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Abstract—Captodative olefins efficiently trap both electrophilic or nucleophilic radicals, i.e. various thiyl,
acetyl, acetamidomethyl and N-methy!lanilinomethyl radicals. In the first three cases, good yields of adduct-
dimers 4 are formed and these reactions are preparatively useful. In the last case when anilinomethy] radicals
are formed at 140°, also dismutation or double adduct § formation may occur depending on the choice of ¢

and d groups in 2.

INTRODUCTION

Compared with fully conjugated push-pull olefins 1,
the corresponding cross-conjugated captodative
counterparts 2 are even more versatile reagents in
organic synthesis. Thus, the use of 2 as Michael accept-

c ¢ electron-withdrawing groups

d/ \d electron-donating
1 2

ors in reactions with carbanions is widely documen-
ted.® Of more recent note is their increasing applica-
tion as m,-components in Diels-Alder reactions,* in
(2 + 2) cycloadditions,® as dipolarophiles in (3 + 2)
cycloadditions® and as enophiles in Lewis acid cata-
lyzed ene reactions.’

We have demonstrated, that cd olefins (2) consti-
tute efficient radicoghiles for the preparative trapping
of various radicals,® and also the use of a-t-butylmer-
captoacrylonitrile (2a; ¢ = CN, d = S-t-C(Hy) as a

new spin-trap for ESR detection of transient radicals.” -

The propensity of 2 to add radicals is due to the
synergic captodative effect’® in radical adducts 3,
where a donor and an acceptor substituent are linked
to the same radical center. The resulting thermo-
dynamic, although not kinetic,!" stabilisation of 3
causes them to dimerize to adduct-dimers 4 or to trap
eventually another radical R leading to diadducts 5.
Typical reactions of vinylic monomers, i.e. poly-
merisation, copolymerisation and oligomerisation,
are in general absent with 2, although they can be
induced under special circumstances.'?

C <

+ R®—=
2+R RCH; —C —C — CH,R

4 ’l* t
} d d
RCH, - C°
2 f Ro . 4
d\ |
3 RCH,—CI—R
5 d

In the preceding paper,? we described a number of
examples of preparative additions of radicals derived
from alkanes, ethers, aldehydes, amides, amines and
ketones to 2a.

In order to generalize the bridged dehy-
drodimerisation, the present paper describes the addi-
tions of three nucleophilic radicals, namely acetyl (6),
acetamidomethyl (7), N-methylanilinomethyl (8),
and of electrophilic species, i.e. phenylthiyl and al-
kylthiyl radicals (9), to a number of cd-olefins.

RESULTS AND DISCUSSION

Radical 8 was produced by hydrogen abstraction
from N,N-dimethylaniline using di-t-butylperoxide
(DTBP) at 140°, as the use of di-t-butylperoxalate
(DTPO) is incompatible with relatively basic alkyl and
aralkyl amines, on account of the uncontrollable in-
duced decomposition. Species 6, 8 and 9 were gener-
ated in the usual way from acetaldehyde and thiols
using DTPO at &0°.

DTPO, 60°
MeCH =0 (Me—C=9)
o]
6
Me
DTPO, 60° |
MeCO—N(CH,), [MeCO--N—CH? |
7
I'tlle
DTBP, 140° o
PhN(CH, ), [PhN—CH, ]
8
RSH pTPO. 60 [RS® |
9

Trapping of acetyl radicals (6)

As the Table 1 shows, the nucleophilic'® acetyl
radical adds smoothly to various cd acrylic com-
pounds to form exclusively adduct-dimers 10 in good
yields. The efficiency of trapping varies little with the
substituents ¢ and d present in 2a~g. Compounds 10
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Table 1. Formation of adduct-dimers 10 from cd-olefins 2

and acetaldehyde
2 d c 10 Yield (%)
a t-C.HoS CN a 67¢
b EtS CN b 63
¢ MeS CN ¢ 67
d t-C,H,S CO,Me d 64
e MeO CN e 7
 { MeO CO;Me f 61
g PhS CN g n
9Sec Ref. 2.
y/4 <
Me—(; + H,C=C <
2
(0] ¢ (0]
Il [ I

are 1,6-diketones, and moreover the two central
cd-substituted carbon atoms are masked carbonyl
groups. Owing to their basic nature, cd enamines like
a-dimethylaminoacrylonitrile afford only ill-defined
mixtures in the presence of DTPO at 60°.

