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The first synthesis of 6-phenyl-2,6-diazabicyclo[3.2.0]heptane 1 and its orthogonally protected precursor
2 is herein reported. Our strategy enables to chemically address the two nitrogen atoms of 2,6-diazabi-
cyclo[3.2.0]heptane core individually and selectively, thus allowing rapid access to several subsets of
widely substituted fused azetidines.
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While fused 2-azetidinones, commonly known as b-lactams, are
among the most useful aza heterocyclic compounds from both syn-
thetic and medicinal chemistry points of view, the potential appli-
cation of fused azetidines has been marginally explored. In 1991
Jacquet and collaborators reported the synthesis of racemic 3,6-
diazabicyclo[3.2.0]heptanes,1 but only very recently it has been
demonstrated the ability of this core in reducing the conforma-
tional complexity of nicotinic receptor ligands and in enhancing
the ligand subtype affinity.2 As part of our efforts towards the iden-
tification and synthesis of constrained bis-amine building blocks
able to modulate the activity of different active compounds, we be-
came intrigued by the possibility to explore a synthetic approach
to 6-phenyl-2,6-diazabicyclo[3.2.0]heptane. Since the synthesis of
b-lactams is well documented, in a first attempt 1 was envisaged
to derive from azetidinone 3, which can be readily prepared start-
ing from commercially available trans-3-hydroxy-L-proline via
hydroxamate-mediated cyclization3 (Scheme 1). The trans-3-hy-
droxy-L-proline was protected as N-tert-butylcarbamate and then
coupled with O-benzylhydroxylamine using the water-soluble
EDC to afford an intermediate hydroxamate, which was cyclized
to 4 in excellent yield under Mitsunobu conditions (Scheme 2).4,5

Direct cleavage of the N–O bond of 4 could not be easily accom-
plished using most common N–O bond reduction protocols. The
samarium diiodide-mediated reduction reported by Romo6 was
unsuccessful. Instead catalytic hydrogenolysis on Ni/Ra afforded
quantitatively lactam 3 (Scheme 2). Unfortunately, this compound
proved unsuitable for further elaborations. Reduction with LiAlH4

in THF or Et2O failed, yielding only starting material, whereas
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treatment with borane–THF complex quantitatively led to the
monocyclic opened product 5. This occurrence was attributed to
the unprotected lactam N–H. To overcome this drawback, we
decided to revert our strategy by first introducing the aromatic ring
on 3 and then attempting reduction to amine. The use of Buch-
wald–Hartwig’s reaction conditions7 in the presence of Pd2(dba)3

as the catalyst was found to be successful for the N-arylation reac-
tion, although 6 was isolated in poor yield. To our regret all at-
tempts to reduce 6 proved ineffective thereby precluding access
to 1.

In order to devise an alternative route to access 1 via 2-azetid-
inone, a longer but efficient strategy was planned, assembling the
azetidine ring with a cis-pyrrolidine approach, involving facile dis-
placement of primary mesylate by a Cbz-protected amine.
Scheme 3 outlines the achieved synthesis of monoprotected 2,6-
diazabicyclo[3.2.0]heptane. Mesylate 8 was readily prepared in
three steps starting from trans-3-hydroxy-L-proline. Treatment of
8 with NaN3 afforded a mixture of azide 9 and the unsaturated es-
ter 108 in a 2:1 ratio.9 After reduction under Staudinger’s condition,
the amino ester 11a10 was protected as the N-derivative 11b,
which was reduced to yield the alcohol 12a. Whereas classical
reduction using LiAlH4 in THF failed, treatment with DIBAL-H in
the presence of BF3�Et2O gave 12a in satisfactory yield. The alcohol
was converted into mesylate 12b,11 which was suitable to undergo
an intramolecular cyclization to 2.12 Deprotection of the azetidinyl
N-atom afforded 2-monoprotected 2,6-diazabicyclo[3.2.0]heptane
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Scheme 1. Retrosynthetic analysis.
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13,which could be condensed with bromobenzene to give 1413

with moderate yield. After removal of the Boc-protecting group un-
der acidic conditions the desired 6-phenyl-2,6-diazabicy-
clo[3.2.0]heptane (1) was isolated in almost quantitative yield
(Scheme 4).14

In conclusion, the first synthesis of 2,6-diazabicyclo[3.2.0]hep-
tane, a fused azetidine with high potential to be used as a building
block in medicinal chemistry, has been developed. The successful
pathway includes the full derivatization of trans-3-hydroxy-L-pro-
line, yielding monoprotected 2,6-diazabicyclo[3.2.0]heptane 13
after azidation/reduction, ring closure and removal of the Cbz-pro-
tecting group. Buchwald-Hartwig condensation with bromoben-
zene followed by N-deprotection gives access to the desired 6-
phenyl-2,6-diazabicyclo[3.2.0]heptane. The achieved synthetic
route has the advantage of affording orthogonally protected fused
azetidine 2, in which the two nitrogen atoms are chemically
addressable individually and selectively. This will allow the rapid
access to focused subsets of compounds containing the 2,6-diaza-
bicyclo[3.2.0]heptane core with different substituents on the two
nitrogen atoms.
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