A New Type of Complex Reagent, R4Pb / TiCl4

Yoshinori Yamamoto*, Jun-ichi Yamada, Tetsuya Asano Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980, Japan

(Received in Germany 10 February 1992)

Abstract: Tetraalkylleads (R_4Pb) reacted quite smoothly with aldehydes R'CHO in the presence of TiCl₄ to produce the corresponding alcohols (RCHOHR') in high to good yields. The reagent system, $R_4Pb/TiCl_4$, exhibited high chemoselectivity; only aldehydes underwent the alkylation in the presence of ketones. Further, the new reagent exhibited high 1,2- and 1,3- asymmetric induction. The transfer order of alkyl groups in the reaction of aldehydes with mixed tetraalkylleads/TiCl₄ was determined; Me>Et>i-Pr>>n-Bu.

Introduction

Organomagnesium, lithium, copper compounds are widely used carbanionic alkylating reagents which are useful for the C-C bond formation of carbonyl compounds. Since the mid-1970s, a new current has appeared in this field. Several air-stable, storable, and non-carbanionic reagents, normally used under nonbasic conditions, have been developed. Such reagents include allylic silanes and stannanes. Unfortunately, however, transferable groups of previous non-carbanionic reagents are limited to particular functional groups such as allyl^{1b,c}, alkynyl², and enols^{1a}. The transfer of alkyl moiety from group 14 organometallic compounds was entirely unknown despite its potential synthetic importance.³ Previously we reported that R₄Pb/TiCl₄ complex reagent reacted quite smoothly with aldehydes to give the corresponding alkylated alcohol in high yields.⁴ We now report full details on the reaction of this reagent system with aldehydes.

Reaction of R₄Pb/TiCl₄ with Aldehydes. The reaction of aldehydes with R₄Pb/TiCl₄ reagents was examined (Table 1) (eq 1). The transfer of an ethyl group occurred rapidly in essentially quantitative yields (entries 1-3). The transfer of butyl group was relatively slow in comparison with the ethyl transfer (entries 4-7). As shown in entries 4-12, the transfer of secondary alkyl groups such as cyclohexyl and iso-propyl was slow even at 0°C, resulting in low yields of the alkylated products. When the reaction was incomplete (entries 4-12), the starting aldehyde was recovered, and excess Et₄Pb or nBu₄Pb was also recovered in entries 1-7. However, excess (C₆H₁₁)₄Pb and iPr₄Pb were not recovered in entries 8-12. It is widely known that the cleavage of C-Pb bond often takes place in the presence of Lewis acids.⁵ Perhaps, tetra-sec-alkylleads would be decomposed by the Lewis acid more readily in comparison with tetra-n-alkylleads.

A possibility that RTiLn intervenes as a reactive intermediate seems to be eliminated by the following reasons. The n-alkyl and even sec-alkyl groups underwent the transfer reaction. It is well known that n-alkyl and sec-alkyl titanium reagents of a type R-TiCl₃ easily undergo β -hydride elimination.⁶ When BF₃•OEt₂ was used instead of TiCl₄, a large excess of Et₄Pb was required to obtain the desired alcohol in good yield. For example, in the reaction of benzaldehyde, the use of 1.4 equiv BF₃ and 2.4 equiv Et₄Pb resulted in 13% yield and the use of 1.1

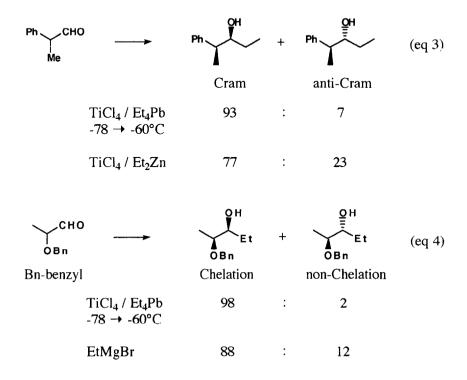
equiv BF₃ and 16 equiv Et₄Pb gave the ethylated alcohol in 61% yield. Formation of the alcohol by use of BF₃ clearly indicates that transmetallation from R₄Pb to RBLn does not take place at low temperatures (-78°C-30°C), since RBLn does not alkylate the aldehyde under the reaction conditions.

