BRIEF COMMUNICATIONS

ADDITION OF N, N-DICHLOROARYLSULFAMIDES TO 1-ALKENYLSILATRANES

S. N. Adamovich, V. Yu. Prokop'ev,

V. I. Rakhlin, R. G. Mirskov,

B. Z. Shterenberg, and M. G. Voronkov

UDC 542.955:547.551.525. 211.1:131:547.1'128

N,N-Dichloroarylsulfamides readily add to the double bond of 1-alkenylsilatranes. Depending on the ratio of the starting reagents, the reaction may proceed with the participation of one or both chlorine atoms of the dichloramide.

Sulfamides containing a silatrane group, which, as a rule, imparts specific physiological activity [1], have not been reported. We studied the reaction of the dichloramides of benzene-, p-chlorobenzene-, and p-toluenesulfonic acids with 1-alkenylsilatranes. The reaction was carried out in CHCl₃ or CH₂Cl₂ in an inert atmosphere or vacuum. When the reagent ratio is 1:1, the addition products are formed according to the following scheme:

$$\begin{split} \text{RSO}_2\text{NCl}_2 + \text{CH}_2 &= \text{CH}(\text{CH}_2)_n - \text{Si}(\text{OCH}_2\text{CH}_2)_3\text{N} \to \\ &\rightarrow \text{RSO}_2\text{NClCH}_2\text{CHCl}(\text{CH}_2)_n - \text{Si}(\text{OCH}_2\text{CH}_2)_3\text{N}} \\ &\qquad \qquad \text{(I)--(VI)} \\ \text{R} &= \text{Ph}, \ n = 0 \ (\text{I}); \ \text{R} = p\text{-ClC}_6\text{H}_4, \ n = 0 \ (\text{II}); \\ \text{R} &= p\text{-MeC}_6\text{H}_4, \ n = 0 \ (\text{III}); \ \text{R} = \text{Ph}, \ n = 1 \ (\text{IV}); \\ \text{R} &= p\text{-ClC}_6\text{H}_4, \ n = 1 \ (\text{V}); \ \text{R} = p\text{-MeC}_6\text{H}_4, \ n = 1 \ (\text{VI}). \end{split}$$

The treatment of (I)-(VI) with moist solvents gave the following $RSO_2NHCH_2CHCl(CH_2)_nSi-(OCH_2CH_2)_3N$ (VII)-(XII). When the mole ratio is 1:2, the reaction proceeds with the participation of both chlorine atoms of the starting dichloramides

$$\begin{split} RSO_2NCl_2 + 2CH_2 &= CH - Si(OCH_2CH_2)_3N \rightarrow \\ &\rightarrow RSO_2N[CH_2CHCl - Si(OCH_2CH_2)_3Nl_2 \\ &\qquad (XIII) - (XV) \\ R &= Ph~(XIII),~~p-ClC_6H_4~(XIV),~~p-MeC_6H_4~(XV) \end{split}$$

The product yield in all cases is almost quantitative. The IR spectra of adducts (I)-(XV) have $\rm SO_2N$ group stretching bands at 1160 and 1330 cm⁻¹. The strong band at 3220 cm⁻¹ corresponds to the NH fragment in (VII)-(XII). The structures of these products were in accord with their PMR spectra (Table 1).

EXPERIMENTAL

The IR spectra were taken in KBr pellets or in vaseline oil on a Specord 75-IR spectrometer. The PMR spectra of 20% solutions in CDCl₃ were taken on a Tesla BS-576A spectrometer at 100 MHz.

N-Chloro-N-(2-silatrany1-2-chloroethy1)benzenesulfonamide (I). A mixture of 201 mg (10 mmoles) 1-vinylsilatrane and 226 mg (10 mmoles) N,N-dichlorobenzenesulfonamide was dissolved in 10 ml chloroform. Spontaneous warming to 50°C was observed. The reaction mass was maintained for 20 min at about 20°C and 25 ml hexane was introduced. The precipitate formed was filtered off, washed with ether, dried in vacuum, and recrystallized from 3:1 hexane-chloroform to give 425 mg (~100%) (I). Chloramides (II)-(VI) were obtained by analogous procedures.

N-(2-Silatranyl-2-chloroethyl)benzenesulfonamide (VII). A sample of 212 mg (5 mmoles) (I) was left in the air for 72 h and then dissolved in chloroform. Reprecipitation in hexane gave 200 mg (VII) as colorless crystals, mp 112°C. Amides (VIII)-(XII) were obtained by analogous procedures.

