

Communication

Subscriber access provided by Old Dominion University Libraries & VIVA (Virtual Library of Virginia)

Metal-Free Borane-Catalyzed Highly Stereoselective Hydrogenation of Pyridines

Yongbing Liu, and Haifeng Du

J. Am. Chem. Soc., Just Accepted Manuscript • Publication Date (Web): 14 Aug 2013

Downloaded from http://pubs.acs.org on August 14, 2013

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Metal-Free Borane-Catalyzed Highly Stereoselective Hydrogenation of Pyridines

Yongbing Liu and Haifeng Du*

Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Supporting Information Placeholder

ABSTRACT: A metal-free direct hydrogenation of pyridines was successfully realized by using homogeneous borane catalysts generated from alkenes and $HB(C_6F_5)_2$ via an *in situ* hydroboration to afford a broad range of piperidines in high yields with excellent *cis*-stereoselectivities.

Piperidines are very important moieties contained in a wide range of biologically active compounds, and numerous methodologies have been established for their synthesis.¹ The catalytic hydrogenation of pyridines with H₂ undoubtedly provides a simple and straightforward approach for accessing piperidines, although it is essential to overcome some inherent challenges on the catalyst deactivation and the pyridine dearomatization.² Various heterogeneous transition-metal catalysts and several homogeneous Rh, Ir, and Ru complexes have been studied for the direct hydrogenation of pyridines, but harsh reaction conditions and/or specific pyridines bearing activating groups are often required due to the low activity and selectivity of catalysts.^{3,4} Recently, an organocatalytic transfer hydrogenation for partial reduction of electrondeficient pyridines with Hantzsch esters has also been reported.⁵ Moreover, the hydrogenation of relatively more reactive pyridine derivatives, such as pyridinium salts, pyridine N-oxides, and N-iminopyridium ylides, by either heterogeneous or homogeneous catalysts, provides an alternative and efficient strategy for the synthesis of piperidines.^{6,7} Despite these advances, the direct hydrogenation of pyridines is still a challenge. In particular, the metal-free catalytic hydrogenation of simple pyridines is of great interest and has rarely been reported.

The lately emerging frustrated Lewis pairs (FLPs) have become one promising class of catalysts for the metal-free homogeneous hydrogenation.^{8,9} A broad range of substrates, such as imines,¹⁰ *N*-heterocycles,¹¹ nitriles,^{10a} alkenes,^{10b,c,h,i,12} and so on,¹³ can be efficiently hydrogenated under the catalysis of FLPs. In particular, Stephan and coworkers achieved an amazing aromatic

hydrogenation of anilines with B(C₆F₅)₃ (1.0 equiv) to afford cyclohexyl-amine derivatives.^{13d} Very recently, Stephan and coworkers also described an interesting example for the reduction of pyridines 1 under H₂ using a stoichiometric amount of B(C₆F₅)₃ to furnish piperidium salts 2 (Scheme 1).14 The replacement of one pentafluorophenyl group of $B(C_6F_5)_3$ by other groups, for example, mesityl and alkenyl substitutents by Soós^{10h,11b} and Erker,^{13c} respectively, provides a number of efficient FLP catalysts for hydrogenation.9 Previously, we accomplished a highly enantioseletive hydrogenation of imines on the basis of an *in situ* catalyst generation strategy by hydroboration of alkenes with HB(C₆F₅)₂.^{15,16} We envision that this strategy also provides a good opportunity to develop the challenging metal-free catalytic hydrogenation for simple pyridines, especially for 2,6disubstituted pyridines which are often inert substrates in the reported work (Scheme 1). Herein, we report our preliminary results on this subject.

Scheme 1. Metal-free hydrogenation of pyridines by boranes.

We initially selected a variety of commercially available alkenes to examine the hydrogenation of 2,6diphenylpyridine (1a) with H₂ (50 bar) in toluene at 100 °C for 20 h (Table 1). Piers' borane HB(C₆F₅)₂ itself can catalyze this reaction to give 2,6-diphenylpiperidine (3a) in 21% conversion (Table 1, entry 1). While, the majority of boranes generated *in situ* by the hydroboration of alkenes with HB(C₆F₅)₂ exhibited obviously high-

ACS Paragon Plus Environment

er activities to furnish piperidine **3a** with an excellent *cis*selectivity (Table 1, entries 2-14). The electron-deficient alkenes were found to be more effective for this transformation (Table 1, entries 7-8 and 12), and terminal alkene **4g** gave a satisfactory conversion and 98/2 dr (Table 1, entry 8). Further decreasing the reaction temperature to 60 °C or the catalyst loading to 5 mol % led a slight loss of reactivity (Table 1, entries 15 and 16).