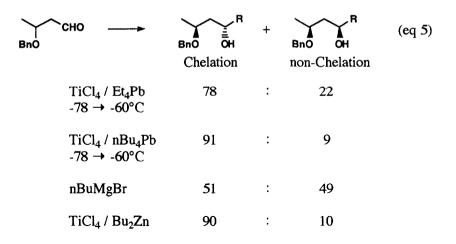
	R4Pb R		reaction cond			
entry		R'CHO R'	temp(°C)	R4Pb (equiv)	isolated yield of RCHR ¹ OH ^{, %}	
1	Et	C ₆ H ₅	-78 → -30	1.8	96	
2	Et	C ₆ H ₅	-78 → -30	1.3	98	
3	Et	CH3(CH2)6	-78 → -30	1.3	94	
4	nBu	C ₆ H ₁₁	-78 → -30	1.3	70	
5	nBu	C ₆ H ₁₁	$-78 \rightarrow 0$	1.3	84	
6	nBu	CH3(CH2)6	-78 → -30	1.3	73	
7	nBu	CH ₃ (CH ₂) ₆	-78 → 0	1.3	88	
8	C6H11	C ₆ H ₁₁	-78 → -30	1.3	32	
9	C ₆ H ₁₁	C ₆ H ₁₁	-78 → 0	2.0	38	
10	C ₆ H ₁₁	CH ₃ (CH ₂) ₆	-78 → -30	1.3	41	
11	C ₆ H ₁₁	CH3(CH2)6	-78 → 0	2.0	46	
12	iPr	CH3(CH2)6	-78 → 0	2.0	41	

Table 1. The Reaction of Aldehydes with R4Pb / TiCl4^a

^a TiCl₄-CH₂Cl₂ solution (1M, 1.2 equiv) was used.

$$R'CHO + R_4Pb / TiCl_4 \xrightarrow{CH_2Cl_2} R'CHR \qquad (eq 1)$$


The addition order of R₄Pb, TiCl₄, and aldehydes exerts an influence on the yield of the product, also suggesting that RTiLn is not a reactive intermediate. As shown in Table 1, normally, to a CH₂Cl₂ solution of aldehydes was added at -78°C a CH₂Cl₂ solution of TiCl₄, and then R₄Pb/CH₂Cl₂ solution was added. On the other hand, a clean reaction did not occur in the case of reversed addition; (i) R₄Pb, (ii) TiCl₄ and then (iii) aldehydes. Presumably, transmetallation from R₄Pb to TiCl₄ takes place in the reversed addition (eq 2).


$$R_4Pb + TiCl_4 \longrightarrow RTiCl_3 + R_3PbCl$$
 (eq 2)

In fact, it is known that EtTiCl₃ can be prepared by treatment of Et₄Pb with TiCl₄.⁷ Formation of hydride reduction products R'CH₂OH was not observed in the reaction of R₄Pb/TiCl₄ with R'CHO, whereas the reaction of n-Bu₄Sn with p-nitrobenzldehyde in the presence of TiCl₄ gave p-nitrobenzl alcohol.⁸ Facile transfer of R from R₄Pb in comparison with R₄Sn is due to the weak bondstrength of the C-Pb bond.

Chemo- and Stereoselective Reactions. The alkylation of aldehydes took place chemoselectively in the presence of ketones. For example, the reaction of n-Bu₄Pb (1.3 mmol)-TiCl₄ (2.4 mmol) with octanal (1 mmol) in the coexistence of 2-octanone (1 mmol) afforded 5-dodecanol, which was an alkylated product of octanal, in 89% yield, and 2-octanone was recovered in essentially quantitative yield. Cyclohexanone and related ketones did not react with n-Bu₄Pb/TiCl₄ even at room temperature.

