 4,646 (bs, 1^{7}), 4 313 (dd, 3.1 and 11.9 Hz, 1^g), 4.096 (dd, 7 3 and 12 1 Hz, 1^g), 0.856 (t, 7.0 Hz, CH₂CH₃ x 2) δρ (DMSOd₆) -0.169 6: [α] Π +56.7° (c 1.5); $\delta_{\rm H}$ 5.615 (d 3.7 Hz, 1²), 5.369 (d, 2.1 Hz, H-1), 3.450 (OMe). 7. [a] +63.8° (c 3.8); δH (C6D6, 60°) 5.874 (d, 3.7 Hz, 1^2), 5 781 (d, 1.8 Hz, 1^3), 5.388 (d, 3.4 Hz, H-1), 3 402 (OMe). 8. $[\alpha]_D$ +56.1° (c 2.2), δ_H (C6D6, 60°) 5 574 (d, 2 4 Hz, 1³), 5 440 (d, 4 3 Hz, 1²), 5.201 (d, 1.8 Hz, H-1). 5.160 (d. 1 2 Hz, H-1), 3.605 (s, COCH2Cl). 9. 8H (90 MHz) 7.34 (s, C6H5), 5.16 (s, CH2Ph), 1.18 (d, 6.8 Hz, 2CHCH3), 1.17 (d, 6.8 Hz, 2CHCH3). 10: δH (C6D6, 60°) 5 902 (d, 3 7 Hz, 12), 5 829 and 5 818 (2d, 2.0 Hz, H-1 x 2), 5.379 (d, 3.4 Hz, H-1), 3 417 and 3.416 (2s, OMe); Sp (C6D6) -0.136 and -0.054 11: [a]D +53.1° (c 1.4); &H (C6D6, 60°) 5 902 (bs, H-1 x 2), 5 470, 5.445, 5.388 and 5.350 (4bs, H-1 x 4), 3.409 (OMe); 8P (C6D6) 0.531, 14 8H 7.6-7.0 (m, Ph x 21), 5.606 (d, 0.65H, 3.7 Hz, 1²), 5.546 (d, 0 35 H, 3.4 Hz, 1²), 0.876 (t, 7.0 Hz, CH₂CH₃ x 2); δp 8.629 (d, 708 Hz). 15: δ_H 7 5-7 0 (m, Ph x 21), 5.597 (d, 0 65 H, 3.4 Hz, 1²), 5.541 (d, 0 35 H, 3.4 Hz, 1²), 0.875 (t, 7 0 Hz, CH₂CH₃ x 2); Sp 8.910 (d, 728 Hz) and 8.575 (d, 709 Hz) in a ratio of 1.2. 16 [α]_D +44 5° (c 1.1); δH (C₆D₆-D₂O, 60°) 7.6-7.0 (m, Ph x 21), 5.828 (d, 3.4 Hz, 1²), 5.363 and 5 316 (2s, H-1 x 2), 0.911 (t, 6.7 Hz, CH₂CH₃ x 2); δp (C6D6) 0.178. 17: 8H (90 MHz) 7.33 (s, C6H5), 5.10 (s, CH2Ph), 4.08 (dt, 90 and 4.8 Hz, CH2CH2OP), 3.43 (t, 5.0 Hz, CH₂NH). 18[•] δ_H 7 38-7.31 (m, C₆H₅), 6.894 (d, 719 Hz, PH), 5.119 (s, CH₂Ph); δ_P 13.15 (d, 719 Hz). 19: δ_H (C₆D₆-D₂O, 60°) 7.6-7.0 (m, Ph x 22), 0 909 (t, 7.0 Hz, CH₂CH₃ x 2); δ_P (C6D6-D2O) 10 52 (d, 706 Hz), 9.12 (d, 714 Hz), 8.78 (d, 708 Hz) and 8.75 (d, 708 Hz). 20 [α]p +42.6° (c 0.3); δp (CDCl3) 0 305 and -0.646.

- 5 R. L. Letsinger, J. L. Finnan, G. A. Heavner, and W. B. Lunsford, J Am Chem Soc, 97 3278 (1975); M. A. Dorman, S. A. Noble, L. J. McBride and M. H Caruthers, Tetrahedron, 40 95 (1984)
- 6 N. D. Sinha, J Biernat, J. McManus, and H. Koster, Nucl Acids Res, 12 4539 (1984).
- 7 J. W Perich and R. B. Johns, Tetrahedron Lett., 28 101 (1987), W. Bannwarth and A. Trzeciak, Helv Chim Acta, 70 175 (1987), K.-L. Yu and B. Fraser-Reid, Tetrahedron Lett., 29 979 (1988)
- 8 T Fukuyama, A. A Laird and L. M. Hotchkiss, Tetrahedron Lett., 26 6291 (1985)
- 9 Facile but undesired cleavage of MBn function was observed by the authors in TMOTF promoted glycosylations of 1D-myo-inositol derivatives that carry MBn group as a protective group at O-1¹.
- 10 M. Bertolini and C. P. J. Glaudemans, Carbohydr Res, 15 263 (1970).
- 11 I Lindh and J. Stawinski, J Org Chem, 54 1338 (1989); T. M. Slaghek, Dissertation, (Univ. of Utrecht, 1989).
- 12 F. A. Cook and D. T. Maichuk, J. Org Chem, 35 1940 (1970).
- J. Nielsen, J. E. Marugg, M. Taagaard, J. H. van Boom and O. Dahl, Recl Trav Chim. Pays-Bas, 105 33 (1986); J. Nielsen, J. E. Marugg, J. H. van Boom, J. Honnens, M. Taagaard and O. Dahl, J Chem. Res. (S), 26 (1986).

(Received in Japan 13 November 1990)