



View Article Online

View Journal

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Z. Wang, Y. Sun, J. Song, S. yang, E. zhang, Q. han and S. yue, *New J. Chem.*, 2021, DOI: 10.1039/D1NJ03579G.



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

A journal for new directions in chemistry

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.



rsc.li/njc

5 6 7

8 9

10 11

12 13

14

15

16

17

18

19 20

₹1

₽7

ou 220 August 2021 Wownloaded

କ୍ଟି୨

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

# **Journal Name**



## Visible light induced radical cascade cyclization of orthocyanoarylacrylamides with phosphine oxides for the preparation of phosphorylated quinoline-2,4(1*H*,3*H*)-dione

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Yuan-Yuan Sun,<sup>a</sup>Jing-Cheng Song,<sup>a</sup> Shao-Hui Yang,<sup>a</sup> Zu-Li Wang,<sup>a</sup>\* En-Xuan Zhang,<sup>b</sup> Qing-Qing Han,<sup>a</sup> Shan Yue<sup>a</sup>

www.rsc.org/

Visible light induced cascade cyclization of orthocyanoarylacrylamides with phosphine oxides for the preparation of phosphorylated quinoline-2,4(1*H*,3*H*)-dione. Products with moderate to good yields were efficiently isolated. Radical mechanism was proposed for this transformation.

Quinoline-2,4-dione scaffolds are central core in a large number of natural products, pharmaceuticals and agrochemicals.<sup>1-</sup> <sup>5</sup>Additionally, they are also intermediates for the synthesis of bioactive and novel heterocyclic compounds.<sup>6, 7</sup>As a consequence, the development of efficient and novel protocols for their construction has aroused great interest over the past decades.<sup>8-11</sup>Among these reported synthetic methods, the radical cascade cyclization reactions were proved to be the most effective methods. For example, the copper-catalyzed cascade addition/cyclization for the synthesis of phosphonylated,<sup>12</sup>carbonylated,<sup>13</sup>methylated,<sup>14</sup>

trifluoromethylated and sulfonated<sup>15</sup>quinoline-2,4(1H,3H)diones was described by Li group. The difluorinated quinoline-2,4-diones were efficiently prepared by Shi group<sup>16</sup>and Lu group.<sup>17</sup> However, new versatile and practical methods for the synthesis of various substituted quinoline-2,4(1*H*,3*H*)-diones are still desirable.

Visible light has proved to be highly economical and eco-friendly energy source.<sup>18-22</sup> Organic transformations induced by visible light have obtained much progress in recent years.<sup>23-28</sup> Among these reactions, radical cascaded cyclization reactions for the synthesis of various substituted heterocyclic products induced by visible light have received much attention. At present, visible light induced cyclization reactions for the preparation of azepane cores,<sup>29</sup> 2-amino-1,4-naphthoquinone derivatives,<sup>30</sup> trifluoromethylated dihydroisoquinolinones,<sup>31</sup>phosphorylsubstituted dihydroisoquinolones,<sup>32</sup> spiro[4,5]trienones,<sup>33</sup> sulfur-containing compounds<sup>34</sup> and so on<sup>35-38</sup> have been reported. In line with our interests in radical chemistry,<sup>39-43</sup> herein, visible light induced radical cascade cyclization of orthocyanoarylacrylamides with phosphine oxides for the preparation of phosphorylated quinoline-2,4(1H,3H)-dione was efficiently realized.

