This article was downloaded by: [University of Connecticut] On: 08 October 2014, At: 09:46 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/gpss20</u>

Binuclear Orthometalated N,N-Dimethylbenzylamine Complexes of Palladium(II): Synthesis, Structures and Thermal Behavior

Siddhartha Kolay $^{\rm a}$, Ninad Ghavale $^{\rm a}$, Amey Wadawale $^{\rm a}$, Dasarathi Das $^{\rm a}$ & Vimal K. Jain $^{\rm a}$

^a Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India

Accepted author version posted online: 02 Jan 2013. Published online: 06 Sep 2013.

To cite this article: Siddhartha Kolay, Ninad Ghavale, Amey Wadawale, Dasarathi Das & Vimal K. Jain (2013) Binuclear Orthometalated N,N-Dimethylbenzylamine Complexes of Palladium(II): Synthesis, Structures and Thermal Behavior, Phosphorus, Sulfur, and Silicon and the Related Elements, 188:10, 1449-1461, DOI: <u>10.1080/10426507.2012.757608</u>

To link to this article: <u>http://dx.doi.org/10.1080/10426507.2012.757608</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u>

Binuclear Orthometalated N,N-Dimethylbenzylamine Complexes of Palladium(II): Synthesis, Structures and Thermal Behavior

Siddhartha Kolay, Ninad Ghavale, Amey Wadawale, Dasarathi Das, and Vimal K. Jain Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India

GRAPHICAL ABSTRACT

Abstract Organochalcogenolate-bridged cyclometalated palladium(II) complexes of the formulae, $[Pd_2(\mu-Epy)_2(Me_2NCH_2C_6H_4-C,N)_2]$ (2) $(E = S (2a), Se (2b)), [Pd_2(\mu-SAr)(\mu-Cl)(Me_2NCH_2C_6H_4-C,N)_2]$ (3) $(Ar = Ph (3a), Mes (Mes = 2,4,6-Me_3C_6H_2)$ (3b)) and $[Pd_2(\mu-SeAr)_2(Me_2NCH_2C_6H_4-C,N)_2]$ (4) (Ar = Ph (4a), Mes (4b)), have been synthesized by the reactions of $[Pd_2(\mu-Cl)_2(Me_2NCH_2C_6H_4-C,N)_2]$ with lead or sodium salts of the chalcogenolate ligand. These complexes have been characterized by elemental analysis, mass spectral data, and NMR (¹H and ⁷⁷Se{¹H}) spectroscopy. The molecular structure of 2, determined by single crystal X-ray diffraction analysis, revealed a Epy-bridged head-to-tail arrangement in

Received 1 August 2012; accepted 7 December 2012.

The authors thank Dr. T. Mukherjee for encouragement of this work.

Address correspondence to Vimal K. Jain, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India. E-mail: jainvk@barc.gov.in

which the eight-membered " $(PdECN)_2$ " ring adopts a distorted twist boat conformation. The Pd---Pd separation in 2a is within the van-der-Waals interaction but in 2b it is too large to support the presence of any metal-metal interaction. The thermal behavior of these complexes has been studied by thermogravimetric analysis.

Supplementary materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements for the following free supplemental files: Additional figures.

Keywords Cyclometaled complexes; palladium; chalcogen ligands; x-ray structure, NMR, TGA

