Reaction of Substituted Thioacetamides with Formamide Chlorides; A New Synthesis of 3-Aminoand 3-Hydroxypropenethioamides

Jürgen LIEBSCHER*, Berhanu ABEGAZ

Department of Chemistry, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia

Formamide chlorides (1) are important synthetic intermediates; they undergo iminomethylation reactions with a variety of nucleophilic substrates¹. The reactions of 1 with methylene ketones² or alkanamides^{3,4} (2) result in chlorination-iminomethylation with substitution of the carbonyl O-atom by chlorine to give products of the type 3.

nomethylation with substitution of the carbonyl O-atom by chlorine to give products of the type 3.

HC
$$R^3$$
 $X^\Theta + R^1 - CH_2 - C - N$ R^2 R^3 $X^\Theta + CH - C - C - N$ R^2 R^3 $X^\Theta + CH - C - C - N$ R^2 R^3 X^Θ $X^$

This report describes the reactions of formamide chlorides (1) with substituted thioacetamides (4). The thioamides used in this study were easily synthesized from methyl ketones by the Willgerodt-Kindler reaction.

0039-7881/82/0932-0769 \$ 03.00

© 1982 Georg Thieme Verlag · Stuttgart · New York

The reaction of equimolar quantities of the reactants 1 with alkanethioamides 4 resulted in the formation of iminomethylation products 5. These 3-mercapto-2-propeniminium salts are obtained in yields of > 50%.

Surprisingly, substitution of the thioxo group by chlorine was not observed. The use of an increased quantity of reagent 1 did not show any effect on the yields of 5. The 3-mercapto-2-propeniminium salts 5 having a morpholine amide group are best isolated as colourless crystalline perchlorates (X = ClO₄). These compounds decompose upon prolonged exposure to air, probably by hydrolysis. In closed vessels and at low temperatures, they can be stored unchanged for several weeks. Thioamides 4 having amide amino groups other than mor-

pholino, for example, piperidino, pyrrolidino, or *N*-methylanilino, did not give crystalline iminium salts 5. The same is true for propanethiomorpholide [4, $R^1 = CH_3$, $N(R^2)_2 = morpholino$]. In these cases, pasty materials were obtained which show similar chemical behaviour as the crystalline products 5 having an amide morpholino group.

The analytical and spectrometric data of the 3-mercapto-2-propeniminium salts 5 as well as their chemical behaviour confirm the proposed structures. The iminium salts 5 are deprotonated by bases to give the corresponding 3-aminopropenethioamides 6. Hydrolysis of the iminium salts 5 results in the formation of 3-hydroxypropenethioamides (7) which may be in equilibrium with the 3-oxopropanethioamides 7' (see 7 g).

Table 1. 3-Mercapto-2-propeniminium Perchlorates (5, $X = CIO_4$, $R^2 - R^2 = CH_2 - CH_2 - CH_2 - CH_2$)

5	R ¹	R ³	R ³	Yield [%]	m.p. (dec.) [°C]	Molecular formula ^a
ab	<u></u>	CH ₃	CH₃	76	140141°	C ₁₅ H ₂₁ N ₂ OS/ClO ₄ (376.9)
b	<u></u>	—(CH ₂)4—	81	118-119°	C ₁₇ H ₂₃ N ₂ OS/ClO ₄ (402.9)
С	H ₃ C	CH ₃	CH ₃	51	138-139°	C ₁₆ H ₂₃ N ₂ OS/ClO ₄ (390.9)
d	H ₃ CO-()-	CH ₃	CH ₃	69	156-157°	C ₁₆ H ₂₃ N ₂ O ₂ S/ClO ₄ (406.9)
е	cı-{_}	CH ₃	CH ₃	73	173°	C ₁₅ H ₂₀ CIN ₂ OS/ClO ₄ (411.3)
f	Br—()	CH ₃	CH ₃	49	151153°	C ₁₅ H ₂₀ BrN ₂ OS/ClO ₄ (455.8)
9		—(CH ₂)4—	60	153-155°	C ₂₁ H ₂₅ N ₂ OS/ClO ₄ (453.0)

^a The microanalyses were in satisfactory agreement with the calculated values: C, ± 0.39 ; H, ± 0.25 ; Cl, ± 0.21 ; N, ± 0.34 ; S, ± 0.40 . Exceptions: **5a**; N, + 0.42; **5b**; N, - 0.49.

