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ABSTRACT: Recent advances in bottom-up synthesis of atomi-
cally defined graphene nanoribbons (GNRs) with various micro-
structures and properties have demonstrated their promise in 
electronic and optoelectronic devices. Here we synthesize N = 9 
armchair graphene nanoribbons (9-AGNRs) with a low optical 
bandgap of ~1.0 eV and extended absorption into the infrared 
range by an efficient chemical vapor deposition process. Time 
resolved terahertz spectroscopy has been employed to characterize 
the photoconductivity in 9-AGNRs, and revealed their high intrin-
sic charge-carrier mobility of approximately 350 cm2·V–1·s–1. 

Graphene nanoribbons (GNRs), quasi-one-dimensional gra-
phene strips, have attracted much attention as a new class of 
semiconducting materials for various applications in electronic 
and optoelectronic devices.1-6 In the past few years, various types 
of GNRs have been synthesized via bottom-up approaches in 
solution as well as on metal surfaces3-11 with a wide range of 
bandgap energies. Among the different bottom-up methods, on-
surface synthesis, especially through chemical vapor deposition 
(CVD) appears to be highly promising, as being capable of high-
throughput and scalable growth of structurally defined GNRs at 
low cost.6, 8, 12 The surface-grown GNR films can be readily trans-
ferred onto arbitrary substrates, allowing for optical characteriza-
tions and device integration. However, the performance of field-
effect transistor (FET) devices fabricated with such GNRs have so 
far been compromised by a huge contact resistance,6, 8, 10, 12-13 
hampering the investigations of their intrinsic electronic transport 
properties.  

For efficient optoelectronic applications such as photovoltaics, 
GNRs with an optical bandgap between 1.0 to 1.3 eV are funda-

mentally important, which is expected to provide GNR-based 
devices approaching the Shockley–Queisser limit.14 Nevertheless, 
structurally well-defined GNRs with optical bandgaps in this 
range still remain rather rare.5 The electronic structure of armchair 
GNRs (n-AGNRs) has been shown to be extremely sensitive to 
the ribbon width, and can be divided into three subfamilies with 
atomic number N = 3n, 3n + 1, and 3n + 2 (n = 1, 2, 3, ...). All 
three kinds of AGNRs are expected to be semiconducting. And 
the bandgap of different subfamily AGNRs with the same n varies 
as: 3n + 2 < 3n < 3n + 1.1-2 According to theoretical prediction by 
GW-BSE calculations, N = 9 armchair graphene nanoribbons (9-
AGNRs) possess an optical bandgap of ~1.0 eV,15 which was very 
recently corroborated by the solution-mediated synthesis reported 
by Dong et al.16 On the other hand, Nakae et al. previously pro-
posed a synthesis of 9-AGNRs by a low-pressure CVD method,12 
but the observed optical bandgap was larger, and unambiguous 
structural characterization has remained elusive.  

Here we report an efficient CVD process for inexpensive high-
throughput growth of structurally defined 9-AGNRs. The ob-
tained 9-AGNRs exhibit a low optical bandgap of ~1.0 eV with 
broad absorption up to ~1200 nm. Ultrafast optical pump - THz 
probe spectroscopy (OPTP) is for the first time applied to surface-
synthesized GNRs, revealing high intrinsic charge-carrier mobili-
ty of 9-AGNRs, i.e., approximately 350 cm2·V–1·s–1, which re-
flects the high quality of the sample fabricated by our CVD meth-
od. The potential of 9-AGNRs for future optoelectronics has been 
further demonstrated in comparison with previously reported 7-
AGNRs and chevron-type GNRs, showing higher photoconduc-
tivity by a factor of 1.2 and 2.5, respectively.  

We have recently reported an efficient ambient-pressure CVD 
growth of 7-AGNRs and chevron-type GNRs.6 Notably, the 
CVD-grown GNRs demonstrated structural perfection well com-
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parable with GNRs synthesized under ultra-high-vacuum condi-
tions. Because of the high versatility, our CVD process provides 
access to a broad class of GNRs with designed structures, by 
employing different oligophenylene monomers. The synthesis of 
9-AGNRs has been achieved by CVD using 3',6'-dibromo-
1,1':2',1''-terphenyl (DBTP) as the monomeric building block 
(Figure 1). In a typical CVD experiment, DBTP is sublimed at 
135-150 °C and deposited on the Au/mica substrate kept at 200 
°C. At this temperature DBTP is simultaneously dehalogenated, 
generating biradicals that subsequently undergo a coupling reac-
tion to form oligo(diphenyl-p-phenylene) (ODPP) with a linear 
backbone (Figure 1a). The sample is subsequently annealed at a 
higher temperature of 400 °C to transform ODPPs into 9-AGNRs 
through the surface-assisted intramolecular cyclodehydrogenation, 
eliminating 8 hydrogens per repeating unit.  