Trapping of thiyl radicals (9)

There are countless reports of the very smooth
free-radical chain addition of thiols to olefins and
acetylenes.' The primary radical adducts almost
invariably abstract hydrogen from the thiol present in
a chain process. In striking contrast, cd olefins form
adduct-dimers 11 when exposed to excess of thiol in
the presence of an equimolar amount of hydrogen-
abstracting-butyloxy radicals.

i

RS®+ 2— RSCH,—C—C--CH,SR
l |

9 d
11

Table 2. Formation of adduct-dimers 11 and 2 and thiyl

radicals
2 d c RinRS® 11 Yield (%)
a t-CHoS CN Ph a )
a t-CH,S CN Et b 61
a t-CHsS CN Me c 66
a t-CH,S CN t—-C4Ho d 61
b EtS CN Ph e 55
b EtS CN t-CHs f 53
[ MeS CN Ph g 69
4 t-CHyS COMe t-CHo h 64
f MeO CO:Me t-CH, i n
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Blank experiments in the absence of peroxide have
established that Michael addition of thiols does not
occur under conditions employed.

Trapping of acetamidomethyl radicals (7)
N,N-dimethylacetamide is oxidised exclusively at
the position « to the nitrogen by t-butoxy radicals.'
Thus, radical 7 is trapped in good yield to give the
bridged dehydrodimers 13 with various cd olefins.

2 + MeCON—CH;

Me
7

d

|
—=Me—C—~NCH,CH,~C--C—CH,CH;N—C—Me

L]

Me d ¢

Addition of anilinomethyl radicals 8

Finally, the oxidation of dimethylaniline in the
presence of various olefins 2 was examined. As
discussed above, because of its basic nature, di-t-butyl-
peroxide had to be used as the abstracting species
instead of DTPO. This entails working at much
higher temperature (140°) than in the preceding ex-
amples and the product composition depends
strongly on the nature of ¢ and d groups in 2. Thus,
besides the expected adduct-dimers and/or diadducts,
dismutation products 16 are encountered with cd ole-
fins 2h-g.

Me c Me

I
2 + 8— PhNCH,—CH,—C—CH, NPh
I

d
14

Me C Me c

[ | | pd
+ PhNCH,—CH,C-), + PhN—CH,—CH,—CH
|

d
15 16a

Me
c

| -
+ PhN—CH,—CH=C
~Nd
16b

Table 3. Bridged dehydrodimerisa-

tion of N,N-dimethylacetamide
2 d c 13(%)
a t-CHsS CN 74°
e MeO CN 51.5
g t-CHoS COsEt 47

9See Ref. 2.
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This behaviour is rationalised by consideration of
the equilibrium between 15 and radical adducts 17.
The latter can readily be observed by ESR.'

Me
c

| /,
1§ === 2 PhN-CH,;—CH,—C
\d
17

R L]
: dismutation

The equilibrium constant depends upon how much
the central C-C bond in 15 is weakened by the cd
substituent effect combined with steric strain'’
around this bond. Thermolabile C~C bonds obvi-
ously favor the formation of double adduct and of
dismutation products.