Very high 1.2- and 1.3-asymmetric induction was realized with this reagent (eq 3-5). As shown in eq 3, Et₄Pb/TiCl₄ produced high Cram selectivity (93/7) whereas Et₂Zn/TiCl₄ gave relatively low selectivity (77/23).⁹ The ethylation of 2-benzyloxypropanal with Et₄Pb/TiCl₄ gave 2-benzyloxy-3-pentanol in 81% yield along with 7% of the recovered aldehyde. The ratio of chelation/non-chelation product was 98/2 (eq 4). This selectivity was higher than that of the ethylation with EtMgBr. However, other reagents can also produce high diastereoselectivity in 1.2-asymmetric induction of α -oxygen substituted aldehydes, ¹⁰ since α -alkoxyaldehydes are an ideal system for chelation control. The ethylation of the β-alkoxyaldehyde gave the adduct in 66% yield along with the recovered aldehyde (24%) (eq 5). The diastereoselectivity with n-Bu₄Pb/TiCl₄ was 91/9, and that with n-Bu₂Zn/TiCl₄ was 90/10.¹¹

As mentioned above, we do not think that RTiLn intervenes as a reactive intermediate. Instead, the aldehyde carbon which is positively charged by coordination of TiCl₄ to the oxygen atom may attack the carbon adjacent to Pb (-C-PbR₃) through S_E2 mechanism. However, this does not exclude the possibility of an interaction between R4Pb and TiCl₄. The color of the reaction mixture changed violet when R4Pb was added to a solution of aldehydes and TiCl₄. The violet color must be due to the presence of Ti(III) species, suggesting that charge transfer between TiCl₄ and R4Pb takes place in this three component system. Clearly, further investigation is needed to clarify the reaction mechanism.

Selective Transfer of One of the Four Alkyl Groups. Only one of the four alkyl groups in R₄Pb can be utilized in the alkylation reaction. To overcome this problem, we investigated the transfer order of alkyl groups in the mixed tetraalkylleads RPbR'₃. The results are summarized in Table 2.

Isolated Yield, %			Relative Transfer Rate ^t	
1 (R)	2	3	k(R)/K(Et)	
Мс	62c	11	16	
Et	96	-	1	
iPr	15	71	0.6	
nBu	1.7	98	0.06	

Table 2. Transfer Order of RPbEt3^a

^a RPbEt₃ was prepared by the reaction of Et₃PbBr with either RMgX or RLi. The transfer order was examined in the reaction of 1 (1.8 mmol) with PhCHO (1 mmol) in the presence of TiCl₄ (1.2 mmole) in CH₂Cl₂. ^b The yields of **3** were divided by three. ^c Trace amounts of the chloride, presumably arising from the further chloride substitution reaction of **2**, were formed along with **2**.

The reaction of RPbEt₃ (1) with benzaldehyde in the presence of TiCl₄ gave a mixture of the R-transfer (2) and Et-transfer (3) products (eq 6). As is obvious from the Table, the transfer order is Me>Et>iPr>nBu. This order is in good agreement with the order of the bromine cleavage of the C-Sn bond of mixed tetraalkyltins.¹² Therefore, the C-C bond formation under the present conditions, R₄Pb-TiCl₄, must proceed through an S_E2 process.

$$\begin{array}{cccc} RPbEt_{3} + PhCHO & \xrightarrow{} & PhCHR + PhCHEt & (eq 6) \\ & & & \\ 1 & & & 2 & 3 \end{array}$$

Since it was revealed that the transfer of Bu group was very sluggish, we examined the reactions of Bu_3PbR .¹³ The results are summarized in Table 3. Since use of TiCl₄ as a Lewis acid caused decomposition of the alkynyltributyllead, BF_3 •OEt₂ was utilized (entries 1 and 2). The propargyl alcohols were isolated in 64 and 38 % yield, respectively. The rest was the recovered aldehyde. The alkylation proceeded smoothly with TiCl₄ (entries 3 and 4). Here again, the starting aldehyde was recovered, but the reaction was relatively clean since it was not accompanied by any side reactions. The reaction of iPr₄Pb with the same aldehyde gave the adduct in 41% yield and thus iPrPbBu₃ was superior to iPr₄Pb. Although the vinylation of aldehyde resulted in failure (entry 5), the reaction with the corresponding acetal gave the vinylation product in 37% yield along with the recovered acetal (entry 6).