INTRODUCTION

Cyclometalated platinum group metal complexes have been of considerable interest¹⁻³ since early studies by Cope and Siekman in the mid 1960s. Recently we have isolated cyclometalated palladium and platinum complexes derived from metalated ligand differing in the metalocyclic ring size and the nature of neutral donor group as well as a variety of anionic auxiliary ligands.⁴⁻⁷ It is worth noting that simple thiolate ligands invariably gave chloro/thiolato-bridged derivatives of palladium, $[Pd_2(\mu-Cl)(\mu-SR)(\hat{CN})_2]$ under different experimental conditions.⁴ In contrast, similar reactions with selenolate ligands afforded bis-selenolato-bridged derivatives.⁴ Such reactions employing platinum precursors and both thiolate and selenolate ligands yielded the expected products, $[Pt_2(\mu-ER)_2(X^{\cap}C)_2]$ (E = S or Se; X = N or P).^{5,6} Interestingly, reaction involving platinum precursors with internally functionalized ligands, e.g., Spy, $Me_2NCH_2CH_2E^-$ (E = S or Se) afforded several products varying from cleavage of metalated ligands, cleavage of the Pt-C bond, mono-, bi- and tetranuclear platinum(II) complexes to a platinum(III) derivative $[Pt_2Cl_2(\mu-Spy)_2(ppy)_2]^{5-7}$ The 2-mercaptopyridine bridged platinum complex with metalated 2-phenylpyridine show a facial redox (PtII....PtIII) behavior⁸ and exhibit red luminescence from metal to metal ligand charge transfer (MMLCT) arising from short Pt....Pt (2.849(1) Å) interaction.^{8,9} Similarly, other Spy-bridged binuclear complexes of palladium(II) and platinum(II) with short M M (M = Pd or Pt) interactions, e.g., $[Pd_2(\mu-Spy)_2(\hat{CN})_2], {}^{10}[Pt_2(\mu-Spy)_2(bipy)_2][PF_6]_2, {}^{11}$ have been shown to be luminescent.¹⁰⁻¹² Deeming and coworkers¹³ reported Spy and SpyMe (6-methylpyridine-2-thiolate) bridged binuclear palladium complexes derived from metalated N,N-dimethylbenzylamine, $[Pd_2(\mu-SAr)_2(Me_2NCH_2C_6H_4-C,N)_2]$ (Ar = py or $C_5H_3(6-Me)N)$ and described the structural aspects based on ¹H NMR spectral data.

In the light of the above we have now examined palladium(II) complexes containing N,N-dimethylbenzylamine as a metalated ligand and pyridine-2-chalcogenolate ions as a bridging ligand. For comparison purpose complexes with non-hemilabile chalcogenolate ligands bearing bulky (Mes = $2,4,6-Me_3C_6H_2$ -) and simple (Ph) aryl groups have also been synthesized. Results of this work are described herein.

RESULTS AND DISCUSSION

Synthesis and Spectroscopy

The reaction of $[Pd_2(\mu-Cl)_2(Me_2NCH_2C_6H_4-C,N)_2]$ (1) with lead salt of 2mercapto or selenopyridine in dichloromethane afforded 2-chalcogenopyridine-bridged binuclear palladium complexes, $[Pd_2(\mu-Epy)_2(Me_2NCH_2C_6H_4-C,N)_2]$ (2) (E = S (2a) or Se (2b)) in fairly good yield (Scheme 1). Interestingly, a similar reaction with simple arylthiolate groups gave mixed chloro/mercapto-bridged derivatives, $[Pd_2(\mu-Cl)(\mu-SAr)(Me_2NCH_2C_6H_4-C,N)_2]$ (3) (Ar = Ph (3a) or Mes (3b)). Contrary to this, the analogous arylselenolate ligand yielded the expected bis selenolato-bridged complexes, $[Pd_2(\mu-SeAr)_2(Me_2NCH_2C_6H_4-C,N)_2]$ (4) (Ar = Ph (4a) or Mes (4b)).

