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ABSTRACT: A metal-free direct hydrogenation of pyri-
dines was successfully realized by using homogeneous
borane catalysts generated from alkenes and HB(CeFs),
via an in situ hydroboration to afford a broad range of
piperidines in high yields with excellent cis-
stereoselectivities.

Piperidines are very important moieties contained in
a wide range of biologically active compounds, and nu-
merous methodologies have been established for their
synthesis." The catalytic hydrogenation of pyridines with
H; undoubtedly provides a simple and straightforward
approach for accessing piperidines, although it is essen-
tial to overcome some inherent challenges on the catalyst
deactivation and the pyridine dearomatization.” Various
heterogeneous transition-metal catalysts and several ho-
mogeneous Rh, Ir, and Ru complexes have been studied
for the direct hydrogenation of pyridines, but harsh reac-
tion conditions and/or specific pyridines bearing activat-
ing groups are often required due to the low activity and
selectivity of catalysts.>* Recently, an organocatalytic
transfer hydrogenation for partial reduction of electron-
deficient pyridines with Hantzsch esters has also been
reported.> Moreover, the hydrogenation of relatively
more reactive pyridine derivatives, such as pyridinium
salts, pyridine N-oxides, and N-iminopyridium ylides,
by either heterogeneous or homogeneous catalysts, pro-
vides an alternative and efficient strategy for the synthe-
sis of piperidines.®” Despite these advances, the direct
hydrogenation of pyridines is still a challenge. In particu-
lar, the metal-free catalytic hydrogenation of simple pyr-
idines is of great interest and has rarely been reported.

The lately emerging frustrated Lewis pairs (FLPs)
have become one promising class of catalysts for the
metal-free homogeneous hydrogenation.*> A broad
range of substrates, such as imines,'” N-heterocycles,"
nitriles,'® alkenes,'”®"'2 and so on,' can be efficiently
hydrogenated under the catalysis of FLPs. In particular,
Stephan and coworkers achieved an amazing aromatic

hydrogenation of anilines with B(CesFs); (1.0 equiv) to
afford cyclohexyl-amine derivatives.™® Very recently,
Stephan and coworkers also described an interesting
example for the reduction of pyridines 1 under H, using
a stoichiometric amount of B(CsFs); to furnish piperidi-
um salts 2 (Scheme 1).!* The replacement of one pen-
tafluorophenyl group of B(CeFs); by other groups, for
example, mesityl and alkenyl substitutents by Sods!®™!1®
and Erker,"* respectively, provides a number of efficient
FLP catalysts for hydrogenation.’ Previously, we accom-
plished a highly enantioseletive hydrogenation of imines
on the basis of an in situ catalyst generation strategy by
hydroboration of alkenes with HB(C¢Fs),.!>'¢ We envi-
sion that this strategy also provides a good opportunity
to develop the challenging metal-free catalytic hydro-
genation for simple pyridines, especially for 2,6-
disubstituted pyridines which are often inert substrates
in the reported work (Scheme 1). Herein, we report our
preliminary results on this subject.
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Scheme 1. Metal-free hydrogenation of pyridines by bo-
ranes.

We initially selected a variety of commercially availa-
ble alkenes to examine the hydrogenation of 2,6-
diphenylpyridine (la) with H, (50 bar) in toluene at
100 °C for 20 h (Table 1). Piers’ borane HB(CgFs), itself
can catalyze this reaction to give 2,6-diphenylpiperidine
(3a) in 21% conversion (Table 1, entry 1). While, the
majority of boranes generated in situ by the hydrobora-
tion of alkenes with HB(CqFs), exhibited obviously high-
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er activities to furnish piperidine 3a with an excellent cis-
selectivity (Table 1, entries 2-14). The electron-deficient
alkenes were found to be more effective for this trans-
formation (Table 1, entries 7-8 and 12), and terminal
alkene 4g gave a satisfactory conversion and 98/2 dr
(Table 1, entry 8). Further decreasing the reaction tem-
perature to 60 °C or the catalyst loading to 5 mol % led a
slight loss of reactivity (Table 1, entries 15 and 16).

Table 1. Evaluation of alkenes for hydrogenation of pyridines*

X alkene 4 (10 mol %)
| HB(CgFs)2 (10 mol %)
L

Ph N Ph H, (50 bar) Ph N Ph
toluene, 100 °C, 20 h H
1a 3a
AI'/\ PN /K
Fo ™ o Ph
4a: Ar=Ph CoFs Ph Ph N fBuo/\

4b: Ar = 4-MeOCgH, 49 4h 4i 4
4c: Ar = 4-CICgH,
4d: Ar = 2-CIC4H,

de:Ar=246-MeCeH, C,F ™ Br N Sunon
4f: Ar = 3,5-(CF3),CgHg m al am
entry 4 conv cis:trans® entry 4 conv cis:trans®
(%) (%)"

| 21 nd? 9 4h 31 nd?
2 4a 59 95:5 10 4 21 nd?
3 4 72 95:5 11 4 15 nd*
4 4c 62 96:4 12 4k 89 96:4
5 4d 67 96:4 13 4 34 nd?
6 4e 65 96:4 14° 4m 44 nd?
7 4f 95 97:3 15 4g 79 98:2
8 4g >99 98:2 168 4g 93 98:2

¢ All reactions were carried out with pyridine 1a (0.25
mmol) and toluene (2.0 mL). * Determined by crude 'H
NMR. ¢ Without alkene. ¢ Not determined. ¢ 5 mol % of
alkene 4m. / At 60 °C. ¢ 5 mol % of catalyst.

