Biomass

Production of Calcium Carbide from Fine Biochars**

Guodong Li, Qingya Liu, Zhenyu Liu,* Z. Conrad Zhang,* Chengyue Li, and Weize Wu

Carbon is the most abundant source of energy and chemicals on the earth. Biomass produced from photon-activated conversion of atmospheric CO₂, and biomass fossils such as coal and petroleum are all carbon-rich sources. In around only one century of heavy industrial use of petroleum, this hydrocarbon source has already depleted to a point of a widespread concern over its scarcity in the decades to follow.^[1] Biocarbon, also known as biochar, can be readily produced from a vast sustainable supply of lignocellulosic biomass through pyrolysis.^[2] It is often in fine form and characterized by low mechanical strength and high activity in comparison to coal-derived chars. The ability to use biochar for the production of chemicals with high energy efficiency will largely alleviate our dependence on shrinking petroleum feedstock. Herein, we show reaction of fine biochars with fine CaO for the production of CaC2, an important starting material for production of many commodity chemicals. The process offers the potential to redirect the carbon conversion pathway.

CaC₂ is produced by the reaction 3C + CaO + E^1 → CaC₂ + CO, where E^1 is the energy required for the process, about 445.6 kJ mol⁻¹ at above 2000 °C.^[3] CaC₂ can be readily converted into acetylene by treatment with water: CaC₂ + 2H₂O→C₂H₂ + Ca(OH)₂. Acetylene is an oxygen-free platform chemical for production of chemicals, for example, polyvinylchloride (PVC), vinyl acetate, and 1,4-butanediol. In this carbon conversion process, the main products CaC₂ and then C₂H₂ are readily separated from other components.

The current CaC_2 production technology dates back to 1892 and has not changed much since then.^[4,5] It uses an electric arc furnace, which is limited only to small-scale

[*]	G. Li, Q. Liu, Prof. Dr. Z. Liu, C. Li, W. Wu
	State Key Laboratory of Chemical Resource Engineering
	Beijing University of Chemical Technology
	Beijing, 100029 (PR China)
	Fax: (+86) 10-6442-1073
	E-mail: liuzy@mail.buct.edu.cn
	Dr. Z. C. Zhang
	KiOR Inc., 13001 Bay Park Road, Pasadena, TX 77507 (USA)
	Fax: (+1) 713-299-4165
	E-mail: conrad.zhang@kior.com
	zczhang@yahoo.com
[**]	We thank the Nature Science Foundation of China (20821004

[**] We thank the Nature Science Foundation of China (20821004 and 20976011) for financial support. Z.L. conceived the research and developed the interpretation of the results. Z.C.Z. proposed and designed some of the experiments and structure of the paper. G.L. performed all the experiments and Aspen Plus simulation. Q.L. designed some of the experiments and contributed to the structure of the paper. C.L. proposed interpretation of the solid-solid reaction. W.W. contributed to calculation of thermal efficiency. All the authors discussed the results and commented on the manuscript.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201004169.

8480

operations, typically less than 40 kt CaC₂ per year. This process requires granular char and CaO of 5–30 mm in size and with sufficient mechanical strength, such as coal char, to allow unrestricted release of byproduct CO. Because of the low reaction rate resulting from the low surface area and poor contact between the large feed particles, high temperatures (about 2200 °C) and long reaction times (1–2 h) are usually required.^[6] These constraints inevitably result in high energy consumption (4000 kWh t_{CaC2}⁻¹), high production cost, and high CO₂ emissions in electricity generation.^[7]

Autothermal heating by combustion of chars has been studied as an alternative process for CaC_2 preparation.^[8-10] However, the use of large feed particles, as with the electric arc process, requires long production times and high reaction temperatures to obtain sufficient yields; therefore, the process is not economically attractive for commercial development.

We report a considerably reduced temperature (by 500 °C), shortened reaction time, and increased thermal efficiency in converting fine biochar into CaC_2 . More importantly an autothermal reactor similar to the modern high throughput gasification reactors could be used. Figure 1

Figure 1. TG/DTG curves and MS signal for release of CO from the reaction of CaO and a pine wood char of size 0.022 mm at a C/CaO molar ratio of 3.6.

shows thermogravimetric/differential thermogravimetric (TG/DTG) data and mass spectra for released CO for the reaction of pine wood char and CaO at a nominal particle size of 0.022 mm with a C/CaO molar ratio of 3.6. The total mass loss at temperatures higher than 1510 °C corresponds to a CaC₂ yield of 99% based on CaO. XRD analysis (Figure S1 in the Supporting Information) confirms CaC₂ as the main product. Gas chromatograph analysis of the C₂H₂ released from CaC₂ hydrolysis shows a CaC₂ yield of 97%.