Scheme 1

The mass spectra of 2 did not show a molecular ion peak, instead a peak due to M-Epy fragment with the expected isotopic pattern was observed. The mass spectra of 3 and 4 displayed molecular ion peaks. The ¹H NMR spectral data for **2a** are consistent with the one reported earlier.¹³ Deeming described temperature independent ¹H NMR spectra of **2a** while the analogous complex $[Pd_2(\mu-SC_5H_3(Me-6)N)_2(Me_2NCH_2C_6H_4-C,N)_2]$ is fluxional at room temperature.¹³ Unlike 2a, the ¹H NMR spectrum of 2b showed broad resonances indicative of fluxional nature of the complex in solution. The spectrum displayed a singlet for NMe₂ protons and two separate resonances for CH₂ protons, i.e., a singlet at 2.97 ppm and a broad AB pattern in the region 3.13–3.37 ppm in the ratio of 1:1.6 at room temperature. On lowering the temperature, two separate signals for NMe₂ protons appeared. At -30 °C, the spectrum showed two separate signals for NMe₂ at 2.49 and 2.52 ppm while the NCH₂ protons showed a singlet at 2.97 ppm and an AB pattern in the region 3.05-3.14 ppm in the ratio of 1:8.8. The singlet at 2.97 ppm may be attributed to the sym-cis isomeric form. The spectra of 3 and 4 exhibited singlets for NMe₂ and CH₂ protons at \sim 2.75 and \sim 3.85 ppm, respectively, indicating magnetic equivalence of protons of methyl and methylene groups. This suggests that these groups of both the metalated ligands are trans to the similar bridging ligands. Recent X-ray analysis of $[Pd_2(\mu-Cl)(\mu-SMes)(Me_2NC_{10}H_6-C,N)_2]^4$ and $[Pd_2(\mu-Cl)(\mu-SBu^n){(Bu^nO)C_6H_3CH = NC_6H_4(OBu^n-4)}_2]^{14}$ have shown a sym-cis configuration with the nitrogen atom of the metalated ligands trans to the bridging thiolate group. The ¹H NMR spectra of **3** can be interpreted in terms of sym-cis configuration. The 77 Se NMR spectrum of **4a** showed a singlet at 181 ppm indicating that both the bridging selenolates are magnetically equivalent as is expected for sym-trans configuration. However,

for **4b** ⁷⁷Se NMR spectrum displayed two resonances at -10 and 30 ppm indicating the existence of sym-cis configuration. This configuration has been reported for the complex $[Pd_2(\mu-SePh)_2(Me_2NC_{10}H_6-C,N)_2]$ both in the solid state (X–ray crystallography) and in solution (⁷⁷Se NMR data).⁴

Crystal Structures of $[Pd_2(\mu-Epy)_2(Me_2NCH_2C_6H_4-C,N)_2]$ (E = S or Se)

Molecular structures of $[Pd_2(\mu-Epy)_2(Me_2NCH_2C_6H_4-C,N)_2]$ (E = S or Se), established by X-ray diffraction analysis, are shown in Figures 1 and 2, while the selected inter-atomic parameters are given in Tables 1 and 2. The coordination around each palladium atom, defined by C, N, E, N, donor set, is nearly planar. The sulfur or selenium atoms in the two bridging pyridine-chalcogenolate ligands occupy the trans position to the N atoms of the metalated ligands resulting in an *anti* configuration (head-to-tail arrangement) which is usually observed for this type of complexes.^{10,11,15}

C17 C15 C22 C10 14 C23 C1 CB C21 C24 C20 C25 C26 Pd2 **S**1 C1 28 C5

Figure 1 Crystal structure of $[Pd_2(\mu-Spy)_2(Me_2NCH_2C_6H_4-C,N)_2]$ with 25% ellipsoid probability (H atoms are excluded for clarity) (Color figure available online).

Figure 2 Crystal structure of $[Pd_2(\mu$ -Sepy)₂(Me₂NCH₂C₆H₄–C,N)₂] with 25% ellipsoid probability (H atoms are excluded for clarity) (Color figure available online).

The eight-membered ring adopts a distorted twist-boat conformation. The methyl groups of NMe₂ of the metalated rings are mutually *anti* but differ in their conformation in two complexes. In case of the Spy bridged complex, they are *exo* with resepect to the eight-membered boat configuration while in the case of Sepy-bridged complex they adopt an *endo* configuration. The Pd–C and Pd–N_(metalated) are well in agreement with those reported for $[Pd_3(\mu-Spy)_2(Me_2NCH_2C_6H_4-C,N)_3][BF_4]^{13}$ and other related cyclometalated palladium complexes.¹⁴ The two Pd–S distances are essentially similar and can be compared with those reported in $[Pd_2(\mu-Spy)_2(Me_2NCH_2C_6H_4-C,N)_3][BF_4],^{13}$ $[Pd_2(\mu-Spy)_2(Bzq)_2],^{10}$ and $[Pd_2(\mu-Spy)_2(4,4'-But_2bipy)_2][ClO_4]_2.^{12}$ The Pd–Se distance (2.410Å) is as expected and can be compared with the one trans to nitrogen atom as observed in $[Pd_2(\mu-SePh)_2(C_{10}H_6NMe_2-C,N)_2].^4$