The reaction of PhPbBu₃ with benzaldehyde in the presence of TiCl₄ afforded the phenylation-reduction product (57%) along with the recovered aldehyde (eq 7). It is now clear that use of RPbBu₃ (R=alkyl, alkynyl, vinyl and aryl) enables the transfer of the R group selectively to electrophiles. This development not only expands a synthetic usefulness of organolead compounds, but also provides a suggestion on the mechanism of R₄Pb-TiCl₄ system.

 $PhPbBu_3 + PhCHO \longrightarrow PhCH_2Ph$ (eq 7)

Entry	RPbBu3 R	Electrophile R'CHO	Lewis acid,	Temp. °C	Isolated yield %, RCHR' OH
1	n-Bu-C≡C-	PhCHO	BF ₃ •OEt ₂	-78→-30	64
2	n-Bu-C≡C-	n-C7H15CHO	BF3•OEt2	-78→-30	38
3	iPr	n-C7H15CHO	TiCl4	-78→-30	61
4	Me	n-C7H15CHO	TiCl4	-78	69b
5	CH ₂ =CH-	n-C7H15CHO	TiCl4	-78	trace
6	CH ₂ =CH-	n-C7H15C(OMe)	2 TiCl4	-78	37

Table 3. Alkynylation, alkylation, and vinylation via RPbBu3^a

^a To a CH₂Cl₂ solution of aldehyde (0.5 mmol) and RPbBu₃ (1.0~1.2 eq) was added BF₃•OEt (1.2 eq) at -78°C (entries 1 and 2). When TiCl₄ was used (entries 3-6), the order of addition was (i) electrophile, (ii) TiCl₄, and then (iii) RPbBu₃. ^b Small amounts of chloride (n-C₇H₁₅CHC1Me) were produced as a by-product.

Experimental Section

Tetraalkyllead compounds were prepared according to the reported procedure.5

 $3RM + PbCl_2 + RI \longrightarrow R_4Pb + 2MCl + MI$ M = Li or MgX

Preparation of Tetraethyllead

Tetraethyllead was prepared by the method described in the literature.¹² To a stirred suspension of 5.6 g (20 mmol) of PbCl₂ in 25 ml of dry ether containing 2.6 ml (33 mmol) of EtI was added a solution of EtMgBr, prepared from 6.0 ml (80 mmol) of EtBr and 1.7 g (70 mg atom) of Mg, in 50 ml of dry ether at room temperature. The mixture was refluxed under N₂ for 3 hours. Then, the reaction was treated with H₂O at 0°C. The organic layer was separated and dried over MgSO₄. The product was purified by Kugelrohr distillation (82% yield); bp 78°C/10 mmHg.

Preparation of Tetraisopropyllead⁵

To a stirred suspension of 5.6 g (20 mmol) of PbCl₂ in 30 ml of dry ether containing 2.5 ml (25 mmol) of iPrI was added a solution of iPrMgBr, prepared from 6.6 ml (70 mmol) of iPrBr and 1.7 g (70 mg atom) of Mg, in 50 ml of dry ether at room temperature. The mixture was refluxed under N₂ for 6 hours. Then, after the usual workup (see Preparation of Tetraethylead), the product was purified by Kugelrohr distillation (66% yield); bp 100°C/5 mmHg.

Preparation of Tetracyclohexyllead⁵

To a stirred suspension of 5.6 g (20 mmol) of PbCl₂ in 25 ml or dry ether containing 3.2 ml (25 mmol) of $C_6H_{11}I$ was added a solution of $C_6H_{11}MgBr$, prepared from 6.6 ml (70 mmol) of $C_6H_{11}Br$ and 1.7 g (70 mg atom) of Mg, in 50 ml of dry ether at room temperature. The mixture was refluxed under N₂ for 6 hours. After the usual workup (see <u>Preparation of Tetraethylead</u>), ether was evaporated, and the residue was washed with EtOH. Column chromatography on silica gel (n-hexane) gave the product as white crystals (18 % yield) which decomposed gradually on standing at room temperature.