 
Figure 1. (a) Synthesis of 9-AGNRs by CVD method. (b) Mass 
spectrum of ODPPs before cyclodehydrogenation. (c) Raman 
spectrum of CVD-grown 9-AGNRs by 785 nm laser. The calcu-
lated RBLM peaks vs. width of GNRs are given in the inset.17  

To investigate the chemical structures of the oligomer/polymer 
after the radical polymerization step during the on-surface synthe-
sis of GNRs, we have recently developed a quick and powerful 
surface-mass-spectrometry analysis method.6 ODPPs were thus 
studied by the high-resolution matrix-assisted laser desorp-
tion/ionization time-of-flight mass spectrometry (MALDI-TOF 
MS) with trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-
propenylidene] malononitrile (DCTB) as matrix (Figure 1b). The 
MS spectrum of the ODPPs exhibits regular patterns from pen-
tamer (m/z = ~1142 Da) up to a species with 23 units (m/z = 
~5257 Da). The difference between the neighboring signals is 
exactly the same value of ~228 Da, which corresponds to the 
molecular mass of the repeating unit. The observed isotopic dis-
tribution of the ODPPs is in agreement with the simulated pattern, 
demonstrating the successful polymerization reaction to form the 
expected structures (Figure S1).  

The Raman spectrum of the final 9-AGNRs after cyclodehy-
drogenation reveals four main peaks at 1592, 1340, 1250, and 315 
cm–1, which can be assigned to D, G, Edge C-H, and radial 
breathing-like mode (RBLM) peaks, respectively (Figures 1c and 
S2).18 The sharp and intense width-specific RBLM peak is in 
excellent agreement with the DFT calculation, demonstrating the 
high uniformity in width of the obtained 9-AGNR sample (inset 
of Figure 1c).17 Note that the specific RBLM peak of 9-AGNRs 
was not observed in previous reports on 9-AGNRs by CVD 

growth and solution synthesis.12, 16 The monolayers of as-
synthesized 9-AGNRs were further unambiguously characterized 
using atomic force microscopy (AFM) as well as scanning tunnel-
ing microscopy (STM) under ambient conditions (Figures 2 and 
S3). AFM height images show terraces of Au(111) surface uni-
formly covered with monolayer thick (~2.5 Å) film of 9-AGNRs 
(Figure 2a). STM images agree well with AFM data indicating 
good surface coverage of striped features (Figure 2b). Typical 
domain size is ~30 nm. Each terrace of Au(111) contains multiple 
domains of 9-AGNRs indicating several nucleation sites along 
each terrace. Well-defined domains of planar striped features are 
sometimes surrounded by ill-defined regions which may indicate 
adsorption of unreacted material. The width of each striped fea-
ture is ~1.2 nm and it is uniform across the surface (Figure 2c, d). 
This is in good agreement with the expected width of 9-AGNRs 
estimated from a molecular mechanics model (Figure 2e) and 
further indicates that the 9-AGNRs remain parallel (face-on) to 
the Au(111) surface. The 9-AGNRs appear continuous and close-
packed within each domain. While the STM images provided in 
Figure 2 reveal GNRs with length up to ~20 nm, the length can 
reach up to 30-35 nm (see Figure S3). 

 
Figure 2. AFM/STM characterization of 9-AGNRs on 
Au(111)/Mica surface. (a) AFM height image showing domains 
of 9-AGNRs. The inset shows height profile along the black line, 
indicating formation of monolayer of 9-AGNRs. (b) STM image 
showing domains of 9-AGNRs. (Iset = 300 pA; Vbias = 0.06 V) (c) 
Small-scale STM image showing 9-AGNRs as well-defined 
stripes with uniform width of ~1.2 nm. (Iset = 60 pA; Vbias = 0.03 
V) (d) Line profile along the white line in panel (c). (e) Molecular 
model showing the laterally stacked 9-AGNRs.  