Pd1-C11	2.028(8)	Pd2-C20	2.004(8)
Pd1-N2	2.184(7)	Pd2-N1	2.157(7)
Pd1-N3	2.143(6)	Pd2-N4	2.163(6)
Pd1-S1	2.295(2)	Pd2-S2	2.305(2)
S1-C1	1.728(9)	S2-C6	1.732(8)
		Pd1-Pd2	2.976(2)
N2-Pd1-N3	92.7(2)	N1-Pd2-N4	93.4(2)
N2-Pd1-S1	92.81(18)	N1-Pd2-S2	91.37(18)
N2-Pd1-C11	174.0(3)	N1-Pd2-C20	174.7(3)
N3-Pd1-C11	81.6(3)	N4-Pd2-C20	82.1(3)
N3-Pd1-S1	166.84(19)	N4-Pd2-S2	167.55(17)
C11-Pd1-S1	92.2(2)	C20-Pd2-S2	92.5(2)
N1-C6-S2	122.2(6)	N1-C1-S1	122.4(6)
C11-Pd1-Pd2	98.6(2)	C20-Pd2-Pd1	98.5(2)

Table 1 Selected bond lengths (Å) and angles (°) for [Pd₂(µ-Spy)₂(Me₂NCH₂C₆H₄-C,N)₂]

The Pd–Pd distance in Spy-bridged complex (2.976(2) Å) is significantly longer than those reported in $[Pd_2(Spy)_4]$ (2.677(1) Å),¹⁶ $[Pd_2(\mu-Spy)_2(4,4'-But_2bipy)_2][ClO_4]_2$ (2.891(4)Å),¹² $[Pt_2(Spy)_2(ppy)_2]$ (2.8491(4)Å),⁸ but only marginally longer than the one reported in $[Pd_2(\mu-Spy)_2(Bzq)_2]$ (2.941(4)Å).¹⁰ However, it is shorter than the sum of van der Waals radii of Pd atoms (3.26Å) and is within the acceptable value for a Pd…Pd intramolecular interaction. The Pd…Pd separation in the corresponding Sepy bridged complex (3.420Å) is much longer than the analogous thio derivative and is also longer than the sum of van der Waals radii of Pd atoms indicative of absence of Pd…Pd interaction.

Thermal studies

Palladium chalcogenolate complexes have been employed as molecular precursors for moderately low temperature synthesis of palladium chalcogenides^{4,17,18} which find numerous applications.^{19,20} These are also believed to be formed during several catalytic processes involving palladium chalcogenolate complexes.^{21,22} Depending on auxiliary ligands on palladium and the nature of R group on chalcogenolate ligand, a variety of palladium chalcogenides are formed. To understand decomposition pattern of these complexes thermogravimetric analysis (TGA) were carried out and the TG residues were characterized by powder XRD. Some of these complexes were also heated in a furnace under different heating conditions and the final residues were characterized by powder XRD analysis. The TG-DTG curves (Supplementary Material) revealed that these complexes undergo a multistep decomposition in the temperature range 200–300 °C leading to the formation of palladium

Table 2 Selected bond lengths	A) and angles	(°) for [Pd ₂ (μ -Sepy) ₂ ($Me_2NCH_2C_6H_4-C,N)_2$
-------------------------------	---------------	--	--------------------------

Pd1-C6	1.994(9)	Pd1-Se1 ⁱ	2.410(2)
Pd1-N1	2.189(8)	Se1-C5	1.906(10)
Pd1-N2	2.140(8)	Pd1-Pd1 ⁱ	3.420
N1-Pd1-N2	94.3(3)	N2-Pd1-C6	81.4(4)
N1-Pd1-Se1 ⁱ	94.7(2)	N2-Pd1-Se1 ⁱ	165.2(2)
N1-Pd1-C6	173.6(4)	C6-Pd1-Se1 ⁱ	88.5(3)
		N1-C5-Se1	118.3(7)

Figure 3 TG-DTG curve of $[Pd_2(\mu-Spy)_2(Me_2NCH_2C_6H_4-C,N)_2]$ (Color figure available online).

chalcogenides. The thiolato-bridged complexes decomposed to single phase Pd₄S (JCPD file No 73-1387). The TG curve (Figure 3) of $[Pd_2(\mu-Spy)_2(Me_2NCH_2C_6H_4-C,N)_2]$ appears to be a single-step decomposition but the DTG clearly shows overlapping of closely spaced two-step decomposition (weight loss 30, 28%) at ~215 °C with the formation of Pd₄S (from XRD pattern, Figure 4). This complex can be converted into single phasic Pd₄S

Figure 4 XRD pattern of Pd₄S obtained from [Pd₂(µ-Spy)₂(Me₂NCH₂C₆H₄-C,N)₂].