Preparation of tetrabutyllead⁵

A solution of nBuLi in hexane (1.6 M, 80 mmol) was added to a stirred suspension of 5.56 g (20 mmol) of PbCl₂ in 30 ml of dry ether containing 4.0 ml (35 mmol) of BuI at room temperature during 20 minutes. The mixture was stirred at room temperature under N₂ overnight. After the usual workup (see <u>Preparation of Tetraethyllead</u>), the product was purified by Kugelrohr distillation (94% yield); bp 140°C/1 mmHg.

Reaction of R₄Pb with Aldehydes (General Procedure)

All reactions were carried out on 1 mmol scale under argon. The procedure of entry 1 of Table 1 is representative. To a solution of 1 mmol of benzaldehyde in 2 ml of dry CH_2Cl_2 was added at -78°C a solution of TiCl₄ in CH_2Cl_2 (1 M, 1.2 mmol), and then Et₄Pb-CH₂Cl₂ solution (1 M, 1.8 mmol) was added. The mixture was gradually warmed to -30°C. Then, the reaction was treated with aqueous NaHCO₃-MeOH. The organic layer was separated and dried over MgSO₄. The product was isolated by column chromatography on silica gel (entries 1-3 of Table 1) or on alumina (entries 4-12 of Table 1), by using n-hexane-ether as an eluant. The structures of products were determined by using ¹H-NMR (60 MHz) by comparison with the authentic alcohols which were prepared by reactions of the corresponding aldehydes with either RMgBr or RLi.

Reaction of Et₄Pb with racemic 2-Phenylpropanal

To a solution of 0.13 ml (1 mmol) of 2-phenylpropanal (from Nakarai Chemical Ind.) in 2 ml of dry CH₂Cl₂ was added at -78°C a solution of TiCl₄ in CH₂Cl₂ (1 M, 1.2 mmol), and then Et₄Pb-TiCl₄ solution (1 M, 1.3

mmol) was added. The mixture was gradually warmed to -60°C. After the usual workup (see <u>Reaction of R₄Pb</u> with Aldehydes), the products were purified by column chromatography on silica gel (9:1, n-hexane-ether). The retention times of two isomers (the Cram adduct and the anti-Cram adduct) were identical with those of authentic samples which were prepared by the reaction of EtMgBr with 2-phenylpropanal.¹³ The product ratio was determined by GLC.

Preparation of 2-Benzyloxypropanal

This aldehyde¹⁴ was prepared from ethyl lactate (Tokyo Kasci Kogyo Co., LTD.) via ethyl 2benzyloxypropanoate, followed by reduction with LAH, and then Swern oxidation according to the procedure described in the literature.¹⁵

Reaction of Et₄Pb with 2-Benzyloxypropanal

To a solution of 154.4 mg (0.94 mmol) of 2-benzyloxypropanal in 2 ml of dry CH_2Cl_2 was added a solution of TiCl₄ in CH_2Cl_2 (1 M, 1.1 mmol) at -78°C, and then Et₄Pb-TiCl₄ solution (1 M, 2.0 mmol) was added. The mixture was gradually warmed to -60°C. After the usual workup (see <u>Reaction of R₄Pb with Aldehydes</u>), the products were purified by column chromatography on silica gel (9:1, n-hexane-ether). The retention times of two isomers were identical with those of authentic samples which were prepared by the reaction of EtMgBr with 2-benzyloxpropanal.¹⁶ The product ratio was determined by GLC.

Reaction of Et₄Pb with racemic 3-Benzyloxybutanal

3-Benzyloxybutanal was prepared by a modified method of previous literature.¹⁷ To a solution of 170.6 mg (0.96 mmol) of 3-benzyloxybutanal in 2 ml of dry CH_2Cl_2 was added a solution of TiCl₄ in CH_2Cl_2 (1 M, 1.2 mmol), and then Et₄Pb-TiCl₄ solution (1 M, 2.0 mmol) was added at -78°C. The mixture was gradually warmed to -60°C. After the usual workup (see <u>Reaction of R₄Pb with Aldehydes</u>), the products were purified by column chromatography on silica gel (9:1, n-hexane-ether). The retention times of two isomers were identical with those of authentic samples which were prepared by the reaction reaction of EtMgBr with 3-benzyloxybutanal¹⁸. Stereochemical assignment was carried out on the basis of the ¹³C-NMR (67.5 MHz) spectra. The signals of the carbon atoms bearing the benzyloxy and hydroxyl groups in the major product (δ 72.8 and 69.8, respectively) appear at the relatively higher field in comparison with the corresponding signals of the minor product (δ 76.0 and 73.0, respectively)¹¹ The product ratio was determined by GLC.

