
CHEMISTRY LETTERS, pp.97-100, 1983. (C) The Chemical Society of Japan 1983

A STEREOCONTROLLED SYNTHESIS OF 2-METHYL-2-ALKENENITRILES FROM 

C-METHYL-C,N-BIS (TRIMETHYLSILYL) KETENIMINE AND ALDEHYDES
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A stereocontrolled synthesis of 2-methyl-2-alkenenitriles is 

achieved via the diastereoselective aldol type reaction of C-methyl-

C, N-bis (trimethylsilyl) ketenimine with aldehydes in the presence of

a mixture of TiCl4 and Ti(O-ipr)4.

 Of many carbonyl olefination for the synthesis of 2-alkenenitriles, 

(Z)-selective routes have been almost established in both acidic 1, 2 and basic3 

conditions. On the contrary, (Z)-stereoselection in 2-substituted 

2-alkenenitriles synthesis is not established completely. 4 Although few examples 

of Wittig-Horner type reactions are reported,5, 6 the effective cyclic phospholen 

and phosphoramide require the tedious procedures for preparation. Related to our 

concern exploiting new condensation reagents, we describe a successful 

stereoselective synthesis of 2-methyl-2-alkenenitriles (3) resulting from the 

diastereoselective formation of 2 in the reaction of C-methyl-C, N-bis (trimethyl-

silyl) ketenimine (1) with aldehydes activated by a mixture of TiCl4 and

Ti(O-iPr)4.

 Although ketenimine (1) gave smoothly 3 in one pot reactions with aldehydes 

by the assistance of MgBr2 or BF 3•Et2O at room temperature, stereochemistry of 

could not be controlled. A well-known activating agent, TiCl4 7 catalyzed to



98 Chemistry Letters, 1983

form28 at-78℃. However, yields and diastereoselectivity in the reaction

depended on the type of aldehydes. A disappointing result was obtained in the 

case of cyclohexanecarbaldehyde [29% yield of 2e, (2R*,3R*)/(2R*,3S*) = 20/80] 
compared with the case of benzaldehyde [78% yield of 2c , (2R*,3R*)/(2R*,3S*) 
= 43/57] .

 The result suggests a certain balance between Lewis acidity and an induced 

nucleophilicity of 1 in the addition step. Thus , a modified titanium reagent 
which was composed of TiCl4 and Ti(O-iPr)4 brought about a remarkable improvement 

in both yield and diastereoselectivity of 2.8, 9 The latter changed remarkably 

with the proportion of Ti(O-iPr)4. The results obtained by the reaction of 

with nonanal in the presence of various types of Lewis acid are summarized in 

Table 1. The best (2R*,3R*)-selectivity was attained by using a mixture of 

TiCl4/Ti(O-iPr)4 = 1/3, which would form a mixed ligand titanium compound , 
TiCl(O-iPr)3 by disproportionation.11 An analogously modified titanium reagent 

[TiCl4/Ti(O-CEt3)4 = 1/3] afforded a slight predominance of (2R*,3S*)-2a (entry 9 

in Table 1). 

 Since the stereospecificity in the transformation of 2a to 3a is well-

established, 9, 10 the completion of diastereoselective synthesis of 2 discloses 

a stereoselective synthetic route to 3 in two stages. Various types of aldehydes 

were conducted in the analogous conditions in order to clarify the scope and 

limitations of this carbonyl olefination. A drastic contrast in the 

stereoselectivity was observed, which related to the substituents on the a-carbon

Table 1. Effect of Lewis acid in the reaction of 1 with nonanal .

a) Isolated yields. b) Determined by GLC (PEG-20M). 
c) Crude obtained by quenching the mixture with aqueous sodium carbonate 

 was immediately decomposed in the presence of an equivalent of boron 
 trifluoride etherate at room temperature.
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of formyl group and the ratio of TiC14 and Ti(O-iPr)4. Nonbrached aldehydes

lead to (Z)-3 (entries 1, 2, and 4 in Table-2), whereas branched ones at α-carbon

to (E)-3 selectively (entries 5, 7, and 9 in Table 2) in the case of TiCl4/ 

Ti(O-iPr)4=1/3. Decreased ratio of Ti(O-iPr)4 brought about the opposite

selectivity for monosubstituted aldehydes at a-carbon (entries 6 and 8 in Table 2)

and same selectivity for disubstituted one (entry 10 in Table 2). Since the 
elimination condition of 2 is identical in all cases, the results reflect the 
diastereoselective discrimination forming 2. 

 A remarkable influence of the substituent in aldehydes and the ratio of TiCl4 
and Ti(O-iPr)4 suggests that aggregation of 1 and aldehydes around the titanium 
atom would play an important role to control a stereochemical course in the 
addition step. Thus, organotitanium compounds 4 12, 13 may be a major species 
in the reaction conditions. Reaction of 4 with the aldehyde via four-membered 
cyclic transition state 5 would afford the observed (2R*,3R*)-2 . On the other 
hand, reaction of J through six-membered cyclic transition state q with minimal 
steric repulsion is expected to lead to (2R*,3S*)-2. The choice of the 

preferable path would depend on the environment around the titanium atom. 
The results in Table 2 are consistent with this conception.

Table 2. Carbonyl olefination by the reaction of 1.a)

a)Aldehydes (2～3mmol)and 1.5～2 equivalents of 1 wereadded successively

to a dichloromethane solution of 0.5 equivalents of titanium tetrachloride
and 1.5 equivalents of titanium tetraisopropoxide at -78℃.The solution

was stirred for 5h at-78℃ and quenched with aqueous sodium carbonate.

 Obtained crude 2 were conducted immediately in a dichloromethane solution 
 of an equivalent of boron trifluoride etherate. 

b) Isolated yields. c) Determined by GLC (PEG-20M). 
d) TiCl4/Ti(O-iPr)4 =1/1 was used. e) Temperature was raised up to r.t..
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