Inspection of Table 4 shows that adduct-dimers 15
are still the exclusive products with a-alkylthioacry-
lonitriles 2a—¢c. In contrast, the corresponding ester
leads only to the diadduct 14. Thus both the radico-
philes 2a and 2d lead to the corresponding radical ad-
ducts, which evolve in a rather different fashion. It
should be recalled that the thermal dimerisation of both
classes of compounds also follows two distinct paths:
nitriles 2a—¢ form cyclobutanes in head-to-head cy-
cloadditions, whereas a-alkylthioacrylates form a,a-
bis-(alkylthio)-a,8-dihydromuconic esters.*

diadducts 14

1:1 mixture of 16a, b

SR
N e
2 H,c=c< — o
SR 100
SR
JCOR
2HhC=C(
SR

150° ,
— R'0,C—C=CH—CH,~- CH—CO, R’

SR SR

Enaminonitriles 2i,j, on the other hand, afford
dismutation products 16a,b and the same is true for

Table 4. Addition of N, N-dimethylaniline to 2 at 140°

2 d c Yield of Yield of Yieldof
14%) 15%)  16a,(%) -

a tCHS CN — 50 —

b E CN — 46 —

¢ MeS CN — 47 —

d tCHS COMe 33 — —

f MO COMe 12 18 —

Y Ph Ph — — 51

i ON CN — - 45

j  MeN CN — — 35

diphenylethylene which was used for comparison.
This suggests a low dissociation energy in the pre-
sumed intermediates 151, j which have not been iso-
lated as yet.

One can conclude that bridged dehydrodimerisation
using cd olefins is a general principle which can be used
for constructing highly functionalized and previously
inaccessible classes of compound.

EXPERIMENTAL

'H-NMR: Measured in CDCl, solutions at 60 or
200 MHz on Varian EM-360 and XL-200 Spectrometers.
IR: Perkin-Elmer 297 spectrometer, in CHCI; solution.
Mass: Varian MAT—44S spectrometer. Identification of meso
and d,/isomers (generally formed in nearly 1: 1 ratio) was done
by X-ray diffraction for 10a meso, 16c, d,1.'® In other cases,
the NMR technique using the chiral shift reagent Eu(hfc); was
applied. Unless indicated otherwise, only one form, probably
the meso, was characterised.

Additions of acetaldehyde: general procedure. 0.01 M of
the captodative olefin 2, 0.005 M (1.2g) DTPO and 0.2 M
(8.4g) of acctaldehyde were placed in an ampoule and
degassed in 3 freeze-thaw cycles, sealed, and heated to 60°
for 8 hr. The crude product was directly recrystallized or
chromatographed.

Compound 10a. Sec Ref. 2. Meso 10b was obtained by
recrystallization from ether, m.p. 205-207°. '"H-NMR: § =
1.32 (t, 6H), 2.27 (s, 6H), 3.1-3.2 (m, 4H), 3.25 (d, 2H) (J,;em
= 17.1 Hz), 3.69 (d, 2H); MS: M* = 312; 291, 252, 229, 199,
152, 61, 43. (Found: C, 53.8; H, 6.4; S, 20.3; N, 9.1; O, 10.6.
C14H205:0, requires C, 53.8; H, 6.4; S, 2.5; N, 9.0; O,
10.2%.)

Compound d,l-10¢c was obtained by recryst. from
CHCQl;:cther; m.p. 202°. '"H-NMR: § = 2.19 (s, 6H), 2.53 (s,
6h), 3.17 (d, 2H) (J,.,, = 17.3 Hz), 3.61 (d, 2H); MS: DCI
(isobutane) (M + 1)* =285, 247, 191, 143, 95, 73. (Found:
C,509; H, 5.8; N, 9.9; S, 22.7; O, 11.7. C,H,(N,0, requires
C,50.7; H, 5.6; N, 9.8; S, 22.5; 0, 11.2%.)

Compound 10d (one diastereomer) was obtained by chro-
matography on SiO,, benzene: CHCl,=4:3; recryst.
cther:pet. cther = 2:3; m.p. 182-183°. 'H NMR: § = 1.46
(s, 18H), 2.06 (s, 6H), 3.56 (s, 3H), 3.63 (d, 2H) (J;em = 17
Hz), 391 (d, 2H); IR: 1720, 1750 cm~!; MS: M*-C H,
= 378, 304, 271, 227, 195, 162, 130, 87, 57, 43.