400 800 1200 1600 2000 2400 2800 3200

In
te
n
s
it
y
 (
a
.u
.)

Raman shift (cm-1)

c

RBLM

Edge C-H
G

D

4 6 8 10 12
200

300

400

500

600

700

R
B
L
M
 (
c
m

-1
)

N

 

 

9-AGNRs 

BrBr H H H H
n n

a

b
ODPP 9-AGNRsDBTP

m/z(Da)
1250 1750 2250 2750 3250 3750 4250 4750 5250 5750

%

0

100
x186

3
1
9
7
.2

1
3
7
1
.5

2
0
5
5
.81
6
0
0
.6

1
8
2
7
.7

2
2
8
3
.9

3
4
2
5
.4

3
6
5
3
.4

4
1
0
9
.6

3
8
8
1
.6

4
5
6
6
.9

4
7
9
3
.9

5
2
5
7
.1

5
7
0
9
.5

1
1
4
2
.4

4
3
3
8
.7

2
5
1
1
.9

2
7
4
0
.1

2
9
6
9
.2

5
4
8
5
.1

5
0
2
2
.1

200 °C 400 °C

Page 2 of 5

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

 
Figure 3. (a) UV-vis-NIR absorption spectra of different CVD-
grown GNRs. The inset shows the chemical structures of the 
GNRs and their optical bandgaps. (b) Time-resolved photoin-
duced real and imaginary conductivity of 9-AGNRs measured as 
the relative change of THz transmission at the peak of THz pulse 
(real, solid line) and zero-crossing point of THz pulse (imaginary, 
dotted line) (pump at 400 nm, with fluence 200 µJ/cm2). (c) Fre-
quency-resolved THz conductivity of 9-AGNRs measured at the 
peak of the photoconductivity, and a Drude-Smith fit with c pa-
rameter ~-0.72 ± 0.02. (d) Comparative study of THz photocon-
ductivities of different GNR structures. 

After the growth, the 9-AGNRs can be readily transferred to 
other substrates, yielding a large-area uniform GNR film, as 
demonstrated by the optical images and Raman mapping (Figure 
S4). The UV-vis-NIR absorption analysis of the 9-AGNRs was 
carried out by multiple transfer of 9-AGNR films on one fused 
silica substrate to have enough optical density (Figure 3a). An 
absorption onset was thus detectable at ~1185 nm in the IR re-
gion, suggesting an optical bandgap of ~1.0 eV for the obtained 9-
AGNR multilayer film, which is close to the theoretical value of 
isolated 9-AGNR,15 and significantly smaller than values of 7-
AGNRs (~1.6 eV) and chevron-type GNRs (~1.7 eV) (see Figures 
3a and S5). 

   For assessing the potential of the 9-AGNRs for optoelectronics, 
we have investigated their photoconductivity by OPTP,19 which 
has been demonstrated as a powerful spectroscopic tool for con-
tact-free and noninvasive characterization of the intrinsic charge-
carrier mobility within individual solution-synthesized GNRs.4-5, 

20 In Figure 3b, we show the time-resolved photoconductivity 
dynamics (in a form of transient change of the THz transmission) 
of a thin film of 25 layers of 9-AGNRs deposited on fused silica. 
After photoexcitation with the optical pulse (400 nm wavelength), 
we observe a sub-picosecond rapid rise and a subsequent, ~2 ps - 
fast decay in the real conductivity. The imaginary conductivity 
component displays a similarly fast rise-time, however the decay 
time is considerably longer. Both the transient conductivity dy-
namics and their time scale are fully consistent with our previous 
studies on solution-synthesized GNRs in dispersions4-5, 20 and can 
be rationalized by the charge state transitions from quasi-free 
cases at early time (< 1 ps) to strongly bounded excitons at the 
longer time-delays (> 2 ps with long-lived imaginary conductivity 
indicative of photoinduced dielectric polarizability of the sample). 
Furthermore, the frequency-dependent THz conductivity at the 
peak position of the dynamics shown in Figure 3b (~0.55 ps after 
photoexcitation), is demonstrated in Figure 3c. We observe a 
positive real and negative imaginary component with both ampli-

tudes increasing with the frequencies, sharing a large similarity 
with the frequency-resolved THz conductivity in semiconducting 
polymers21-23 and other types of GNRs dispersed in organic sol-
vents.4 The Drude-Smith model24 has been widely employed to 
model the transport characteristic in conducting polymers and 
GNRs as: 