Reaction of n-Bu₄Pb with racemic 3-Benzyloxybutanal

To a solution of 102.6 mg (0.58 mmol) of 3-benzyloxybutanal in 1.2 ml of dry CH_2Cl_2 was added a solution of TiCl₄ in CH_2Cl_2 (1 M, 0.7 mmol), and then Et₄Pb-TiCl₄ solution (1 M, 1.2 mmol) was added at -78°C. The mixture was gradually warmed to -60°C. After the usual workup (see <u>Reaction of R₄Pb with Aldehydes</u>), purification through a column chromatography on alumina (9:1, n-hexane-ether) followed by silica gel chromatography (benzene) gave the products in 46% yield. Stereochemical assignment and the determination of product ratio were carried out by a similar method described previously.

The major product; ¹³C-NMR (270MHz) δ 72.8 (C-OBn), 68.5 (C-OH)

The minor product; ¹³C-NMR (270MHz) & 76.2 (C-OBn), 71.7 (C-OH)

Preparation of Mixed Tetraalkylleads RPbR'3

Mixed tetraalkylleads were prepared by the reaction of $R'_3PbX(X=Br, or Cl)$ with ether RLi or RMgBr according to the literature.⁵

$$R'_4Pb + Br_2 \longrightarrow R'_3PbBr \xrightarrow{RLi \text{ or}} R'_3PbR$$

Treatment of Et₄Pb or n-Bu₄Pb with Br₂ gave Et₃PbBr (72%) or n-Bu₃PbBr (74%), respectively. Preparation of mixed tetraalkylleads is summarized in Table 4.

entry	RM	R'3PbBr	R'3PbR	yield,%
1	MeLi	Et3PbBr	Et ₃ PbMe	81
2	iPrMgBr	Et ₃ PbBr	Et ₃ PbiPr	85
3	nBuLi	Et ₃ PbCl	Et ₃ PbnBu	92
4	PhLi	Et3PbBr	Et ₃ PbPh	87
5	MeLi	nBu3PbBr	nBu3PbMe	94
6	iPrMgBr	nBu3PbBr	nBu3PbiPr	77
7	PhLi	nBu3PbBr	nBu3PbPh	90
8	CH ₂ =CHMgBr	nBu3PbBr	nBu3PbCH=CH2	91

 Table 4.
 Preparation of Mixed Tetraalkylleads

Preparation of Triethyllead Bromide and Tributyllead Bromide⁵

To a solution of 6.13 g (19 mmol) of Et_4Pb in 75 ml of dry ether was added a solution of 1.1 ml (21 mmol) of Br_2 in 35 ml of dry ether at -70°C. The mixture was gradually warmed to room temperature. Filtration through silica gel layer (ether, then CH_2Cl_2) gave the product. Tributyllead bromide was prepared similarly.

Preparation of Mixed Tetraalkylleads⁵

The procedure of entry 3 of Table 4 is representative. To a solution of 919 mg (2.8 mmol) of Et₃PbCl (from Alfa Products) in 6 ml of dry ether was added a solution of nBuLi in hexane (1.5 M, 3.3 mmol) at -78°C under N₂. The mixture was gradually warmed to 0°C. Then, the reaction was treated with H₂O at 0°C. The organic layer was separated and dried over MgSO₄. The product was purified by Kugelrohr distillation, except for nBu₃PbiPr which was purified by column chromatography on silica gel using n-hexane as eluant. A similar procedure was used when R'₃PbBr was reacted with RM.