Table 1. Evaluation of alkenes for hydrogenation of pyridines^a

	Ph	N Ph 1a	alkene 4 HB(C ₆ F ₅) H_2 (toluene,	(10 mol % ₂ (10 mol 50 bar) 100 °C, 20	%) <u>%)</u> ♪ P) h	h N H 3a	Ph
Ar 4a: A 4b: A 4c: A 4d: A 4e: A 4f: Ar	r = Ph r = 4-N r = 4-C r = 2-C r = 2,4 r = 3,5-	1eOC ₆ H ₄ HC ₆ H ₄ HC ₆ H ₄ ,6-Me ₃ C ₆ H (CF ₃) ₂ C ₆ H	$\begin{array}{c} C_6 F_5 \\ 4g \\ H_2 \\ H_3 \\ H_4 \\ H_4 \\ H_6 \\ H_6 \\ H_6 \\ H_8 \end{array}$	Ph 4h Br	• Ph • • • • • • • • • • • • • • • • • • •	Ph 4i	^r BuO 4j 4m
entry	4	conv (%) ^b	cis:trans ^b	entry	4	conv (%) ^b	cis:trans ^b
1^{c}		21	\mathbf{nd}^d	9	4h	31	nd^d
2	4a	59	95:5	10	4i	21	\mathbf{nd}^d
3	4b	72	95:5	11	4j	15	nd^d
4	4c	62	96:4	12	4k	89	96:4
5	4d	67	96:4	13	4l	34	\mathbf{nd}^d
6	4e	65	96:4	14^e	4m	44	nd^d
7	4f	95	97:3	15 ^f	4g	79	98:2
8	4g	>99	98:2	16 ^g	4g	93	98:2

^{*a*} All reactions were carried out with pyridine **1a** (0.25 mmol) and toluene (2.0 mL). ^{*b*} Determined by crude ¹H NMR. ^{*c*} Without alkene. ^{*d*} Not determined. ^{*e*} 5 mol % of alkene **4m**. ^{*f*} At 60 °C. ^{*g*} 5 mol % of catalyst.

With this interesting result in hand, we next examined the substrate scope under the optimal condition (Table 1, entry 8). As shown in Table 2, the metal-free hydrogenation of 2,6-diarylpyridines 1a-i went smoothly to give piperidines 3a-i in 97-99% yield with 98/2->99/1 dr (entries 1-9). 2,6-Difurylpyridine (1j) was also an effective substrate to give a high yield but with a relatively lower cis-selectivity (Table 2, entry 10). When piperidine 1k containing both electron-withdrawing and electrondonating substituents was used, the desired product 3k was obtained in 92% yield with 99/1 dr (Table 2, entry 11). However, the electron-deficient 2,6-bis(4-fluorophenyl)pyridine was not a suitable substrate to lead only 23% conversion. The *cis*-configuration of piperidines 3 is supported by an X-ray structure of piperidine 3c (see Supporting Information).

A series of 2-aryl-6-methylpyridines **1l-u** were also subjected to the metal-free catalytic hydrogenation. Both electron-donating and electron-withdrawing aryl substituents were well tolerated to produce piperdines **31-u** in 80-99% yield with excellent *cis*-selectivity (Table 3, entries 1-10).

Table 2. Hydrogenation of 2,6-diarylpyridines^a

entry	product (3)	yield $(\%)^b$	cis:trans ^c
1	3a: Ar = Ar' = Ph	98	98:2
2	3b : $Ar = Ar' = 4 - MeC_6H_4$	97	98:2
3	3c : $Ar = Ar' = 4$ -MeOC ₆ H ₄	99	98:2
4	$\mathbf{3d:} \operatorname{Ar} = \operatorname{Ar'} = 4^{-t} \operatorname{BuC}_6 \operatorname{H}_4$	99	98:2
5	3e : $Ar = Ar' = 3 - MeC_6H_4$	99	98:2
6	3f : $Ar = Ar' = 3$ -MeOC ₆ H ₄	97	98:2
7	$3\mathbf{g}: \mathbf{Ar} = \mathbf{Ar'} = 2 - \mathbf{MeC_6H_4}$	98	>99:1
8	3h : Ar = Ar' = 2 -MeOC ₆ H ₄	99	>99:1
9	3i : $Ar = Ar' = 2$ -naphthyl	99	98:2
10	3j: Ar = Ar' = 2-furyl	93	90:10
11	3k : $Ar = 4-FC_6H_4$ $Ar' = 4-MeOC_6H_4$	92	99:1

^{*a*} All reactions were carried out with pyridine **1** (0.25 mmol) in toluene (2.0 mL). ^{*b*} Isolated yield. ^{*c*} Determined by crude ¹H NMR.