² ¹H-N.M.R. (CF₃COOH/TMS_{int}): δ = 7.85 (d, 1 H, J = 7 Hz); 7.40 (s, 5 H); 5.58 (d, 1 H, J = 7 Hz); 3.85 (m, 8 H); 3.60 ppm (s, 6 H).

Table 2. 2-Substituted 3-Dialkylaminopropenethioamides (6, amide amino group = morpholino) and 3-Hydroxypropenethioamides (7, amide amino group = morpholino)

Prod- uct	R ¹	\mathbb{R}^2	R ²	Yield [%]	m.p. [°C] (solvent)	Molecular formula ^a	I.R. (KBr) v [cm ⁻¹]	U.V. (acetonitrile) λ_{\max} [nm] (log ε)
6a⁵	<u></u>	CH₃	CH ₃	79	107-108° (methanol)	C ₁₅ H ₂₀ N ₂ OS (276.4)		298 (3.94), 409 (2.88)
6e	CI———	СН₃	CH ₃	99	97° (cyclohexane)	C ₁₅ H ₁₉ ClN ₂ OS (310.8)		253 (3.82), 302 (4.21), 318 sh (4.20), 411 (3.17)
6f°	Br —	CH ₃	CH ₃	91	99° (cyclohexane)	$C_{15}H_{19}BrN_2OS$ (355.3)		256 (4.11), 315 sh (4.49), 322 (4.50), 409 (3.41)
7a ^d	<u> </u>	-		81	129–130° (<i>n</i> -propanol)	$C_{13}H_{15}NO_2S$ (249.3)	3110 (OH)	246 (4.02), 282 (4.19), 369 (2.98)
7 d	H ₃ CO — —		96	110-111° (methanol)	C ₁₄ H ₁₇ NO ₃ S (279.4)	3100 (OH)	252 sh (4.43), 276 (4.52)	
7 e	CI———			95	131° (methanol)	C ₁₃ H ₁₄ ClNO ₂ S (283.8)	3110 (OH)	254 sh (4.12), 281 (4.22)
7g ^e		_	-	90	131° (cyclohexane)	C ₁₇ H ₁₇ NO ₂ S (299.4)	1709 (C=O)	277 (4.43), 284 (4.52)

a See Table 1

^b M.S.: m/e = 276 (M⁺, 4%), 243 (28), 232 (100), 158 (60), 149 (36), 115 (80), 109 (60).

^c ¹H-N.M.R. (CDCl₃/TMS_{int}): $\delta = 7.27$ (d, 2 H, J = 8 Hz); 6.93 (d, 2 H, J = 8 Hz); 6.17 (s, 1 H); 3.6 (m, 8 H); 2.93 ppm (s, 6 H).

d From 5a.

^e This product exists mainly as 7'g in the solid state.

The reaction of formamide chlorides (1) with substituted thioacetamides (4) described here⁵ provides a new, convenient route to 2-substituted 3-amino- (6) and 3-hydroxypropenethioamides (7). Related compounds possessing different substitution patterns have hitherto been synthesized by addition of enamines to isothiocyanates⁶⁻¹², reaction of amines with 3-aminodithioacrylic esters¹³, addition of hydrogen sulfide to 3-aminoacrylonitriles^{12,14}, reaction of (substituted) thioacetamides with dimethylformamide dimethyl acetal¹⁵, ring cleavage of trithiones with amines¹⁶, or addition of thioacetic acid to 3-aminopropynal¹⁷.