Figure 2 shows initial and DTG peak temperatures of the reaction using chars of different particle sizes derived from pine wood and bamboo. The initial temperature, defined in Figure 1 as the temperature when DTG signal reaches

Figure 2. The initial and DTG peak temperatures of CaC_2 formation through CaO and biochars (from pine wood and bamboo) of different particle sizes (d_o).

 -0.5 mgmin^{-1} (corresponding to a CaO conversion rate of about 1.2 % min⁻¹), decreases from about 1700 °C for a size of 0.675 mm to 1510 °C for a size of 0.022 mm; correspondingly, the peak temperature decreases from about 1850 to 1710 °C.

Figure 3 shows mass-loss rates (DTG) at 1650 °C for reactions of CaO with various biochars as well as other carbon materials. Clearly the biochars have higher d_{002} values (from XRD) and are more active than the coal chars, petroleum coke, and graphite.

The results indicate that CaC_2 can be produced at temperatures much lower than that required by the current electric arc process. The process involves little vaporization of

Figure 3. Conversion rates of CaO (*R*) at 1650 °C for reaction of CaO with chars. The d_{002} values are the interplanar distances from XRD analysis of the chars treated at 1650 °C. \triangle : biochars (from apricot shell, willow wood, bamboo, corncob, and pine wood, in the order of increasing d_{002}); \bigcirc : coal chars (from anthracite, bituminous coal, and lignite, in the order of increasing d_{002}); \bigcirc : petroleum coke; \diamond : graphite.

the reactants and CaC₂ except for the release of CO. The high CaC₂ yield indicates constant mass transfer between the chars and CaO at the conditions used. Since the melting points of char and CaO are much higher ($3625 \,^{\circ}$ C for graphite and 2580 $^{\circ}$ C for CaO), the mass transfer may be attributed to nanocrystal migration. The temperatures in Figure 2 are all higher than the Tammann temperature of CaO, one half of its melting point in Kelvin ($1154 \,^{\circ}$ C), and above which nanocrystal migration becomes significant.^[11] This hypothesis is supported by the experiments shown in Figure 4. Figure 4 a,b

Figure 4. Photos of fine reactants of size 0.022 mm and the products obtained after heating to 2000 °C at 20 °C min⁻¹. Top: at a C/CaO molar ratio of 3.5, a) before and b) after the reaction; bottom: at a C/CaO ratio of 1.8 c) before and d) after the reaction.

shows the appearance of a sample before and after the reaction when a C/CaO mixture with a molar ratio of 3.5 was heated to 2000 °C at a rate of 20 °C min⁻¹. The carbidization between 1510 and 1900 °C yielded a final mixture containing 86.5 % CaC₂ and 13.5 % char (Figure S2 in the Supporting Information). The product (Figure 4b) is loose with dense particles. When the C/CaO molar ratio (1.8) was below the reaction stoichiometry (Figure 4c,d), the carbidization temperature was unchanged but additional mass loss after the full conversion of the char at 1828 °C was observed (Figure S3 in the Supporting Information). Figure 4d indicates the formation of eutectics consisting of CaC₂ and CaO.

When a larger particle size (e.g. 5 mm in diameter) is used (Figure 5), the initial temperature is shifted to 2020 °C and the DTG peak temperature to 2090 °C (Figure S4 in the Supporting Information). The core (char) and shell (CaC₂) structure in the products indicate migration of CaO into the char during the process.

Contacting the core–shell structure (Figure 5b) with H_2O transformed the CaC₂ shell into loose Ca(OH)₂ that peels off from the core, yielding a CaO conversion of 77.8% to CaC₂ and a mass loss of 4.8% in addition to the release of CO. The visual spillage on the mouth of the crucible indicates formation of foaming slurry during the experiment and explains the additional weight loss at temperatures higher than 2128 °C (Figure S4 in the Supporting Information). The formation of a eutectic mixture by CaO and CaC₂ under the

Angew. Chem. Int. Ed. 2010, 49, 8480-8483

Communications

Figure 5. Appearance of the reactants and the product. a) Two CaO and two char granules of size 5 mm at a C/CaO molar ratio of 3.15 in a TG crucible; b) after heating at a rate of 20° Cmin⁻¹ to 2150° C in Ar; c) cut product particles (top: black char core and gray CaC₂ shell; bottom: black char core and white Ca(OH)₂ shell, upon contact with moisture).

experimental conditions agrees with published results, which record the lowest eutectic temperature of 1650 °C for a CaO/ CaC_2 molar ratio of 0.62.^[12]

The experimental observations suggest that CaC_2 production at temperatures between 1154 °C (the Tammann temperature of CaO) and 2580 °C (the melting point of CaO) is controlled initially by CaO nanocrystal migration. Eutectic mixtures of different compositions may be formed at the interface of CaO and CaC₂ when temperature is higher than 1650 °C. The eutectic phase accelerates CaO migration towards the char. This mechanism is schematically shown in Figure 6.