With this interesting result in hand, we next exam-
ined the substrate scope under the optimal condition
(Table 1, entry 8). As shown in Table 2, the metal-free
hydrogenation of 2,6-diarylpyridines 1a-i went smoothly
to give piperidines 3a-i in 97-99% yield with 98/2->99/1
dr (entries 1-9). 2,6-Difurylpyridine (1j) was also an ef-
fective substrate to give a high yield but with a relatively
lower cis-selectivity (Table 2, entry 10). When piperidine
1k containing both electron-withdrawing and electron-
donating substituents was used, the desired product 3k
was obtained in 92% yield with 99/1 dr (Table 2, entry
11). However, the electron-deficient 2,6-bis(4-fluoro-
phenyl)pyridine was not a suitable substrate to lead only
23% conversion. The cis-configuration of piperidines 3 is
supported by an X-ray structure of piperidine 3c (see
Supporting Information).

A series of 2-aryl-6-methylpyridines 11-u were also
subjected to the metal-free catalytic hydrogenation. Both
electron-donating and electron-withdrawing aryl sub-

stituents were well tolerated to produce piperdines 31-u
in 80-99% vyield with excellent cis-selectivity (Table 3,
entries 1-10).

Table 2. Hydrogenation of 2,6-diarylpyridines*

N 4g (10 mol %)
| HB(CgF5)2 (10 mol %)

Ar N™ CAr H, (50 bar) Ar N~ “Ar
toluene, 100 °C, 20 h H
Tak 3ak

entry product (3) yield (%)" cis:trans*

1 3a:Ar=Ar =Ph 98 98:2
2 3b: Ar=Ar =4-MeCsH, 97 98:2
3 3c:Ar=Ar =4-MeOCsH, 99 98:2
4  3d: Ar= Ar =4-'BuCsH, 99 98:2
5 3e: Ar=Ar =3-MeCsH, 99 98:2
6 3f: Ar= Ar =3-MeOCsH, 97 98:2
7 3g: Ar=Ar =2-MeC¢H, 98 >99:1
8 3h: Ar=Ar =2-MeOC¢H,4 99 >99:1
9  3i: Ar = Ar’ = 2-naphthyl 99 98:2
10  3j: Ar=Ar =2-furyl 93 90:10
11 3k: Ar=4-FC¢H, 92 99:1

AI', = 4—M€OC5H4

¢ All reactions were carried out with pyridine 1 (0.25
mmol) in toluene (2.0 mL). ? Isolated yield.  Determined by
crude '"H NMR.

Table 3. Hydrogenation of 2-aryl-6-methylpyridines*

X 4g (10 mol %)
/[ HB(C¢gFs)» (10 mol %)
N/ Ar H, (50 bar) H Ar

toluene, 100 °C, 20 h
1l-u 3l-u

entry product (3) yield (%)" cis:trans*

1 3lAr=Ph 96 95:5
2 3m: Ar =4-MeOC¢H, 98 96:4
3 3n: Ar =4-PhCeH, 96 96:4
4  30: Ar =4-CFsCsH, 86 97:3
5 3p: Ar =4-CIC¢H, 88 96:4
6 3q: Ar=3-MeOCsH, 96 96:4
7  3r: Ar = 3,5-Me,CeH; 93 96:4
8  3s:Ar=2-MeOC¢H, 99 97:3
9  3t: Ar = 2-naphthyl 99 96:4
10  3u: Ar = 4-allyloxyCeH, 80 96:4

¢ All reactions were carried out with pyridine 1 (0.25
mmol) in toluene (2.0 mL). ? Isolated yield.  Determined by
crude '"H NMR.