Compound 10e, meso and d I, recryst. from ether, m.p. 175-
177°. 'H NMR of meso-form: § = 2.21 (s, 6H), 3.03 (d, 2H),
3.23 (d, 2H), 3.53 (s, 3H); d.! form: 2.21 (s, 6H), 2.96 (s, 4H),
3.63 (s, 6H); IR: 2240, 1720, 1200, 1100 cm~!; MS: DCI (iso-
butane), M + 1)* = 253, 234, 169, 127, 84, 57, 44.

Compound 10, obtained as one diastereomer, recryst. from
cther:pet. ether = 2:3; m.p. 178°. 'H NMR: J = 2.16 (s,
3H), 2.93 (d, 2H) (J,em = 18 Hz2), 3.30 (s, 6H), 3.47 (d, 2H),
3.66 (s, 6H); IR: 3010, 1720-1760, 1420, 1500 cm~'; MS: M*
-CO:Me = 259, 227, 160, 117, 85, 57, 43.

Compound 10g (mixture of meso and d-I), recryst. from
benzene, m.p. 198-201°. Meso-form: 'H NMR: § = 2.02 (s,
6H),3.17(d, 2H)(J, . = 11.7 Hz), 3.69(d, 2H), 7.4-7.5 (m, 6H),
7.8(m,4H):d,/-form:é = 2.07 (s, 6H), 3.23(d, 2H)(J,,. = 18.0
Hz), 3.50(d, 2H), 7.4-7.5 (m, 6H), 7.85 (m, 4H) ; IR : 2230, 1710
cm™'; MS:M* = 408, 279, 247, 205, 162, 109, 43.

Addition of thiyl radicals. The procedure was the same as

: for acetyl radicals.

Compound 11a, recryst. from benzene afforded one dias-
tercomer, m.p. 163-164°; 'H NMR: 8 = 1.58 (s, 18H), 3.60
(d, 2H) Jzem = 13 Hz), 4.13 (d, 2H), 7.06~7.66 (m, 10H); IR:
2240 cm~'; MS: M* = 500, 444, 411, 355, 218, 109, 57.

Compound 11b, recryst. from benzene yielded one diaster-
comer, m.p. 92-93°; 'H NMR: 8 = 1.26 (t, 6H) (J = 7Hz),
1.60 (s, 18H), 2.78 (q, 4H), 3.06 (d, 2H) (J,.» = 14Hz), 3.70
(d, 2H). IR: 2230 cm~*: M* = 404, 375, 348, 292, 259, 225,
197, 141, 93, 75, $7, 41.

Compound 11¢, recryst. from ether:pet. ether = 2:3 gives
one diastereomer, m.p. 108°; 'H NMR: 8 = 1.60 (s, 18H), 2.33
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(s, 6H), 3.06 (d, 2H) (J,.m = 14Hz), 3.66 (d, 2H); IR: 2240
cm~'; MS: DCl/isobutane, M + 1)* = 217, 189, 169, 141,
104, 8S.

Compound 11d, work-up as for 11c, one diastereomer, m.p.
183°; 'H NMR: 8 = 1.40 (s, 18H), 1.60 (s, 18H), 3.10 (d, 2H)
Uyem = 12.6Hz), 3.63 (d, 2H); IR: 2230 cm™'; MS: M* =
460, 403, 347, 291, 235, 203, 174, 141, 103, 57, 41.

Compound 1le, recryst. from benzene, one diastereomer,
m.p. 132°; 'TH NMR: 8 = 1.30 (t, 6H) (J = THz), 3.03 (q, 4H),
3.50 (d, 2H) and 3.80 (d, 2H) (J,.m = 14Hz), 6.96-7.60 (m,
10H); IR: 2220, 1590 cm~'; MS: M™* = 444, 397, 362, 331,
267, 218, 160, 65.

Compound 11f, work-up as for 11c, one diastereomer, m.p.
154-155°; '"H NMR: § = 1.33(t, 6H) (J = THz), 1.40 (s, 18H),
3.08 (q, 4H), 3.16 (d, 2H) and 3.45 (d, 2H) (J,.» = 12H2); IR:
240 cm™!; MS: M* = 404, 347, 321, 291, 264, 229, 202, 146,
103, 75, 57, 41.