Table 3. Hydrogenation of 2-aryl-6-methylpyridines^a

	4g (10 mol %) HB(C ₆ F ₅) ₂ (10 mol N H2 (50 bar) toluene, 100 °C, 2	$\stackrel{\text{I \%)}}{\longrightarrow} \qquad \stackrel{\text{N}}{\longrightarrow} \stackrel{\text{N}}{\longrightarrow} \stackrel$	Ar u
entry	product (3)	yield $(\%)^b$	cis:trans ^c
1	3l : Ar = Ph	96	95:5
2	3m : Ar = 4 -MeOC ₆ H ₄	98	96:4
3	$\mathbf{3n:} \operatorname{Ar} = 4 \operatorname{-PhC}_6 \operatorname{H}_4$	96	96:4
4	30 : $Ar = 4 - CF_3C_6H_4$	86	97:3
5	3p : Ar = 4 -ClC ₆ H ₄	88	96:4
6	$3q: Ar = 3-MeOC_6H_4$	96	96:4
7	3r : Ar = $3,5-Me_2C_6H_3$	93	96:4
8	3s : Ar = 2 -MeOC ₆ H ₄	99	97:3
9	3t : Ar = 2-naphthyl	99	96:4
10	3u : Ar = 4 -allyloxyC ₆ H ₄	80	96:4

^{*a*} All reactions were carried out with pyridine **1** (0.25 mmol) in toluene (2.0 mL). ^{*b*} Isolated yield. ^{*c*} Determined by crude ¹H NMR.

Moreover, the hydrogenation scope can be further expanded to some interesting pyridine substrates. A reduction of the vinyl group occurred under the current reaction conditions when using pyridine 1v as a substrate to give piperidine 3v in 96% yield with 94/6 dr (Table 4, entry 1). For 2-bromopyridines, an unexpected dehalogenation was observed, which provides an alternative approach for the synthesis of mono-substituted **Table 4**. *Hydrogenation of simple pyridines*^{*a*}

entry	pyridine (1)	product (3)	yield (%) ^{b,c}
1	N 1v OMe	N H 3v OMe	96 (94:6)
2	Br N 1w OMe	N H 3w OMe	80
3^d	N 1x OMe	N H 3w OMe	64
4 ^{<i>d</i>}	p-Tol N p-Tol 1y	p-Tol N p-Tol 3y	44 (98:2)
5	$RO = 4-MeC_6H_4$	RO N H 3z	58 (92:8)
6 ^e	Me N Me 1A	Me N Me O Ph 3A	51
7 ^e	Br N Me 1B	N Me O Ph 3B	68
8 ^{<i>f</i>}	Me 1C Me	Me 3C Me	59 (96:4)
9 ^g		P-Tol 3D P-Tol	75 (>99:1)

^{*a*} All reactions were carried out with pyridine **1** (0.25 mmol), alkene **4g** (10 mol %) and HB(C₆F₅)₂ (10 mol %) under H₂ (50 bar) in toluene (2.0 mL) at 100 °C for 20 h unless other noted. ^{*b*} Isolated yield. ^{*c*} The ratio (*cis/trans*) in parenthesis was determined by crude ¹H NMR. ^{*d*} The reaction was run with 20 mol % of catalyst under H₂ (75 bar) at 120 °C for 30 h. ^{*e*} The resulting piperidines were directly treated with phenylacetyl chloride and Et₃N, the yield for two steps. ^{*f*} Pyridine **1D** (1.0 mmol) was used.

piperidines (Table 4, entries 2 and 7). In comparison, the direct hydrogenation of mono-substituted pyridine **1x** required a higher catalyst loading and gave a lower yield (Table 4, entry 3). 2,4,6-Triaryl and 2,6-dialkyl substituted pyridines were hydrogenated to give moderate yields (Table 4, entries 4-6). Significantly, 2,2'-bipyridines proved to be effective substrates for the current catalytic system (Table 4, entries 8 and 9). For 6,6'-dimethyl-2,2'-bipyridine (**1C**), one of the pyridine cycles was selectively hydrogenated to give compound **3C** as the predominant product in 59% yield. While, both pyridine cycles were preferred to be reduced for 6,6'-ditolyl-2,2'-bipyridine (**1D**). Moreover, under the current conditions, pyridine **1E** can be hydrogenated to furnish racemic isosolenopsin A in 60% yield with 93/7 dr (Scheme 2).