In order to find the optimized reaction conditions, the reaction of N-(2-cyanophenyl)-N-methylmethacrylamide and diphenylphosphine oxide was chosen as a model reaction for this investigation. To our delight, the desired product was isolated in 29% yield using CHCl3 as solvent, 4CzIPN as photocatalyst and LPO (Dilauroyl peroxide) as oxidation (table 1, entry 1). The use of THF as solvent led to 84% yield (table 1, entry 2). The reactions which conducted in dioxane or DCE generated the corresponding products in 71-76% yields (table 1, entries 3-4). Solvents containing halogen and ether solvents may be favorable for the reaction. Poor yields of the products were obtained when the reaction was performed in DMF, DMSO, toluene. Most of the substrates were unreacted and only trace of unknown side products was detected in these reactions (table 1, entries 5-7). Photocatalyst also play an important role in this reaction. To our disappointment, no desired products was isolated when Eosin Y, [Acr+-Mes]ClO<sup>4-</sup>, Ru(bpy)<sub>3</sub>Cl<sub>2</sub>, tetrabromofluorescein or Eosin B was subjected to this reaction (entries 8-12). Subsequently, we examined the effect of oxidant on this reaction. Encouraged by this result, we investigated the effect of different oxidants for this reaction. It revealed that BPO (dibenzoyl peroxide) could delivered the desired in moderate yield (table 1, entry 16). Low yields of the products were when DCP (dicumyl peroxide), TBHP isolated (tbutylhydroperoxide), TBPB (tert-butyl peroxybenzoate) or DTBP (di-tert-butyl peroxide) was used as oxidant (table 1, entries 14-15, 17-18). No reaction could proceed in the presence of PIDA (table 1, entry 13). Visible light, photocatalyst nitrogen protection and oxidant was crucial for this reaction, because no desired product was isolated when the reaction was performed in the absence of any of them (table 1, entries 22-25)

<sup>&</sup>lt;sup>a.</sup> Co

<sup>&</sup>lt;sup>a</sup> College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China

<sup>[</sup>wangzulichem@163.com; wangzuli09@tsinghua.org.cn]

<sup>&</sup>lt;sup>b.</sup> Asymchem Life Science (Tianjin) Co., Ltd.,Tianjin 300457, China

<sup>+</sup> Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

1 2 3

4

5

6 7 8

9

10

11 12

13

14

15

16

17

18

19

20

₹1

27

W 25. August 2021 Workonded

lalished 91

ā39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

View Article Online DOI: 10.1039/D1NJ03579G







<sup>a</sup>Reaction conditions: A (0.1mmol), B (0.1mmol), PC (5 mol%), oxidant (2.0 equiv), solvent (2 ml) for 24 h under N<sub>2</sub>. PC = photocatalyst, 4CzIPN=1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene, LPO = dilauroyl peroxide, N.D. = not detected. <sup>b</sup> Isolated yield. <sup>c</sup> dark. <sup>d</sup> Under Air.

Under the optimized reaction conditions, the scope of a variety of ortho-cyanoarylacrylamides and phosphine oxides was investigated. Ortho-cyanoarylacrylamides possessing various electron-withdrawing groups such as F, Cl, Br on the phenyl ring show good performance and afforded the corresponding products in 59-84% yields (C1-C8). Products bearing these groups are favorable for their further modification. Additionally, ortho-cyanoarylacrylamides modified by electron-donating methyl group was also effective for this reaction, providing the product with 92% yield (C9). Next, the effect of substituents on phenyl group of phosphine oxides was also examined. To our delight, phenyl ring containing methyl, methoxyl and dimethyl group all suitable for this reaction. The substrates were successfully converted to the desired products with good toexcellent yields (C10-C19). It is worthwhile to note that products whit high yields were isolated when di(naphthalen-2yl)phosphine oxide and diethyl phosphonate were examined (C20-C21). For the substituent on nitrogen of orthocyanoarylacrylamides, benzyl group was also applicable for the reaction, give the desired product with 66-88% yields (C22-C23)



<sup>&</sup>lt;sup>a</sup> Reaction conditions: ortho-cyanoarylacrylamides (0.1mmol), phosphine oxides (0.1mmol), 4CzIPN (5 mol%), LPO (2.0equiv), white LEDs (10 W) for 24 h under  $N_2$ .