Compound 11g, recryst. from benzene:ether afforded a
mixture of diastereomers, m.p. 131°; 'H NMR: (1) § = 2.56
(s, 6H), 3.33 (d, 2H) and 3.76 (d, 2H) (J .. = 13H2), 7.13-7.73
(m, 10H);(2)é = 2.56(s, 6H), 3.56 (d, 2H) and 3.83(d, 2H) (J,.m
= 14Hz), 7.13-7.73 (m, 10H); IR : 2220 cm™'; MS.: M*-
CH,S = 369, 317, 260, 218, 160, 123, 65, 45.

Compound 11k, chromatography on SiO;, CH,Cl; afforded
a mixture of diastercomers, recryst. from ether:pet. ether =
2:3; m.p. 107-108°; '"H NMR: § = 1.33-1.46 (36H), 3.16-3.96
(m, 4H), 3.66 (s, 6H); IR: 1720, 1430, 1360 cm™'; MS: M*
= 526, 469, 413, 357, 301, 267, 207, 151, 118, 86, 57, 41.

Compound 111, chromatography on S$iO,, CH,Cl, and sub-
sequent recrystallisation from ether gave one diastereomer,
of m.p. 80-81°; '"H NMR: § = 1.26 (s, 18H), 2.96 (d, 2H) and
3.26 (d, 2H) (J,.m = 13Hz), 3.43 (s, 6H), 3.63 (s, 6H); IR:
1730, 1450 cm~'; MS: (DC/NH3) (M + 1) = 411; M +
NH,)* = 428, 319, 224, 134, 35; 2M + NH,)* = 838. The
chromatography furnished also the minor diastereomer (19%).

Addition of dimethylaniline: General procedure using di-t-
butylperoxide.

0.01 M Captodative olefin 2, 0.005 m (0.7g) DTBP and
0.1 M of the substrate RH in an ampoule were degassed in
three freeze-thaw cycles and then sealed. After heating 12hr
at 130° the excess of substrate was removed by distillation
and the residue was chromatographed.

Compound 15a—see ref. 2. Compound 15b, chromatogra-
phy on SiO;, benzene, recryst. from CHCl;, m.p. 158-160°;
'H NMR: & = 1.37 (t, 6H), 1.98 (m, 2H), 2.34 (m, 2H), 2.93
(s, 6H), 3.03 (q, 4H), 3.72 (m, 2H), 3.83 (m, 2H), 6.65-6.8
(m, 6H), 7.2 (m, 4H); IR: 2230 cm~'; MS: M* = 446, 405,
377, 344, 300, 372, 333, 121, 105, 91, 77.

Compound 15¢, chromatography on SiO,, CHCl;, recryst.
from benzene, m.p. 146°; '"H NMR: § = 2.0-2.4 (m, 4H), 2.53
(s, 6H), 2.95 (s, 6H), 3.6-3.8 (m, 4H), 6.5-6.8 (m, 6H), 7.15
(m, 4H); IR: 2220 cm~'; MS: M* = 438, 391, 364, 344, 258,
219, 169, 120, 105, 77.

Compound 14d, work-up as for 15¢, m.p. 153°, '"H NMR:
& = 1.33 (s, 9H), 1.66-2.33 (m, 2H), 2.83 (s, 3H), 2.88 (s,
3H), 3.13-3.60 (m, 4H), 3.66 (s, 3H), 6.3-7.3 (m, 10H); IR:
1600 cm~!; MS: M* —C¢Hs = 336, 295, 276, 264, 223, 174,
134, 120.

1:1 Mixture of Compounds 16h(a,b), chromatography on
§i0,, CCly, oil. 'TH NMR of 1,1-diphenyl-3-methylanilinopro-
pene: § = 2.78 (s, 3H), 3.90 (d, 2H), 6.00 (t, 1H), 6.53-7.23
(m, 15H); 1,1-diphenyl-3-methylanilinopropane: § = 2.78 (s,
3H), 2.26 (m, 2H), 3.24 (t, 2H), 6.00 (t, 1H), 6.53-7.23 (m,
15H); IR: 1620 cm~!; MS: M* = 299, 195, 106, 77.