Irkutsk Institute of Organic Chemistry, Siberian Branch, Academy of Sciences of the USSR. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 12, pp. 2839-2840, December, 1989. Original article submitted November 1, 1988.

TABLE 1. Physical Indices of (I)-(VI)

Com- pound	Mp,°C ∴	PMR spectra (δ, ppm; CDCl ₃)					
		H _{arom}	CHCI	OCH ₂	CIN-CH2	NCH ₂	CH₂Si
(I)	75 (112)	7,48-7,85 m	5,42 m	3,75₺	3,42 d 3.07 d	2,84t	
(II)	117 (154)	7,38-7,84 m	5,44m	3,77t	3,30 d 3,06 d	2,87t	-
(III)	88 (120)	7,47-7,87 m	5.62 m	3,79t	3,44m	2.84 t	_
(IV)	139 (160-162)	7,47-7,95 m	6,22 m	3,82 t	3,46 m	2,91 t	1,16t
(V)	102 (128-130)	7.37-7.81 m	6.20 m	3,86 t	3,20-3,61 m	3,02 t	1,25 t
(VI)	105-107 (145-148)	7,40-7,82 m	6,20 m	3,87 t	3,30-3,57 m	2,97 ℃	1,21

^{*}The melting points of the corresponding N-H derivatives (VII)-(XII) are given in parentheses.

N,N-Bis(2-silatrany1-2-chloroethy1)benzenesulfonamide (XIII) was obtained by analogy to the procedure for (I) from 201 mg (10 mmoles) 1-vinylsilatrane and 113 mg (5 mmoles) N,N-dichlorobenzenesulfonamide. The yield of (XIII) was 310 mg (98%) as a fine crystalline powder, mp 134°C. PMR spectrum (δ , ppm): 7.52-7.87 m (C_6H_5), 5.43 m (CH-Cl), 3.79 t (OCH₂), 3.09 m (SO₂NCH₂), 2.87 t (NCH₂). Amides (XIV)-(XV) were obtained by analogous procedures. The mp of (XIV) was 160-162.5°C. The mp of (XV) was 128-129°C.

LITERATURE CITED

1. M. G. Voronkov and V. M. D'yakov, Silatranes [in Russian], Nauka, Novosibirsk (1978).

SYNTHESIS AND NMR SPECTROSCOPY OF N,N-DIALKYL-N'-(DIMETHYL-CHLOROSILYLMETHYL)UREAS WITH AN INTRAMOLECULAR SI+O BOND

M. G. Voronkov, A. E. Pestunovich, A. I. Albanov, N. N. Vlasova, and V. A. Pestunovich

UDC 542.91:543.422.25: 547.495.2'128

The reaction of N,N-dialkyl-N'-trimethylsilylureas with dimethyl(chloromethyl)-chlorosilane gave N,N-dialkyl-N'-(dimethylchlorosilylmethyl)ureas with an intramolecular Si+O bond. Relatively stable N,N-dialkyl-N'-[dimethyl(chloromethyl)silyl]ureas are intermediates. The structures of the compounds obtained were demonstrated by NMR spectroscopy.

A convenient method has been developed recently for the preparation of various chelate compounds of hypervalent silicon [1] with the $ClSi(C_3)0$ coordination unit. This method is based on the reaction of N- or 0-trimethylsilyl derivatives of amides [2], lactams [3], N-acetylacetamide [4], and acetylhydrazines [5] with dimethyl(chloromethyl)chlorosilane (I).

In a preliminary communication [6], we reported that the analogous reaction of N,N-dialkyl-N'-trimethylsilylureas (II) leads to (0-Si)-N,N-dialkyl-N'-[(dimethylchlorosilyl) methyl]ureas (III)

$$(I) + R_2NC(O)NHSiMe_3 \longrightarrow R_2NC + Me_3SiCl$$

$$(IIa,b) \qquad HN \qquad O$$

$$CH_2 - Si - Me$$

$$Cl \quad Me$$

$$(IIIa,b)$$

$$(IIIa,b)$$

$$(IIIa,b)$$

Irkutsk Institute of Organic Chemistry, Siberian Branch, Academy of Sciences of the USSR. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 12, pp. 2841-2843, December, 1989. Original article submitted November 4, 1988.