In order to gain some insight to the mechanism of this transformation, some control experiments were conducted. No

1 2

3

4

5

6

7

8

9

10

11 12

13

14

19

20

₹1

₽7

o 25. August 2021 workonded

lished 8

ള്

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

#### Journal Name

target product was isolated when radical scavenger 2,2,6,6tetramethyl-1piperidinyloxy (TEMPO), butylated hydroxytoluene (BHT) or 1,1-Diphenylethylene(3.0equiv) was added in the model reaction (Scheme 1). These results indicated that a radical process was involved in this reaction.



Scheme 1. Control experiments.

Based on the above mentioned results and previous reports,<sup>44-47</sup> a plausible reaction mechanism was described for this reaction (Scheme 2). Initially, the ground state of 4CzIPN is converted into the excited state 4CzIPN\* under the irradiation of visible light. Then the SET reaction between tri-coordinated isomer B1 of diphenylphosphine oxide and the excited 4CzIPN\* occurred to give phosphoryl radical B2 and the radical anion 4CzIPN<sup>-</sup>. Then carbon-centered radical was formed via the addition reaction of phosphoryl radical B2 and carbon-carbon double bond of A, which was followed by cyclization to deliver intermediate A2. Next, imine intermediate A3 was generated from A2 via H abstraction. Finally, hydrolysis of imine intermediate A3 by water delivered the desired product C1.



Scheme 2. Proposed reaction mechanism.

In conclusion, we have developed a simple and practical protocol for the efficient synthesis of a series of phosphorylated quinoline-2,4(1H,3H)-dione. In the presence of visible light, products with moderate to high yields were obtained. Further studies on the reaction mechanism and expansion of the scope of the reaction to

#### COMMUNICATION

other complicated molecules are currently underway<sub>rtic</sub>ip<sub>OnPUF</sub> laboratory. DOI: 10.1039/D1NJ03579G

This work was supported by the National Natural Science Foundation of China (21772107), Shandong Province Key Research and Development Plan (No. 2019GSF108017). We also thank Cai-Zhen Ding, Yan-Li Wang and Hong-Di Yang for their useful help

### **Conflicts of interest**

"There are no conflicts to declare".

## Notes and references

**‡** Footnotes relating to the main text should appear here. These might include comments relevant to but not central to the matter under discussion, limited experimental and spectral data, and crystallographic data.

§ §§ etc.

1.

3.

4.

5.

- S. Han, F.-F. Zhang, H.-Y. Qian, L.-L. Chen, J.-B. Pu, X. Xie and J.-Z. Chen, *J. Med. Chem*., 2015, **58**, 5751-5769
- N. Ahmed, K. G. Brahmbhatt, S. Sabde, D. Mitra, I. P. Singh and K. K. Bhutani, *Biorg. Med. Chem.*, 2010, 18, 2872-2879
  - Y.-X. Liu, H.-P. Zhao, Z.-W. Wang, Y.-H. Li, H.-B. Song, H. Riches, D. Beattie, Y.-C. Gu and Q.-M. Wang, *Molecular Diversity*, 2013, **17**, 701-710
  - J. L. McCormick, T. C. McKee, J. H. Cardellina and M. R. Boyd, *J. Nat. Prod.*, 1996, **59**, 469-471
  - D. Dong, Y. Sun, G. Li, H. Yang, Z. Wang and X. Xu, *Chin. J.* Org. Chem., 2020, **40**, 4071-4086
  - A. Klásek, V. Mrkvička, A. Pevec and J. Košmrlj, J. Org. Chem., 2004, 69, 5646-5651
  - E. J. Jung, B. H. Park and Y. R. Lee, *Green Chem.*, 2010, **12**, 2003-2011
  - S. Wang, X. Huang, Q. Wang, Z. Ge, X. Wang and R. Li, *RSC* Adv., 2016, **6**, 11754-11757
  - S.-S. Wang, H. Fu, G. Wang, M. Sun and Y.-M. Li, *RSC Adv.,* 2016, **6**, 52391-52394
  - L. J. Wu, Y. Yang, R. J. Song, J. X. Yu, J. H. Li and D. L. He, Chem. Commun., 2018, **54**, 1367-1370
  - T. Yang, W. J. Xia, J. Q. Shang, Y. Li, X. X. Wang, M. Sun and Y. M. Li, Org. Lett., 2019, 21, 444-447
- 12. Y. M. Li, S. S. Wang, F. Yu, Y. Shen and K. J. Chang, *Org. Biomol. Chem.*, 2015, **13**, 5376-5380
- S. S. Wang, H. Fu, Y. Shen, M. Sun and Y. M. Li, J. Org. Chem., 2016, 81, 2920-2929
- 14. T. Yang, W.-J. Xia, B. Zhou, Y. Xin, Y. Shen and Y.-M. Li, *Eur. J. Org. Chem.*, 2019, **2019**, 5749-5755
- H. Fu, S.-S. Wang and Y.-M. Li, Adv. Synth. Catal., 2016, 358, 3616-3626
- 16. F. Ding, Y. Fang, Y. Jiang, K. Lin and L. Shi, *Chem Asian J*, 2018, **13**, 636-640

