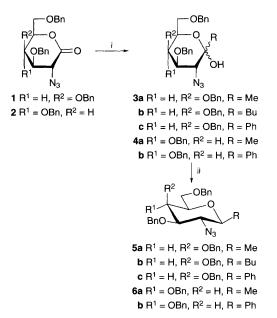
Stereocontrolled synthesis of 2-azido and 2-*N*-acetylamino-2-deoxy-β-D-C-glycosides from the corresponding lactones

Ebtissam Ayadi, Stanislas Czernecki* and Juan Xie

Laboratoire de Chimie des Glucides, Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France

The reaction of perbenzylated 2-azido-2-deoxy-D-hexono-1,5-lactones with organometallic reagents followed by reduction provides a new stereocontrolled synthesis of 2-azido-2-deoxy- β -D-C-glycosides, which can be efficiently transformed into 2-*N*-acetylamino-2-deoxy- β -D-C-glycosides.


As a part of a continuing programme on C-glycosides synthesis,¹ we describe herein an efficient method for the synthesis of 2-azido-2-deoxy- β -D-C-glycopyranosides from the corresponding lactones.

In the recent years, considerable effort has been devoted to the synthesis of C-glycosides² owing to their biological interest and synthetic utility, and many methods are now available for the stereocontrolled preparation of α and β anomers.³ Despite the importance of 2-amino-2-deoxy-sugars in biological systems such as aminoglycoside antibiotics⁴ and antigenic determinants on cell surfaces,⁵ the synthesis of their C-glycosides analogues is less well documented. Several groups have transformed D-glucosamine derivatives into an α/β mixture of C-glycosides by a Wittig-type reaction followed by cyclisation.⁶ The resulting stereocontrol depends on the starting carbohydrate derivative and on the protecting groups employed. Direct alkylation of 2-N-acetylamino-2-deoxy-D-glucopyranosyl chloride with potassium diethylmalonate followed by decarboxylation furnished β -isomer of amino C-glycoside. Reaction of an arabinofuranosyl benzylamine derivative with vinylmagnesium bromide followed by mercuriocyclisation afforded methyl α-D-C-glycoside of D-glucosamine.8 In addition, the direct coupling of aldehydes with a glycosyl anion has recently been reported for the preparation of α - or β -D-Cglycosides of D-glucosamine.9

Since the azido group is a good synthetic equivalent of the amino group, 2-azido-2-deoxyglycopyranosides were employed as starting material for the synthesis of C-glycosyl derivatives bearing a cyano group¹⁰ or an alkynyl chain¹¹ at the anomeric centre, and mixtures of anomers were obtained. The compatibility of the azido group with Lewis acids allowed the stereocontrolled introduction of an allyl chain at C-1 leading to α -D-C-glycosides.¹²

Since condensation of an organolithium derivative to a protected lactone followed by reduction of the obtained aldol gave good results for the preparation of β -D-C-glycopyranosides to us¹³ and others,¹⁴ we decided to evaluate this methodology for the preparation of 2-azido-2-deoxy- β -D-C-glycopyranosides and we report herein our results. 2-Azido-2-deoxy-D-galacto-hexono-1,5-lactone 1¹⁵ and its gluco 2¹⁵ isomer obtained by oxidation of the corresponding lactol¹⁶ were employed in this study.

Reaction of 1 or 2 with 1.1 equiv. of an organolithium derivative at -78 °C afforded the corresponding aldol in good yield (Table 1). Compounds **3a–c** and **4a** were directly reduced

Scheme 1 Reagents and conditions: i, RLi (1.1 equiv.), toluene, -78 °C, 1 h; ii, Et₃SiH (5 equiv.)-BF₃·Et₂O (6 equiv.), MeCN, -40 °C, 15 min

	Starting lactone	RLi	Aldol [yield (%)]	β-C-glycoside [yield ^a (%)]	H-1 (¹ H NMR)	
 Entry					δ	J _{1,2} /Hz
1	1	MeLi	3a [90]	5a [86.5]	3.01-3.16	9.50
2	1	BuLi	3b [89.5]	5b [84]	2.90-3.00	9.07
3	1	PhLi	3c [85.4]	5c [91]	3.92	9.30
4	2	MeLi	4a [85.4]	6a [66.5]	3.40-3.45	9.40
5	2	PhLi	4b [87.6]			

^a Yield of isolated C-glycoside after purification by flash chromatography.

R¹O OR¹ R¹O NHAc

7a R¹ = Bn, R = Me b R¹ = Bn, R = Bu c R¹ = Bn, R = Ph 8c R¹ = H, R = Ph 9c R¹ = Ac, R = Ph

with triethylsilane in the presence of BF₃·Et₂O.¹⁷ Contrary to our previous result with the perbenzylated lactone,¹³ the reduction was not possible with one equivalent of Lewis acid. A large excess of reagents was necessary (5 equiv. of Et₃SiH and 6 equiv. of BF₃·OEt₂). In this case the reaction was finished in 15 min at -40 °C in acetonitrile and the β -D-C-glycoside was isolated in high yield (entries 1 to 4, Table 1).† The β configuration at the anomeric position was confirmed by the observed large coupling constant values between H-1 and H-2 (in the range of 9.07 to 9.50 Hz in CDCl₃) in the ¹H NMR spectra. However, in the case of compound **4b** (entry 5), no reduction was possible whatever the quantities of reagents, the times and the reaction temperature used.