Et₃PbMe; bp 80°C/16 mmHg. Et₃PbiPr; bp 85°C/5 mmHg

Et₃PbnBu; bp 95°C/5 mmHg. Et₃PbPh; bp 100°C/1 mmHg

nBu₃PbMe; bp 110°C/1 mmHg. nBu₃PbPh; bp 150°C/0.1 mmHg

nBu₃PbCH=CH₂; bp 92°C/0.1 mmHg; ¹H-NMR (270 MHz) δ 7.71 (dd, 1H, J=0.8, 19.7 Hz, J_{Pb-c} (coupling to ²⁰⁷Pb)=63 Hz), 6.32 (dd, 1H, J=2.3, 9.8 Hz, J_{Pb-c}=91 Hz), 5.67 (dd, 1H, J=2.3, 19.7 Hz, J_{Pb-c}=44 Hz).

Hexynyltriethyllead¹⁹

A solution of 1.9 g (5 mmol) of Et_3PbBr in 20 ml of dry Et_2O was added to a solution of NaOMe, prepared from 0.14 g (6 mmol) of Na, in 2 ml of dry MeOH at 0°C under N₂. Then, the mixture was stirred at room

temperature for 1.5 hours. After the removal of NaBr by using a centrifuge, the solution was concentrated in vacuo. The residue was dissolved in 5 ml of benzene, and 0.98 ml (8.5 mmol) of 1-hexyne was added to this solution. The reaction mixture was stirred at room temperature overnight. The product was purified by Kugelrohr distillation: bp 80-85°C/0.1 mmHg.

Hexynyltributyllead

This compound was prepared by use of the procedure described above employing nBu₃PbBr instead of Et₃PbBr.; 140°C/0.1 mmHg

Reaction of Et₃PbR with Benzaldehyde

The transfer order was examined in the reaction of Et₃PbR (1.8 mmol) with benzaldehyde (1 mmol) in the presence of TiCl₄ (1.2 mmol) in dry CH₂Cl₂. The reaction of Et₃PbMe of Table 2 is representative. To a solution of 0.10 ml (1 mmol) of benzaldehyde in 2 ml of dry CH₂Cl₂ was added at -78°C a solution of TiCl₄ in CH₂Cl₂ (1 M, 1.2 mmol), and then a solution of 559 mg (1.8 equiv) of Et₃PbMe in 1 ml of dry CH₂Cl₂ was added. The mixture was gradually warmed to -30°C. After the usual workup (see <u>Reaction of R₄Pb with Benzaldehyde</u>), the product was purified by column chromatography on silica gel (25:1, n-hexane-ethyl acetate then 10:1, n-hexane-ethylacetate). The yields of products were estimated on the basis of the integrated intensities of either ¹H-NMR spectra (90 MHz) or GLC. A small amount of 1-chloroethylbenzene was obtained (about 5%). The yield of this product was counted as a yield of the Me-transfer product.

Preparation of Octyl Aldehyde Dimethyl Acetal

This compound was prepared by the reported procedure.²⁰ Treatment of octanal (10 mmol) with trimethyl orthoformate (50 mmol) in the presence of a catalytic amount of TsOH gave octanal dimethyl acetal in 93% yield.; ¹H-NMR (270 MHz) δ 4.35 (t, 1H, J=5.5 Hz), 3.32 (s, 6H)

Reaction of n-Bu₃PbR with Electrophiles

The procedure of entry 1 of Table 3 is representative. To a solution of 0.5 ml (0.5 mmol) of benzaldehyde in 1 ml of dry CH_2Cl_2 was added 0.08 ml (0.6 mmol) of $BF_3 \cdot Et_2O$ at -78°C, and then a solution of 0.28 g (0.6 mmol) of hexynyltributyllead in 0.5 ml of dry CH_2Cl_2 was added. The mixture was gradually warmed to -30°C, and subsequently the reaction was treated with aqueous NaHCO3. In entries 5 and 6 (Table 3), the reaction was treated with aqueous NaHCO3. In entries 5 and 6 (Table 3), the reaction was treated with aqueous NaHCO3. The product was purified by column chromatography on alumina (n-hexane-ethyl acetate as an eluant). The products were identified by comparing spectroscopically (60 MHz or 90 MHz ¹H-NMR) with the authentic samples which were prepared by reactions of either RMgBr or RLi with the corresponding aldehydes (entries 1-5 of Table 3). When TiCl₄ was used (entries 3-6 of Table 3), the order of addition was (i) electrophile, (ii) TiCl₄, and then (iii) Bu₃PbR. **3-Methoxy-1-decene**; ¹H-NMR (270 MHz) δ 5.64 (ddd, 1H, J=8, 11, 16 Hz), 5.18 (m, 2H), 3.28 (s, 3H). The ¹H-NMR (60 MHz) spectrum of the product PhCH₂Ph was identical with that of commercially available diphenylmethane (from Tokyo Kasei Kogyo Co., LTD).