#### COMMUNICATION

1 2

3

4

5

6

7

8

9

10

11

- H. Sun, Y. Jiang, Y.-S. Yang, Y.-Y. Li, L. Li, W.-X. Wang, T. 17. 41. Feng, Z.-H. Li and J.-K. Liu, Org. Biomol. Chem., 2019, 17, 6629-6638 42.
- 18. G.-H. Li, Q.-Q. Han, Y.-Y. Sun, D.-M. Chen, Z.-L. Wang, X.-M. Xu and X.-Y. Yu, Chin. Chem. Lett., 2020, 31, 3255-3258
- 19. N. Meng, Y. Lv, Q. Liu, R. Liu, X. Zhao and W. Wei, Chin. Chem. Lett., 2021, 32, 258-262
- 20. K.-J. Liu, Z. Wang, L.-H. Lu, J.-Y. Chen, F. Zeng, Y.-W. Lin, Z. Cao, X. Yu and W.-M. He, Green Chem., 2021, 23, 496-500
- 21. Q.-W. Gui, F. Teng, Z.-C. Li, Z.-Y. Xiong, X.-F. Jin, Y.-W. Lin, 12 Z. Cao and W.-M. He, Chin. Chem. Lett., 2021, DOI: 13 10.1016/j.cclet.2021.01.021 14
- 22. C. H. Song, X. Shen, F. Yu, Y. P. He and S. Y. Yu, Chin. J. 15 Org. Chem., 2020, 40, 3748-3759 16
- 23. D.-Q. Dong, H. Yang, J.-L. Shi, W.-J. Si, Z.-L. Wang and X.-17 M. Xu, Org. Chem. Front., 2020, 7, 2538-2575 18
- 19 24. D. Chen, Y. Sun, D. Dong, Q. Han and Z. Wang, Chin. J. Org. Chem., 2020, 40, 4267-4273 20
- S. He, X. Chen, F. Zeng, P. Lu, Y. Peng, L. Qu and B. Yu, ₹1 25. Chin. Chem. Lett., 2020, 31, 1863-1867
- 2 3 4 5 6 8215051652:53 26. J.-Y. Chen, C.-T. Zhong, Q.-W. Gui, Y.-M. Zhou, Y.-Y. Fang, K.-J. Liu, Y.-W. Lin, Z. Cao and W.-M. He, Chin. Chem. Lett., 2021, 32, 475-479
- 27. L.-Y. Xie, Y.-S. Liu, H.-R. Ding, S.-F. Gong, J.-X. Tan, J.-Y. He, ₽7 Z. Cao and W.-M. He, Chin. J. Catal., 2020, 41, 1168-1173
- 0 22 August 2021 Workonded 28. L.-Y. Xie, S. Peng, L.-H. Yang, C. Peng, Y.-W. Lin, X. Yu, Z. Cao, Y.-Y. Peng and W.-M. He, Green Chem., 2021, 23, 374-378
  - 29. W. L. Yu, H. W. Jiang, L. Yan, Z. T. Feng, Y. C. Luo and P. F. Xu, Sci. China Chem., 2021, 64, 274-280
  - 30. B. Sun, X. Shi, X. Zhuang, P. Huang, R. Shi, R. Zhu and C. Jin, Org. Lett., 2021, 23, 1862-1867
  - 31. L. Zou, P. Li, B. Wang and L. Wang, Green Chem., 2019, 21, 3362-3369
- lblished 8 32. X. C. Liu, K. Sun, X. L. Chen, W. F. Wang, Y. Liu, Q. L. Li, Y. Y. Peng, L. B. Qu and B. Yu, Adv. Synth. Catal., 2019, 361, ഷ്ട് 9 3712-3717
- 33. Y. Liu, Q. L. Wang, Z. Chen, Q. Zhou, B. Q. Xiong, P. L. 40 Zhang and K. W. Tang, Chem. Commun., 2019, 55, 12212-41 12215 42
- Z. Y. Gan, G. Q. Li, X. B. Yang, Q. L. Yan, G. Y. Xu, G. Y. Li, Y. 34. 43 Y. Jiang and D. S. Yang, Sci. China Chem., 2020, 63, 1652-44 1658 45
- 35. Y. Zhou, Z. Xiong, J. Qiu, L. Kong and G. Zhu, Org. Chem. 46 Front., 2019, 6, 1022-1026 47
- 36. X. Li, M.-Y. Han, B. Wang, L. Wang and M. Wang, Org. 48 Biomol. Chem., 2019, 17, 6612-6619 49
- 37. Y. Liu, Q.-L. Wang, Z. Chen, H. Li, B.-Q. Xiong, P.-L. Zhang 50 and K.-W. Tang, Chem. Commun., 2020, 56, 3011-3014 51
- 38. W.-C. Yang, C.-Y. Chen, J.-F. Li and Z.-L. Wang, Chin. J. 52 Catal., 2021, DOI: 10.1016/S1872-2067(21)63814-7 53
- 39. Q.-Q. Han, Y.-Y. Sun, S.-H. Yang, J.-C. Song and Z.-L. Wang, 54 Chin. Chem. 2021, DOI: Lett.. 55 https://doi.org/10.1016/j.cclet.2021.04.019 56
- 40. Q.-Q. Han, G.-H. Li, Y.-Y. Sun, D.-M. Chen, Z.-L. Wang, X.-Y. 57 Yu and X.-M. Xu, Tetrahedron Lett., 2020, 61, 151704 58