3-Mercapto-2-propeniminium Salts (5); General Procedure:

Phosphoryl chloride (1.54 g, 0.01 mol) is added dropwise to a stirred, cooled solution of an N,N-disubstituted formamide (0.01 mol) in tetrachloromethane (5 ml). Then, the substituted thioacetamide 4 (0.01 mol) is added and the mixture is heated to gentle boiling for 30 min. To the resultant solution, glacial acetic acid (8 ml) and 70% perchloric acid (1.5 ml) are added. Product 5 ($X = ClO_4$) is precipitated by the addition of ether, isolated by suction, and recrystallized from glacial acetic acid.

3-Dialkylaminopropenethioamides (6); General Procedure:

Triethylamine (1.2 g, 0.012 mol) is added to the solution of the appropriate 3-mercapto-2-propeniminium perchlorate 5 ($X = \text{ClO}_4$; 0.01 mol) in acetonitrile (10 ml). The mixture is then diluted with water and the precipitated product 6 is isolated by suction and recrystallized.

3-Hydroxypropenethioamides (7); General Procedure:

A mixture of the appropriate 3-mercapto-2-propeniminium perchlorate $5 (X = \text{ClO}_4; 0.01 \text{ mol})$, glacial acetic acid (7 ml), and water (7 ml) is heated to boiling for ~ 1 min, and the solution then diluted with water (50 ml). After the resultant oily product has solidified it is isolated by suction, dried, and recrystallized.

Received: July 14, 1981 (Revised form: November 11, 1981)

^{*} Address for correspondence: Humboldt-Universität zu Berlin, Sektion Chemie, Hessische Strasse 1/2, DDR-104 Berlin.

¹ H. Böhme, H. G. Viehe, *Iminium Salts in Organic Chemistry*, Wiley-Interscience, New York, 1976.

² J. Liebscher, H. Hartmann, Synthesis 1979, 241.

³ Z. Arnold, Collect. Czech. Chem. Commun. 26, 3051 (1961).

⁴ J. Liebscher, H. Hartmann, Collect. Czech. Chem. Commun. 41, 1565 (1976).

⁵ Submitted for DDR-Patent.

⁶ S. Rajappa, B. G. Advani, *Indian J. Chem.* 9, 759 (1971).

⁷ S. Rajappa, B. G. Advani, R. Sreenivasan, Synthesis 1974, 656.

⁸ C. Cassio, P. Trimarco, Rend. Ist. Lomb. Accad. Sci. Lett. A 110, 176 (1976); C. A. 89, 59822 (1978).

W. Walter, T. Fleck, Justus Liebigs Ann. Chem. 1976, 670.

¹⁰ S. Rajappa et al., *Indian J. Chem.* **15B**, 297 (1977).

¹¹ J. Moszew, J. Wegrzynek, A. John, Pr. Nauk. Univ. Slask. Katowichach 171, 17 (1977); C. A. 89, 179822 (1978).

¹² J. Goerdeler, H. W. Pohlland, Chem. Ber. 94, 2950 (1961).

J. Kreutzmann, German Patents (DDRP) 122 087, 122 088 (1977); C. A. 87, 39 144, 39 145 (1977).

L. K. Gibbons, U. S. Patents 4032321, 4057416 (1977), 4075001 (1978), FMC Corp.; C. A. 87, 117850 (1977); 88, 121158, 170135 (1978)

¹⁵ S. Rajappa, B. G. Advani, *Indian J. Chem.* **16B**, 819 (1978).

M. A. F. Elkaschef, F. M. E. Abdel-Megeid, A. A. Elbarbary, Acta Chim. Acad. Sci. Hung. 93, 157 (1977); C. A. 88, 74325 (1978).

¹⁷ A. Niederhauser, G. Bart, M. Neuenschwander, *Helv. Chim. Acta* 56, 2427 (1973).