Our strategy for generation of borane catalysts in situ from alkenes and Piers' borane also provides a possible opportunity to achieve the asymmetric hydrogenation of pyridines by using chiral alkenes. Several chiral dienes¹⁵ were therefore tentatively tested for the asymmetric hydrogenation of pyridine 1C. Unfortunately, only moderate conversion and very low enantioselectivity (<10% ee) were obtained. The asymmetric version of this transformation is still a formidable challenge and awaits further studies. Alternatively, both enantioisomers of compounds 3C can be easily accessed via a simple resolution process using L- or D-tartaric acid as a resolution reagent (Scheme 3). The absolute configuration was determined by the X-ray structure of crystal 1. The interesting structures of enantiomericallyl pure compounds 3C make them have a potential utilization as chiral organocatalysts or ligands for asymmetric catalysis.

Scheme 3. Resolution of racemic piperidine.

In summary, a broad range of pyridines have been directly hydrogenated under H_2 using catalytic amount of simple borane catalysts generated *in situ* from commercially available alkenes and $HB(C_6F_5)_2$ to furnish important piperidines in high yields with excellent *cis*-stereoselectivities. To the best of our knowledge, the current study represents the first successful example of metal-free catalytic hydrogenation of pyridines with H_2 . Further studies on searching for more efficient borane catalysts, expanding substrate types, and exploring asymmetric transformations, are underway in our laboratory.

ASSOCIATED CONTENT

Supporting Information. Procedures for the synthesis of pyridines, hydrogenation of pyridines, and resolution of racemic piperidine, characterization of products, X-ray structures of **3c**, **3D**, and crystal **1**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

haifengdu@iccas.ac.cn

Funding Sources

No competing financial interests have been declared.

ACKNOWLEDGMENT

We are grateful for the generous financial support from the National Natural Science Foundation of China (20802079, 21222207), and the National Basic Research Program of China (973 program, 2011CB808600).

REFERENCES

 For selected reviews, see: (a) Baliah, V.; Jeyaraman, R.; Chandrasekaran, L. Chem. Rev. 1983, 83, 379-423. (b) Laschat, S.; Dickner, T. Synthesis 2000, 1781-1813. (c) Weintraub. M.; Sabol, J. S.; Kane, J. M.; Borcherding, D. R. Tetrahedron 2003, 59, 2953-2989. (d) Buffat, M. G. P. Tetrahedron 2004, 60, 1701-1729. (e) Kaellstroem, S.; Leino, R. Bioorg. Med. Chem. 2008, 16, 601-635. (f) Merino, P.; Tejero, T.; Greco, G.; Marca, E.; Delso, I.; Gomez-SanJuan, A.; Matute, R. Heterocycles 2012, 84, 75-100.

(2) Rylander, P. N. Catalytic Hydrogenation in Organic Syntheses; Academic Press: New York, 1979.

(3) For examples of heterogeneous hydrogenation, see: (a) Freifelder, M.; Stone, G. R. J. Org. Chem. 1961, 26, 3805-3808. (b) Walker, G. N. J. Org. Chem. 1962, 27, 2966-2967. (c) Freifelder, M. J. Org. Chem. 1964, 29, 2895-2898. (d) Lunn, G.; Sansone, E. B. J. Org. Chem. 1986, 51, 513-517. (e) Piras, L.; Genesio, E.; Ghiron, C.; Taddei, M. Synlett 2008, 1125-1128. (f) Cheng, C.; Xu, J.; Zhu, R.; Xing, L.; Wang, X.; Hu, Y. Tetrahedron 2009, 65, 8538-8541. (g) Irfan, M.; Petricci, E.; Glasnov, T. N.; Taddei, M.; Kappe, C. O. Eur. J. Org. Chem. 2009, 1327-1334. For asymmetric reactions: (h) Blaser, H.-U.; Hönig, H.; Studer, M.; Wedemeyer-Exl, C. J. Mol. Catal. A: Chem. 1999, 139, 253-257. (i) Hegedűs, L.; Háda, V.; Tungler, A.; Máthé, T.; Szepesy, L. Appl. Catal. A: Gen. 2000, 201, 107-114. (j) Raynor, S. A.; Thomas, J. M.; Raja, R.; Johnson, B. F. G.; Bell, R. G.; Mantle, M. D. Chem. Commun. 2000, 1925-1926. (k) Lei, A.; Chen, M.; He, M.; Zhang, X. Eur. J. Org. Chem. 2006, 4343-347. (l) Glorius, F.; Spielkamp, N.; Holle, S.; Goddard, R.; Lehmann, C. W. Angew. Chem. Int. Ed. 2004, 43, 2850-2852.