- D. Dong, G. Li, D. Chen, Y. Sun , Q. Han, Z. Wang, X. Xu and X. Yu, Chin. J. Org. Chem., 2020, 40, 9760-19991 D1NJ03579G
- D. M. Chen, Y. Y. Sun, Q. Q. Han and Z. L. Wang, Tetrahedron Lett., 2020, 61, 152482
- 43. Q.-Q. Han, D.-M. Chen, Z.-L. Wang, Y.-Y. Sun, S.-H. Yang, J.-C. Song and D.-Q. Dong, Chin. Chem. Lett., 2021, DOI: 10.1016/j.cclet.2021.02.018
- X. C. Liu, X. L. Chen, Y. Liu, K. Sun, Y. Y. Peng, L. B. Qu and 44. B. Yu, ChemSusChem, 2020, 13, 298-303
- 45. J. Q. Shang, X. X. Wang, Y. Xin, Y. Li, B. Zhou and Y. M. Li, Org. Biomol. Chem., 2019, 17, 9447-9455
- 46. W. He and R. Yi, Chin. J. Org. Chem., 2021, 41, 1267-1268
- 47. Y. Liu, X.-L. Chen, X.-Y. Li, S.-S. Zhu, S.-J. Li, Y. Song, L.-B. Qu and B. Yu, J. Am. Chem. Soc., 2021, 143, 964-972

59 60

Journal Name