Reaction of Hexynyltriethyllead with Benzaldehyde

This reaction was carried out by use of the procedure described in <u>Reaction of Et₃PbR with Benzaldehyde</u> employing BF₃•OEt₂ instead of TiCl₄. In this case, the reaction was stopped at 0°C.

REFERENCES

- (a) Sily enol ethers: Mukaiyama, T.; Narasaka, K.; Banno, K. Chem. Lett. 1973, 1011-1014. (b) Allylsilanes: Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1976, 1295-1298. (c) Allyltins: Tagliavini, G.; Peruzzo, V.; Plazzogna, G.; Marton, D. Inorg. Chim. Acta 1977, 24, L47-48. Naruta, Y.; Ushida, S.; Maruyama, K. Chem. Lett. 1979, 919-922. (d) Allyboranes; allylaluminums, and related compounds react under nonbasic conditions, but they are moisture sensitive.
- (a) Stannylacetylenes: Yamamoto, Y.; Nishii, S.; Maruyama, K. J. Chem. Soc., Chem. Commun. 1986, 102-103.
 (b) Silylacetylenes: Kuwajima, I.; Nakamura, E.; Hashimoto, K. Tetrahedron 1983, 39, 975-982.
- 3) Dialkylzinc compounds, which are moisture and air sensitive, transfer alkyl groups to aldehydes in the presence of TiCl₄; see ref 9.
- 4) Yamamoto, Y.; Yamada, J. J. Am. Chem. Soc. 1987, 109, 4395-4396.
- 5) Leeper, R. W.; Summers, L.; Gilman, H. Chem. Rev. 1954, 54, 101-167.
- 6) Reetz, M. T. "Organotitanium Reagents in Organic Synthesis", Springer-Verlag, New York, 1985.
- 7) Bawn, H. E. C.; Gladstone, J. Proc. Chem. Soc. 1959, 227-228.
- 8) Goswami, R. J. Org. Chem. 1985, 50, 5907-5909.
- 9) Reetz, M. T.; Steinbach, R.; Wenderoth, B. Synth. Commun. 1981, 11, 261-266.
- 10) For example, see Reetz, M. T. Angew. Chem. Int. Ed. Engl. 1984, 23, 556-569.
- 11) Reetz, M. T.; Jung, A. J. Am. Chem. Soc. 1983, 105, 4833-4835.
- 12) Gilman, H.; Jones, R. G. J. Am. Chem. Soc. 1950, 72, 1760-1761.
- 13) Yamamoto, Y.; Maruyama, K. J. Am. Chem. Soc. 1985, 107, 6411-6413.
- 14) Kinoshita, M.; Aburaki, S.; Wada, M.; Umezawa, S. Bull. Chem. Soc. Jpn. 1973, 46, 1279-1287.
- 15) Yamamoto, Y.; Komatsu, T.; Maruyama, K. J. Organomet. Chem. 1985, 285, 31-42.
- 16) Reagents such as RMgX and RLi are known to chelate strongly α-alkoxy aldehydes. Still, W. C.; McDonald III, J. H. Tetrahedron Lett. 1980, 21, 1031-1034.
- 17) Heathcock, C. H.; Kiyooka, S.; Blumenkopf, T. A. J. Org. Chem. 1984, 49, 4214-4223.
- 18) Still, W. C.; Schneider, J. A. Tetrahedron Lett. 1980, 21, 1035-1038.
- 19) Gielen, M. Acc. Chem. Res. 1973, 6, 198-202.
- 20) Wenkert, E.; Goodwin, T. E. Synth. Commun. 1977, 7, 409-415.