(4) For examples of homogeneous hydrogenation, see: (a) Baralt, E.;
Smith, S. J.; Hurwitz, J.; Horváth, I. T.; Fish, R. H. J. Am. Chem. Soc.
1992, 114, 5187-5196. (b) Studer, M.; Wedemeyer-Exl, C.; Spindler, F.;
Blaser, H.-U. Monatsh. Chem. 2000, 131, 1335-1343. (c) Wang, X.-B.;
Zeng, W.; Zhou, Y.-G. Tetrahedron Lett. 2008, 49, 4922-4924. (d)
Tang, W.; Sun, Y.; Xu, L.; Wang, T.; Fan, Q.; Lam, K.-H.; Chan, A. S.
C. Org. Biomol. Chem. 2010, 8, 3464-3471. (e)Tang, W.; Tan, J.; Xu, L.;
Lam, K.-H.; Fan, Q.; Chan, A. S. C. Adv. Synth. Catal. 2010, 352, 1055-1062.

(5) Rueping, M.; Antonchick, A. P. Angew. Chem. Int. Ed. 2007, 46, 4562-4565.

(6) For heterogeneous hydrogenation, see: (a) Hamiton, T. S.; Adams, R. J. Am. Soc. Chem. **1928**, 50, 2260-2263. (b) Seller, R. V.; Reshetov, P. V.; Kriven'ko A. P. Chem. Heterocycl. Compd. **2001**, *37*, 797-821 and references therein. (c) Zacharie, B.; Moreau, N.; Dockendorff, C. J. Org. Chem. **2001**, *66*, 5264-5265. (7) For homogeneous hydrogenation, see: (a) Legault, C. Y.; Charette, A. B. J. Am. Chem. Soc. 2005, 127, 8966-8967. (b) Ye, Z.-S.; Chen, M.-W.; Chen, Q.-A.; Shi, L.; Duan, Y.; Zhou, Y.-G. Angew. Chem. Int. Ed. 2012, 51, 10181-10184. (c)Wu, J.; Tang, W.; Pettman, A.; Xiao, J. Adv. Synth. Catal. 2013, 355, 35-40.

(8) For a seminal work, see: Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. *Science* **2006**, *314*, 1124-1126.

(9) For selected reviews, see: (a) Stephan, D. W. Org. Biomol. Chem.
2008, 6, 1535-1539. (b) Stephan, D. W. Dalton Trans. 2009, 3129-3136. (c) Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2010, 49, 46-76. (d) Soós, T. Pure Appl. Chem. 2011, 83, 667-675. (e) Stephan, D. W.; Greenberg, S.; Graham, T. W.; Chase, P.; Hastie, J. J.; Geier, S. J.; Farrell, J. M.; Brown, C. C.; Heiden, Z. M.; Welch, G. C.; Ullrich, M. Inorg. Chem. 2011, 50, 12338-12348. (f) Stephan, D. W. Org. Biomol. Chem. 2012, 10, 5740-5746. (g) Erker, G. Pure Appl. Chem. 2012, 84, 2203-2217. (h) Paradies, J. Synlett 2013, 24, 777-780.