Figure 5 TG-DTG curve of $[Pd_2(\mu$ -Sepy)₂(Me₂NCH₂C₆H₄-C,N)₂] (Color figure available online).

even at low temperature (210 $^{\circ}$ C) as seen during the conventional furnace heating under dynamic argon flow condition.

The selenolato-bridged complexes in general gave a mixture of palladium selenides on decomposition. The TG curve of $[Pd_2(\mu-SePh)_2(Me_2NCH_2C_6H_4-C,N)_2]$ showed that the complex decomposed at ~290 °C into single phasic Pd₇Se₄ (confirmed from the XRD pattern JCPDS 44-0875). We have also tried to identify the low temperature decomposition product by carrying out the decomposition of the complex at 200 °C in a furnace under flowing argon, air, and H₂ atmospheres. However, in every case, Pd₄Se was the major product together with Pd₇Se₄ as confirmed from their powder XRD patterns. Similarly, $[Pd_2(\mu-SeMes)_2(Me_2NCH_2C_6H_4-C,N)_2]$ decomposed into a biphasic mixture of Pd₃₄Se₁₁ (JCPDS file No: 79-0140) and Pd₄Se₇ (JCPDS file No: 31-0939) at ~350 °C. The complex $[Pd_2(\mu-Sepy)_2(Me_2NCH_2C_6H_4-C,N)_2]$ undergoes a multi-step decomposition (Figure 5) at 225 °C to yield Pd₁₇Se₁₅ as confirmed by the XRD pattern (Figure 6) (JCPDS file No 73-1424). Figures S2–S12 (Supplemental Materials) provide additional characterization spectra for TG-DTG and XRD of the products.

EXPERIMENTAL

Materials and Methods

Solvents were dried and distilled under a nitrogen atmosphere prior to use according to literature method.²³ All reactions were carried out in Schlenk flask under a nitrogen atmosphere. N,N-Dimethylbenzylamine, PhSH, MesSH (Mes = 2,4,6-Me₃C₆H₂), Ph₂Se₂, pySH, and other reagents were obtained from commercial sources and were used without further purification. Palladium precursor $[Pd(\mu-Cl)(C^{\cap}N)]_2$ (1) $(C^{\cap}NH = N,N-dimethylbenzylamine)$,²⁴ Mes₂S₂,²⁵ Mes₂Se₂,²⁶ py₂Se₂,²⁷ Pb(SMes)₂,¹⁸ and Pb(Spy)₂ ⁷ were prepared according to literature methods. Elemental analyses were carried out on a

Figure 6 XRD pattern of Pd₁₇Se₁₅ obtained from [Pd₂(µ-Sepy)₂(Me₂NCH₂C₆H₄-C,N)₂].

Thermo Fisher Flash CHN-S instrument. Melting points were determined in capillary tubes and are uncorrected. UV-vis spectra were recorded on a Chemito Spectroscan UV-2600 double beam UV-vis spectrophotometer. ¹H and ⁷⁷Se{¹H} NMR spectra were recorded on a Bruker Avance II-300 NMR spectrometer operating at 300 and 57.24 MHz, respectively. Chemical shifts are relative to internal chloroform peak (δ 7.26 for ¹H) and external Me₂Se for ⁷⁷Se{¹H} (secondary reference Ph₂Se₂ in CDCl₃, δ 463 ppm). TG curves were recorded on a Setsys Evolution 1750 instrument at a heating rate of 5^oC/min under flowing argon atmosphere. Mass spectra were recorded in an MS-500 Ion Trap (IT) Varian mass spectrometer at Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology-Bombay, Mumbai. Powder XRD patterns were recorded on a Philips PW1820 using Cu- K_{α} radiation.