Moreover, the hydrogenation scope can be further
expanded to some interesting pyridine substrates. A re-
duction of the vinyl group occurred under the current
reaction conditions when using pyridine 1v as a sub-
strate to give piperidine 3v in 96% yield with 94/6 dr
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(Table 4, entry 1). For 2-bromopyridines, an unexpected
dehalogenation was observed, which provides an alterna-
tive approach for the synthesis of mono-substituted

Table 4. Hydrogenation of simple pyridines®

entry pyridine (1) product (3) (};:)1 ;15
=
1 s Ay PPN 96
1v H | _ (946)
OMe 3v OMe
S
2 Br” N7 N 80
1w H
OMe 3w OMe
| X
34 N” s \H 64
X NA  ome 3w OMe
Ph Ph
P L
p-Tol” >N >p-Tol pTol 7N NpTol (98:2)

1y
LA
5 RO NG OR

R = 4-MeCgH,
1z

3y
RO\)\/'\)VOR 58
H

(92:8)

3z
X
| L
6° MeJ\/N/J\Me Me ! ’\Ffs 51
1A o
3A
B (\/L
7 B N “Me \ I\F/,f 68
1B o
3B
N 7\
N\ N /_m 59
8f ng N NH N=
Mé o Me Me>7 s Me (96:4)
9¢ \7'\1 \Ni/ M 75
NH HN
p-Tol i PTl pTl o ol (>99:1)

¢ All reactions were carried out with pyridine 1 (0.25
mmol), alkene 4g (10 mol %) and HB(CsFs), (10 mol %)
under H, (50 bar) in toluene (2.0 mL) at 100 °C for 20 h
unless other noted. ® Isolated yield. ¢ The ratio (cis/trans) in
parenthesis was determined by crude 'H NMR. ¢ The reac-
tion was run with 20 mol % of catalyst under H, (75 bar) at
120 °C for 30 h. ¢ The resulting piperidines were directly
treated with phenylacetyl chloride and Et:N, the yield for
two steps./ Pyridine 1D (1.0 mmol) was used.

alkene 4g (10 mol %)

N HB(C&Fs), (10 mol %)
| H, (50 bar)
N™ "CuHas  touene, 100 °C, 20 h H Cq1Hz3

1E 60% yield
(cis:trans = 93:7)

isosolenopsin A

anti-HIV, antibacterial
activity

Scheme 2. Synthesis of isosolenopsin A
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piperidines (Table 4, entries 2 and 7). In comparison, the
direct hydrogenation of mono-substituted pyridine 1x
required a higher catalyst loading and gave a lower yield
(Table 4, entry 3). 2,4,6-Triaryl and 2,6-dialkyl substitut-
ed pyridines were hydrogenated to give moderate yields
(Table 4, entries 4-6). Significantly, 2,2’-bipyridines
proved to be effective substrates for the current catalytic
system (Table 4, entries 8 and 9). For 6,6 -dimethyl-2,2’-
bipyridine (1C), one of the pyridine cycles was selective-
ly hydrogenated to give compound 3C as the predomi-
nant product in 59% yield. While, both pyridine cycles
were preferred to be reduced for 6,6’-ditolyl-2,2’-
bipyridine (1D). Moreover, under the current conditions,
pyridine 1E can be hydrogenated to furnish racemic
isosolenopsin A in 60% yield with 93/7 dr (Scheme 2).

Our strategy for generation of borane catalysts in situ
from alkenes and Piers’ borane also provides a possible
opportunity to achieve the asymmetric hydrogenation of
pyridines by using chiral alkenes. Several chiral dienes"
were therefore tentatively tested for the asymmetric hy-
drogenation of pyridine 1C. Unfortunately, only moder-
ate conversion and very low enantioselectivity (<10% ee)
were obtained. The asymmetric version of this transfor-
mation is still a formidable challenge and awaits further
studies. Alternatively, both enantioisomers of com-
pounds 3C can be easily accessed via a simple resolution
process using L- or D-tartaric acid as a resolution rea-
gent (Scheme 3). The absolute configuration was deter-
mined by the X-ray structure of crystal 1. The interesting
structures of enantiomericallyl pure compounds 3C
make them have a potential utilization as chiral organo-
catalysts or ligands for asymmetric catalysis.

Q_@/( L-(ﬂ-tgrtari(; ?cid
.0 equiv

NH N liquid + crystal1
Me Me EtOH/acetone
3C
1. NaOH
2. D-tartaric acid
(1.0 equiv) NaOH
EtOH/acetone
NH \N / 4& crystal 2 <—N\H \N /
Me Me Me Me

(S,5)-3C (R,R)-3C

73% (>99% ee) 74% (>99% ee)

Scheme 3. Resolution of racemic piperidine.

In summary, a broad range of pyridines have been
directly hydrogenated under H, using catalytic amount
of simple borane catalysts generated in situ from com-
mercially available alkenes and HB(CsFs), to furnish im-
portant piperidines in high yields with excellent cis-
stereoselectivities. To the best of our knowledge, the cur-
rent study represents the first successful example of met-
al-free catalytic hydrogenation of pyridines with H,. Fur-
ther studies on searching for more efficient borane cata-
lysts, expanding substrate types, and exploring asymmet-
ric transformations, are underway in our laboratory.
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[ CoFeTS +HBCFS),|
J\/j\ (10mol%) . Q
RN R Hy (50 bar) RTTNTTR
31 examples

44-99% yield
90:10 — >99:1
(cis:trans)
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