The possibility of further transformation of these 2-azido-2-deoxy-C-glycosides was exemplified by the *galacto* derivatives. Reduction of the azido group was possible without cleavage of the benzyl groups by reaction with molecular hydrogen in the presence of Raney nickel and acetic anhydride. The *N*-acetyl derivatives **7a–c** were obtained in good yield as crystals.‡

Hydrogenolysis of the benzyl groups (H₂, Pd–C in THF) of **7c** proceeded smoothly and the C-glycosyl derivative of D-galactosamine **8c** was obtained in 89% yield. Acetylation of the hydroxy groups under classical conditions afforded the crystalline derivative **9c** in 91% yield which allowed further confirmation of the anomeric stereochemistry by ¹H NMR spectroscopy.§

In conclusion, we have developed an efficient method for the preparation of β -D-C-glycosides of *N*-acetyl-D-galacto- and -gluco-samine starting from readily available perbenzylated 2-azido-2-deoxyglycono-1,5-lactones.

Footnotes

† All compounds gave satisfactory analytical and spectral data.

 \pm Selected data for 7a: (74%), mp 124–125 °C, $[\alpha]_{\rm D}$ +12.1 (c 1 in CH₂Cl₂). For 7b (87%), mp 143–144 °C, $[\alpha]_{\rm D}$ +24.3 (c 1 in CH₂Cl₂). For 7c (75%),

mp 168–169 °C, $[\alpha]_D$ +24.3 (*c* 1 in CH₂Cl₂). § Selected data for **9c**: mp 92–93 °C, $[\alpha]_D$ – 12.4 (*c* 1 in CH₂Cl₂), ¹H NMR

 $(\text{CDCI}_3) \delta 4.37 (1 \text{ H}, \text{d}, J_{1,2} 10.2 \text{ Hz}, \text{H-1}).$

References

- C-glycosides part XI; for the preceding paper in the series, see V. Bellosta and S. Czernecki, *Carbohydr. Res.*, 1993, 224, 275.
- 2 M. H. D. Postema, Tetrahedron, 1992, 48, 8545.
- 3 S. Czernecki, in Recent Progress of Synthetic Methods in Carbohydrates and their Application to Medicinal Chemistry, ed. H. Ogura, A. Hasegawa and T. Suami, Kodansha, Tokyo, 1992.
- 4 S. Umezawa, in Advances in Carbohydrate Chemistry and Biochemistry, ed. R. S. Tipson and D. Horton, Academic Press, London, 1974.
- 5 E. A. Kabut, in *Blood and Tissue Antigens*, ed. D. Aminoff, Academic Press, New York, 1970.
- 6 F. Nicotra, G. Russo, F. Ronchetti and L. Toma, *Carbohydr. Res.*, 1983, 124, c 5; A. Giannis and K. Sandhoff, *Carbohydr. Res.*, 1987, 171, 201;
 H. Vyplel, D. Scholz, I. Macher, K. Schindlmaier and E. Schütze, *J. Med. Chem.*, 1991, 34, 2759; A. Mbongo, C. Frèchou, D. Beaupère, R. Uzan and G. Demailly, *Carbohydr. Res.*, 1993, 246, 361.
- 7 K. H. Kim and R. I. Hollingsworth, *Tetrahedron Lett.*, 1994, 35, 1031.
- 8 M. Carcano, F. Nicotra, L. Panza and G. Russo, J. Chem. Soc., Chem. Commun., 1989, 297.
- 9 M. Hoffmann and H. Kessler, Tetrahedron Lett., 1994, 35, 6067.
- 10 J. N. BeMiller, V. J. Blazis and R. W. Myers, J. Carbohydr. Chem., 1990, 9, 39.
- 11 L. Jobron, C. Leteux, A. Veyrières and J. M. Beau, J. Carbohydr. Chem., 1994, 13, 507.
- 12 C. R. Bertozzi and M. D. Bednarski, *Tetrahedron Lett.*, 1992, 33, 3109.
- 13 S. Czernecki and G. Ville, J. Org. Chem., 1989, 54, 610.
- 14 M. D. Lewis, J. K. Cha and Y. Kishi, J. Am. Chem. Soc., 1982, 104, 4976; G. A. Kraus and M. T. Molina, J. Org. Chem., 1988, 53, 752.
- 15 E. Ayadi, S. Czernecki and J. Xie, J. Carbohydr. Chem., 1996, 15, in press.
- 16 S. Czernecki and E. Ayadi, Can. J. Chem., 1995, 73, 343.
- 17 E. Frainnet and C. Esclamadon, C. R. Seances Acad. Sci., 1962, 254, 1814.

Received, 17th October 1995; Com. 5/06872J