��� =
����	

1 − 
�
 �1 +

�
1 − 
�
� 

Here, ε0 is the vacuum permittivity, ωp is the plasma frequency 
(which is proportional to the carrier concentration), τ is the elec-
tron momentum scattering time, and the parameter c accounts for 
the correlation between carrier momentum before and after a 
scattering event, with c = 0 as non-preferential, fully isotropic 
scattering (classical Drude model of free electron plasma) and c = 
–1 as backscattering-dominant process of localized charge carrier. 
By fitting the complex conductivity using the Drude-Smith model 
as shown in Figure 3c, we can obtain c parameter ~-0.72 ± 0.02, 
which is fully consistent with previous reported c values in ran-
domly oriented 1D Drude conductors, such as carbon nanotubes 
and GNRs in dispersions.20 Based on the fitting, we can also 
derive the momentum scattering time to be 20 ± 5 fs. Applying 
the reported effective mass for the 9-AGNRs (m* = 0.1·m0),

10 one 
can readily estimate the intrinsic dc carrier mobility in 9-AGNRs 
using µ = eτ/m*, which results in a value of 352 ± 88 cm2·V–1·s–1. 
This is a rough estimation of the local carrier mobility within a 
nanoribbon. The physical length of the molecular wire has been 
reported to affect its charge mobility due to the charge scattering 
effect at the ends of the molecular wires.25 Consequently, control-
ling the growth conditions for producing even longer 9-AGNRs 
than those reported here (up to ~35 nm) could be beneficial for 
further boosting the high-frequency carrier mobility of 9-AGNRs 
for device applications. Speaking of the measured photoconduc-
tivity of the sample, we can also estimate carrier mobility in the 
film of 25 layers of GNR networks – a film of GNR chains intri-
cately connected with each other. This can be estimated from 
average measured conductivity and the quantum yield (which in 
the similar materials are found to be QE = 10–3–10–5).22 Thus, the 
mobility in the film is comparable to 50–5000 cm2·V–1·s–1, which 
indicates the high quality of the CVD-grown GNRs used in this 
study. We expect a negligible effect of sample thickness on the 
mobility estimate for samples consisting of a large number of 
layers, such as 25 layers in this study (see Supporting Information 
for extended discussion). Note that this intrinsic charge-carrier 
mobility estimated for 9-AGNRs is much higher than the mobility 
measured in FET devices on thin films of 7-AGNRs and chevron-
type GNRs (estimated to be ~10-3-10-5 cm2V-1s-1),6, 12 since the 
electrical response in the GNR FET devices is mostly dominated 
by the large inter-GNR junction resistances as well as the contact 
resistance between the GNRs and the electrodes. 

To establish the potential of 9-AGNRs for optoelectronic appli-
cations, we have conducted a further comparative investigation of 
photoconductivity for two other CVD-grown GNRs with certain 
structural similarities: namely, 7-AGNRs and chevron-type GNRs 
(see Figure 3a). By selectively exciting the samples with a fixed 
pump fluence at 400 nm, we have compared the photon-induced 
THz conductivity for all three GNR structures as shown in Figure 
3d. As we can see, for a given excitation fluence and optical 
density (OD), the photoconductivity of 9-AGNRs is a factor of 
1.2 and 2.5 higher than that of 7-AGNRs and chevron-type GNRs, 
respectively, which can be partially attributed the relatively small-
er electron effective mass, leading to a higher mobility, of 9-
AGNRs than that of the rest GNRs.10, 26-27  

In summary, a synthesis of structurally well-defined 9-AGNRs 
has been achieved through a highly efficient CVD method. STM, 
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Raman, UV-vis-NIR absorption, and time resolved THz spectros-
copy analysis manifested the high quality of the 9-AGNRs with a 
low bandgap of ~1.0 eV and absorption extending up to ~1200 
nm. Given the scalability and low cost of the CVD synthetic 
method, these results pave the way for exploiting such bottom-up 
synthesized GNRs for efficient optoelectronic device applications, 
including visible - to - infrared photodetectors and photovoltaics. 
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