Single crystal X-ray data of $[Pd_2(\mu-Epy)_2(Me_2NCH_2C_6H_4-C,N)_2]$ (E = S or Se) were collected on a Rigaku AFC 75 diffractometer using graphite monochromated Mo- K α ($\lambda = 0.71069$ Å) radiation so that $\theta_{max} = 27.5$ °. Crystallographic data, together with data collection and refinement details are given in Table 3. All the data were corrected for Lorentz and polarization effects. The structures were solved by direct methods²⁸ and expanded using Fourier technique.²⁹ The nonhydrogen atoms were refined anisotropically and fitted with hydrogen atoms in their calculated positions. All calculations were performed using crystal structure crystallographic software package.^{30,31} Molecular structures were drawn using ORTEP.³²

Synthesis

Synthesis of $[Pd_2(\mu$ -Spy)₂(Me₂NCH₂C₆H₄-C,N)₂](2a). The complex was prepared by a method different from the one reported by Deeming¹³. To a dichloromethane solution (15 mL) of $[Pd(\mu$ -Cl)(Me₂NCH₂C₆H₄-C,N)]₂ (208 mg, 0.38 mmol), solid $[Pb(Spy)_2]$ (167 mg, 0.39 mmol) was added and the reactants were stirred for 24 h. The contents were

	$[Pd_2(\mu\text{-}Spy)_2 \\ (Me_2NCH_2C_6H_4\text{-}C,N)_2]$	[Pd ₂ (µ-Sepy) ₂ (Me ₂ NCH ₂ C ₆ H ₄ -C,N) ₂]
Empirical formula	$C_{28}H_{32}N_4Pd_2S_2$	C ₂₈ H ₃₂ N ₄ Pd ₂ Se ₂
Formula weight	701.56	795.30
Crystal size (mm)	$0.20 \times 0.20 \times 0.20$	$0.40 \times 0.20 \times 0.05$
Crystal system	Triclinic	Monoclinic
Space group	PĪ	C2/c
Unit cell dimensions		
a (Å)	10.333(3)	16.131(9)
b (Å)	11.294(10)	9.812(8)
c (Å)	13.794(6)	18.867(11)
α (°)	70.62(5)	_
β (°)	72.560(17)	110.03(5)
γ (°)	79.50(5)	_
Volume (Å ³)	1442.6(14)	2806(3)
$D_{calc} (g cm^{-1})$	1.615	1.883
Z	2	4
$\mu ({\rm mm^{-1}}) /{\rm F}(000)$	1.415 / 704	3.901 / 1552
θ range of data collection($^{\circ}$)	2.51-27.61	2.53-27.50
Index ranges	$-13 \le h \le 7$	$-11 \le h \le 20$
	$-14 \le k \le 14$	$-12 \le k \le 7$
	$-17 \le l \le 17$	$-24 \le 1 \le 23$
Reflection collected / unique	6583 / 3231	3217 / 1291
Data/restraints/parameters	6583 / 0 / 323	3217/0/165
Final R_1 , ωR_2 indices	0.0551, 0.1081	0.0600, 0.1002
$R_1, \omega R_2$ (all data)	0.1760, 0.1455	0.2326, 0.1407
Goodness of fit on F^2	0.973	0.929
Largest difference in peak and hole (e $A^{\circ-3}$)	0.957, -0.957	0.844, -1.555

Table 3 Crystal data and structure refinement details for $[Pd_2(\mu-Spy)_2(Me_2NCH_2C_6H_4-C,N)_2]$ and $[Pd_2(\mu-Sepy)_2(Me_2NCH_2C_6H_4-C,N)_2]$

passed through a Celite column. The clear filtrate was concentrated. To this hexane was added, whereupon a yellow precipitate was formed, which was washed with diethyl ether and recrystallized from dichloromethane containing few drops of hexane at 0–5 °C as yellow crystals (yield 176 mg; (66%), m.p.: >195 °C (dec). Anal. Calcd. for $C_{28}H_{32}N_4Pd_2S_2$: C, 47.9; H, 4.6; N, 8.0; S, 9.1. Found: C, 48.0; H, 4.7; N, 7.9; S, 8.9 %. Mass: m/z: 591 (M⁺⁺-Spy,). UV-Vis at λ_{max} : 276, 337 nm. ¹H NMR (CDCl₃) δ : 2.39, 2.55 (each s, NMe₂); 2.84–3.10 (AB pattern CH₂N); 6.65–6.69 (m), 6.91 (br, C₆H₄); 6.99 (t, J = 6.6 Hz, CH–5), 7.30 (d, 7.5Hz, CH–4), 7.66 (d, J = 7.5 Hz, CH–3), 8.60 (d, J = 6Hz, CH–6) (Spy).

