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Abstract The nldol reactums of the lithum enolate o/4-thlanone wrth oldehyder yield the thrro-tromers of aldols tn (1 

highly stereoseiectwe manner and al~o rhowed high dustereoface selectrvrty Other metal rnolater ofthlr reagent 

exhtbued different behahror~from !hore ofthe corrqwndrng cyclohexane enolatec 

The last two decades have wttnessed a drasttc growth tn the development and the use of the aldol strategy 

in the context ofacychc stereoselecttve syntheses 2 Recently, attentton IS mcreasmgly dtrected toward the aldof 

reacttons m the cyclic system, such as cyclic ketones,3-9 heterocycltc ketones, 1o-l2 lactones.13 or lactamesi4 

whose seochemtcal attnbutes are found to be somewhat different from those m the acyclic analogs It IS estab- 

Itshed In the acycltc system that when the counter cation of an enolate belongs to group I, Il. or III, [Z]-enolates 

lead to the erythro aldols, whereas [El-enolates yteld the rhreo aldols *c In the cyc11c systems there IS no 

ambtgutty about the geometry of the enolates, which by necessity have [El-configuratton Current reports 3 on 

the aldol reacttons of ltthlum enolate of cyclohexanone have ratsed a questton to the data commonly accepted 

(arm syn = 52 48) ]5,16 The present paper deals wtth the stereochemtstry of the aldol reacttons of thtanone 1, 

which can be regarded as a synthetic equivalent of 3-pentanone 2, because 1 can be formally shaped by con- 

necting the two terrntnal carbons of 2 wtth a sulfur atom and reproduced by stmple reductive desulfunzatton of 

I.17718 The C 2 symmetry of thts reagent suggests the posstbiltty that 1 might be employed for stmplttictton of 

the macrohde synthesis by using the sequential aldol condensation of 1 with suttable simple aldehydes, followed 

by reductive steps (Scheme 1) 19 

Scheme 1 

All the reactions of the httuum enolate of 1 with aldehydes showed substanttal anfr selecttvtty *@** The 

results was summanzed m Table 1 The observed rattos are close to the real kmettc ratros, because the 3-an11 

Isomer (R = Isopropyl) m a CDC13 solutton. when allowed to stand at rom temperature for a month, reached to 

the eqthbnum (arm syn =36 64) The reaction of1 with ptvafaldehyde (entry 1) yielded a antt-syn ratto of95 5, 

which exhrbtts a stnkmg contrast to the result obtamed in the reactton of FJ-enolate of 2 with the aldehyde by 
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Dubors and his coworker ( antisyn = 54.46) 23 Thrs drastic mcrement m the stereoselectrvity level suggests the 

presence of the addmonal effect attnbuted to ring formahom, which IS stall not elucidated The selectrvrty of the 

reachon wrth benzaldehyde (entry 5) IS comparable to that of the reaction of cyclohehanone with the aldehyde 3 

The reactrons of 1 wrth the aldehydes havmg a branch at the a-posmon afforded hrgh antr-selectrvrty . The re- 

Scheme 2 

Table I Reactmns of Gthtanone with aldehydes 

Entry 

0 

9 

10 

Aldehyde 

+CHO 

)_ CHO 

> Cl40 

DCHO 

CHO 

- CHO 

cJ.4 :I cno 

CI, 3 ’ CHO 

CHO 

4 

CHO 

” 5 

Yield(%) 

40 

89 

53 

62 

98 

76 

84 

60 

75 

85 

anti wn 

96 4 

95 5 

96 4 

95 5 

90 .lO 

90 10 

72 .28 

70 : 30 

92 8 

98 : 2 

actron wrth two aldehydes 4 and 5 havrng a choral carbon at the a-posmon were undertaken, in order to gam m- 

fonnahom about the level of dmstereoface selecttvity of the reagent 1. The ratto of 6:7:8:9 = 90:6:2:2 was ob- 

tamed for aldehyde 4, and almost only one isomer 10 was produced for the reaction with aldehyde 5 24 These 

results can be explamed by Felkm-Anh model. The hrgh Cram-selectivity of aldehyde 5 may be attributed to the 

bulluness of the ketal nng and the favorable orbHal mteracuon between the p-orbnal of the aldehyde and the two 

lone paus of the ketal oxygens 25 Thus, thus reactron generates three consecutrve stereogemc centers in one step. 
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The strategy can be utlhzed for the synthesis of the nght-half of dentlculatms 26 

6 7 8 9 

Attempts were made to reverse the stereoserectivlty of reagent 1 by changmg the counter cation of Its eno- 

ate The results were listed m Table 2 It IS supnsmg that borane, stannane, and tltamum enolates, except for 

zirconium one, aiistiowed anfl seiectlvlty, which makes a stnkmg contrast to the facts that the corresponding 

cyclohexanone enolates exhibit syn selectlvlty 6-9 

Table 2 Reactions of metal e~~olafes of I-thtanone with Z.methylpropanal 

MLna isoldred Yield(%) ant, ‘Yn 

57 95 5 

SnPh3 85 89 II 

86 96 4 

A prehrnmq expenment for desulfunzatlon was performed using Raney Nickel W-2, accordmg to the method 

described m the literature l7 The desulfunzatlon of dlol 12 ,whlch was obtamed from the stereoselectlve re- 

ductIon of aldol 11 bv sodlun borohvdnde, produced dlol 13 In 75% yield 27 

(&Q NaBH4 i OJJ Ra”eyN’+ I-p 

OH OH OH 6” OH 

11 12 13 

The choral version of this methodology will be reported m due course. 
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