(10) For selected examples, see: (a) Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew. Chem. Int. Ed. 2007, 46, 8050-8053. (b)
Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Fröhlich, R.; Erker, G. Angew. Chem. Int. Ed. 2008, 47, 7543-7546. (c) Sumerin, V.; Schulz, F.; Atsumi, M.; Wang, C.; Nieger, M.; Leskelä, M.; Repo, T.; Pyykkö, P.; Rieger, B. J. Am. Chem. Soc. 2008, 130, 14117-14119. (d) Jiang, C.; Blacque, O.; Berke, H. Chem. Commun. 2009, 5518-5520. (e) Rokob, T. A.; Hamza, A.; Stirling, A.; Pápai, I. J. Am. Chem. Soc. 2009, 131, 2029-2036. (f) Axenov, K. V.; Kehr, G.; Fröhlich, R.; Erker, G. J. Am. Chem. Soc. 2009, 131, 3454-3455. (g) Chen, D.; Wang, Y.; Klankermayer, J. Angew. Chem. Int. Ed. 2010, 49, 9475-9478. (h) Erős, G.; Mehdi, H.; Pápai, I.; Rokob, T. A.; Király, P.; Tárkányi, G.; Soós, T. Angew. Chem. Int. Ed. 2010, 49, 6559-6563. (i) Farrell, J. M.; Hatnean, J. A.; Stephan, D. W. J. Am. Chem. Soc. 2012, 134, 15728-15731.

(11) (a) Geier, S. J.; Chase, P. A.; Stephan, D. W. Chem. Commun.
2010, 46, 4884-4886. (b) Erős, G.; Nagy, K.; Mehdi, H.; Pápai, I.; Nagy, P.; Király, P.; Tárkányi, G.; Soós, T. Chem. Eur. J. 2012, 18, 574-585.

(12) (a) Wang, H.; Fröhlich, R.; Kehr, G.; Erker, G. Chem. Commun.
2008, 5966-5968. (b) Greb, L.; Oña-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. Angew. Chem. Int. Ed. 2012, 51, 10164-10168. (c) Inés, B.; Palomas, D.; Holle, S.; Steinberg, S.; Nicasio, J. A.; Alcarazo, M. Angew. Chem. Int. Ed. 2012, 51, 12367-12369. (d) Reddy, J. S.; Xu, B.-H.; Mahdi, T.; Fröhlich, R.; Kehr, G.; Stephan, D. W.; Erker, G. Organometallics 2012, 31, 5638-5649. (e) Greb, L.; Daniliuc, C.-G.; Bergander, K.; Paradies, J. Angew. Chem. Int. Ed. 2013, 52, 5876-5879. (f) Hounjet, L. J.; Bannwarth, C.; Garon, C. N.; Caputo. C. B.; Grimme, S.; Stephan, D. W. Angew. Chem. Int. Ed. 2013, 52, 7492-7495. (g) Wang Y.; Chen, W.; Lu, Z.; Li, Z. H.; Wang, H. Angew. Chem. Int. Ed. 2013, 52, 7496-7499. (h) Greb, L.; Tussing, S.; Schirmer, B.; Oña-Burgos, P.; Kaupmees, K.; Lõkov, M.; Leito, I.; Grimme, S.; Paradies, J. Chem. Sci. 2013, 4, 2788-2796.

(13) (a) Ménard, G.; Stephan, D. W. J. Am. Chem. Soc. 2010, 132, 1796-1797. (b) Ménard, G.; Stephan, D. W. Angew. Chem. Int. Ed. 2011, 50, 8396-8399. (c) Xu, B.-H.; Kehr, G.; Fröhlich, R.; Wibbeling, B.; Schirmer, B.; Grimme, S.; Erker, G. Angew. Chem. Int. Ed. 2011, 50, 7183-7186. (d) Mahdi, T.; Heiden, Z. M.; Grimme, S.; Stephan, D. W. J. Am. Chem. Soc. 2012, 134, 4088-4091. (e) Chernichenko, K.; Madarász, Á.; Pápai, I.; Nieger, M.; Leskelä, M.; Repo, T. Nat. Chem. 2013, 5, 718-723.

(14) Mahdi, T.; del Castillo, J. N.; Stephan, D. W. Organometallics 2013, 32, 1971-1978. For relevant references, see: (a) Geier, S. J.; Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 3476-3477. (b) Geier, S. J.; Gille, A. L.; Gilbert, T. M.; Stephan, D. W. Inorg. Chem. 2009, 48, 10466-10474.

(15) Liu, Y.; Du, H. J. Am. Chem. Soc. 2013, 135, 6810-6813.

(16) (a) Parks, D. J.; Spence, R. E. v H.; Piers, W. E. Angew. Chem. Int. Ed. Engl. **1995**, 34, 809-811. (b) Parks, D. J.; Piers, W. E.; Yap, G. P. A. Organometallics **1998**, 17, 5492-5503.

(17) Jones, T. H.; Blum, M. S. Tetrahedron 1982, 38, 1949-1958.

Journal of the American Chemical Society