Synthesis of $[Pd_2(\mu$ -Sepy)₂(Me₂NCH₂C₆H₄-C,N)₂](2b). To a toluene solution (20 mL) of NaSepy, prepared in situ by reduction of py₂Se₂ (115 mg, 0.37 mmol) with methanolic NaBH₄ (0.03 g, 0.79 mmol), $[Pd(\mu$ -Cl)(Me₂NCH₂C₆H₄-C,N)]₂ (200 mg, 0.36 mmol) dissolved in toluene (10 mL) was added and the reaction mixture was stirred for 2 h. The reaction mixture was evaporated under vacuum. The complex was extracted with toluene and the solution was passed through Celite. The clear filtrate was concentrated under reduced pressure. The residue was washed with diethyl ether and recrystallized from dichloromethane-hexane mixture to give yellowish brown crystals (yield 225 mg; 78%), m.p.: 193 °C (dec.). Anal. Calcd. for C₂₈H₃₂N₄Pd₂Se₂: C, 42.3; H, 4.0; N, 7.0. Found: C, 42.2; H, 4.1; N, 7.2. Mass: m/z: 638 (M⁺ - Sepy); 504 (M⁺ - (N,N-dimethylbenzylamine

+ Sepy)). UV-Vis at λ_{max} : 275, 287, 330 nm. ¹H NMR (500 MHz) (CDCl₃) δ: (at room temperature) 2.53 (s, NMe₂), 2.97 (s), 3.13-3.37 (AB pattern) (NCH₂), 6.68 (br) 6.76 (t, J = 6 Hz), 6.87 (m), 6.94 (m), 7. 45 (d, 8 Hz), 7.69 (br), 8.73 (d, J = 5 Hz); (at -30 °C): 2.49, 2.52 (each s, NMe₂), 2.97 (s) 3.05-3.14 (AB pattern) (NCH₂), 6.68 (t, 1H, C₆H₄), 6.81 (t, 6.5 Hz,1H, C₅H₄N), 6.89 (t, 4.5 Hz, 2H, C₆H₄), 6.98 (t, 7 Hz, 1H, C₅H₄N), 7.46 (d, 8 Hz, 1H, C₅H₄N), 7.75 (t, 5 Hz, 1H, C₆H₄), 8.73 (d, 5Hz, 1H, C₅H₄N); ⁷⁷Se{¹H} NMR (CDCl₃) δ: 311 ppm.

Synthesis of [Pd₂(\mu-Cl)(\mu-SPh)(Me₂NCH₂C₆H₄-C,N)₂] (3a). To a toluene solution (20 mL) of [Pd(μ -Cl)(Me₂NCH₂C₆H₄-C,N)]₂ (300 mg, 0.54 mmol), PhSH (120 mg, 1.09 mmol) in toluene (5 mL) was added. After stirring for 5 min, Et₃N (151 μ L, 1.0 mmol) was added and the whole reaction mixture was further stirred for 2 h. The contents were passed through a Celite column and the clear filtrate was shaken first with distilled water (1 × 10 mL) and then with aqueous NaCl solution (2 × 5 mL) in a separating funnel and, in both the cases, organic fraction was collected. The organic fraction was stored over anhydrous Na₂SO₄. The clear solution was decanted and passed through Celite. The filtrate was filtered and washed with diethyl ether and dried under vacuum. The complex was recrystallized as a yellow crystalline solid from dichloromethane containing few drops of hexane at 0–5 °C. Yield: 253 mg (74 %), m.p. 185 °C (dec.). Anal. Calcd. for C₂₄H₂₉ClN₂Pd₂S: C, 46.0; H, 4.7; N, 4.5; S, 5.1. Found: C, 45.9; H, 4.6; N, 4.6; S, 4.9 %. Mass: m/z: 626 (M⁺); 590 (M - Cl⁻). UV-Vis : λ_{max} : 282, 339 nm. ¹H NMR (CDCl₃) δ : 2.77 (s, 12H, NMe₂); 3.89 (s, 4H, -CH₂-); 6.94–6.97 (m), 7.13 (m) (SPh); 7.60–7.63 (m),8.15–8.18 (m) (C₆H₄).