Figure 6. Reaction process of CaO and C for the production of CaC2.

Clearly CaC₂ production is controlled by mass transfer of CaO toward the char phase. A smaller particle size results in a greater contact surface area and a reduced mass transfer barrier for the reaction; thus, the reaction rate is enhanced even at lower temperature (Figure 7). From the data in Figure 7, a reaction time of 4.6 min for 95% conversion of CaO at 1750°C was determined when the particle size was 0.022 mm (assuming a first-order reaction to CaO; see the Supporting Information). The dramatic decrease in temperature and reaction time, compared to 1-2 h at about 2200 °C for the electric arc process, point to a tremendous potential for energy saving. This result also implies that CaC₂ production can be carried out in autothermal mode, since the temperature becomes comparable to many autothermal processes such as pulverized coal gasification (1400-2000 °C) and the BASF process of oxidative dehydrogenation of methane for acetylene production (1540 °C).^[6,13,14]

Computer simulation using Aspen Plus (Figure 8) confirms that autothermal CaC_2 production is achievable by oxidizing a fraction of char to CO to meet the energy requirement of the reaction, and the process is of higher

Figure 7. Conversion rate of CaO (*R*) at different particle sizes (d_p) at a pine wood char/CaO molar ratio of 3.6.

Figure 8. Carbon yields to CaC₂ (C% CaC₂), CO (C% CO), and CO₂ (C% CO₂), and thermal efficiency (η) of autothermal and electric arc processes determined by Aspen Plus simulation. The autothermal process includes preheating by the high-temperature side-product CO. \odot : C% CaC₂, \Box : C% CO, \bigtriangledown : C% CO₂, \triangle : η .

thermal efficiency than the electric arc process especially when the reactants are preheated by the high-temperature CO generated from the CaC_2 production (see the Supporting Information).

In summary, fine biochars as feed for CaC_2 production make the autothermal process feasible at a temperature about 500 °C lower than that of the current electric arc process. The reaction time is also reduced from 1–2 h to less than 5 min. The reaction mechanism may involve eutectic mixtures at the CaO/char interphase. Coupling this process with biomass pyrolysis forms a new route for biomass conversion, which is extendable to coal-based processes.

Experimental Section

A thermoanalyzer from Setaram (Setsys Evolution 24) and a mass spectrometer from Balzers (Omnistar 200) were used. CaO had a purity of 98.3%. The carbon sources include five biochars (derived from apricot shell, willow wood, bamboo, pine wood, and corncob), three coal chars (derived from anthracite, bituminous coal, and lignite), petroleum coke, and graphite. The preparation procedure and conditions of all the chars include pyrolysis in N₂ at 900 °C for 3 h, acid washing with a HF + HCl solution at 60 °C for 24 h, and drying at

120 °C for 5 h. Proximate and ultimate compositions determined for all the carbon sources are shown in Table S1 in the Supporting Information. Blank TG-MS experiments (with empty crucible) were made to account for the effect of buoyancy caused by the temperature rise.

Received: July 8, 2010 Published online: September 10, 2010

Keywords: biomass · calcium · carbides · nanostructures · sustainable chemistry

- [1] A. P. C. Faaij, Energy Policy 2006, 34, 322-342.
- [2] J. Lehmann, *Nature* **2007**, *447*, 143–144.
- [3] C. S. Kim, R. F. Baddour, J. B. Howard, H. P. Meissner, Ind. Eng. Chem. Process Des. Dev. 1979, 18, 323–328.

- [4] J. Lacson, U. Lochner, G. Toki, *Chemical Economics Handbook*, SRI International, Menlo Park, CA, 2001, pp. 1–48.
- [5] J. T. Morehead, G. De Chalmot, J. Am. Chem. Soc. 1896, 18, 311–331.
- [6] Acetylene 93S14. Chem. Systems 1996.
- [7] M. H. El-Naas, R. J. Munz, F. Ajersch, Plasma Chem. Plasma Process. 1998, 18, 409–427.
- [8] M. Fujishige, H. Yokogawa, S. Ujiie, M. Tokiya, Japan, 61– 178412, 1986.
- [9] S. C. Yue, China, 1843907A, 2005.
- [10] J. J. Mu, R. A. Hard, Ind. Eng. Chem. Res. 1987, 26, 2063-2069.
- [11] C. N. Satterfield, *Heterogeneous catalysis in practice*, McGraw-Hill Book Company, USA, **1980**, pp. 86–94.
- [12] M. B. Müller, Scand. J. Metall. 1990, 19, 210-217.
- [13] A. G. Collot, Int. J. Coal Geol. 2006, 65, 191-212.
- [14] L. Zheng, E. Furinsky, Energy Convers. Manage. 2005, 46, 1767– 1779.