1:1 Mixture of Compounds 16Ka, b), chromatography on
Si0,, CHCl,, oil. 'H NMR of 2-morpholino-4-methylanili-
nocrotonitrile in the 1:1 mixture; § = 2.66-3.06 (m, 4H), 2.8
(s, 3H), 3.6-3.9 (m, 4H), 4.16 (d, 2H) J = 7THz), 5.16 (, IH),
6.33-6.83, 6.90-7.36 (m, 5H); 2-morpholino-4-methylanili-
nobutyronitrile: § = 1.8-2.40 (m, 2H), 2.8 (s, 3H) 2.66-3.06
(m, 4H), 3.16-3.60 (m, 3H), 3.56-3.90 (m, 4H), 6.33-6.83,
6.90-7.36 (m, SH); IR: 2240, 1600 cm~'; MS: M* = 259 and
257, 172, 230, 153, 106, 77.
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Compounds 16§(a,b), chromatography on SiO, benzene:
CHCl; = 4:3, oil. 'H NMR of 2-dimethylamino-4-methylan-
ilinocrotonitrile;: 8§ = 2.26 (s, 3H), 2.90 (s, 6H), 4.13 (d, 2H)
and 4.9 (t, 1H), 6.43-6.90 (m, 2H), 7.0-7.46 (m, 3H); 2-di-
methylamino-4-methylanilinobutyronitrile: § = 1.66-2.13 (m,
2H), 2.26 (s, 3H), 2.66 (s, 6H), 3.2-3.76 (m, 3H), 6.43-6.90
(m, 2H), 7.0-7.46 (m, 3H); IR = 2230 cm™'; MS: M* = 217
and M* = 215, 196, 120, 106, 83, 77, 47.

Reaction with methyl 2-methoxyacrylate 2f (chromatogra-
phy on SiQ;, CHCl,) affords two fractions:

Compound 142, oil. '"H NMR: § = 2.11(t,2H) (J = 7.9Hz),
2.80-2.90 (6H), 3.20-3.60 (m, 7H), 3.63 (s, 3H), 6.33-6.76 (m,
4H), 6.83-7.50 (m, 6H); IR = 1610 cm~'; MS: M* = 356,
240, 116, 77, 51, 43, 38.

Compound 151, recryst. from ether:pet. ether = 3:2, m.p.
161°;, 'H NMR: 2.0-2.5 (m, 2H), 2.91 (s, 3H), 3.50 (s, 3H),
3.23-3.45 (m, 2H), 3.74 (s, 3H), 6.40—6.80 (m, 2H), 6.86-7.39
(m, 3H); IR = 1610 cm~"'; MS: (M*/2)-CH,OH = 204, 169,
155, 105, 77, 51.

Addition of N,N-dimethylacetamide: the same procedure as
for acetyl and thiyl radicals.

Compound 13a—see ref. 2; compound 13e, recryst. from
CHCl;, m.p. 184-5°; '"H NMR: § = 2.06 (s, 6H), 2.2-2.3 (m,
4H), 3.03 (s, 6H), 3.5-3.7 (m, 4H), 3.66 (s, 6H); IR: 2250, 1630
cm~'; MS: DCl/isobutane (M + 1) = 339, 268, 195, 122, 58.

Compound 13g, recryst. from CHCl;, m.p. 179-182°; 'H
NMR: § = 1.35 (m, 6H), 1.43 (s, 18H), 2.16 (s, 6H), 2.6-2.8
(m, 4H), 2.93 (s, 6H), 3.5-3.8 (m, 4H), 4.15 (m, 4H); IR: 1720,
1620 cm~!; MS: (M*-C,Hy) 491, 435, 371, 304, 274 (M*/2),
304, 218, 174, 131, 86, 4.
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