Synthesis of $[Pd_2(\mu-Cl)(\mu-SMes)(Me_2NCH_2C_6H_4-C,N)_2]$ (3b). To a dichloromethane solution (15 mL) of $[Pd(\mu-Cl)(Me_2NCH_2C_6H_4-C,N)]_2$ (260 mg, 0.47 mmol), solid $[Pb(SMes)_2]$ (240 mg, 0.47 mmol) was added with stirring. The yellow solution turned orange with appearance of a white precipitate. The reaction mixture was stirred for 2 h and the solution was passed through a Celite column. The clear filtrate was concentrated and the complex was precipitated by adding hexane. The precipitate was washed with diethyl ether until the color of the washings became colorless. The complex was crystallized from dichloromethane containing few drops of hexane at 0–5 °C whereupon orange crystals were separated (yield 187 mg; 59%), m.p.: 166 °C (dec). Anal. Calcd. for C₂₇H₃₅ClN₂Pd₂S: C, 48.5; H, 5.3; N, 4.2; S, 4.8. Found: C, 48.7; H, 5.2; N, 4.3; S, 4.5%. Mass: m/z: 668 (M⁺); 632 (M⁺-Cl); 517 (M⁺- SMes). UV-Vis at λ_{max} : 279, 341 nm. ¹H NMR (CDCl₃) δ : 2.16 (s, 3H, 4-Me); 2.71 (s, 12H, NMe₂); 3.14 (s, 6H, 2,6-Me); 3.85 (s, 4H, -CH₂-); 6.44(s); 6.47 (s) (C₆H₂Me₃); 6.54–6.60 (m); 6.79–6.82 (m) (C₆H₄).

Synthesis of $[Pd_2(\mu-SePh)_2(Me_2NCH_2C_6H_4-C,N)_2]$ (4a). To a toluene solution (20 mL) of NaSePh, prepared in situ by reduction of Ph₂Se₂ (113 mg, 0.36 mmol) with methanolic NaBH₄ (30 mg, 0.79 mmol), $[Pd(\mu-Cl)(Me_2NCH_2C_6H_4-C,N)]_2$ (200 mg, 0.36 mmol) dissolved in 20 mL toluene was added and stirred for 2 h. The solvents were evaporated under reduced pressure and the residue was extracted with benzene. The solution was passed through Celite, concentrated and precipitated by adding hexane. The precipitate was washed with diethyl ether and recrystallized from benzene/hexane mixture as red crystals, (yield: 174 mg (61%), m.p. 158 °C (dec)). Anal. Calcd. for C₃₀H₃₄N₂Pd₂Se₂: C, 45.4; H, 4.3; N, 3.5. Found: C, 45.1; H, 4.3; N, 3.2%. Mass: m/z: 793 (M⁺), 659 (M⁺-N,N-dimethylbenzylamine), 637 (M⁺-SePh). UV-Vis : λ_{max} : 276, 335 nm. ¹H NMR (CDCl₃) δ : 2.76 (s, 12H, NMe₂); 3.91 (s, 4H, -CH₂--); 6.89–6.97 (m), 7.12–7.15 (m), 7.63 (d, J = 6.6 Hz); 8.81 (d, d, 1.8, 7.8 Hz) (Ph + C_6H_4). ⁷⁷Se {¹H} NMR (CDCl₃) δ : 181 ppm.

Synthesis of $[Pd_2(\mu-SeMes)_2(Me_2NCH_2C_6H_4-C,N)_2]$ (4b). Prepared similar to reported method.⁴ (Characterization details are given in supplementary information). Figure S13 shows the ⁷⁷Se NMR spectrum of 4b.

SUPPLEMENTARY DATA

The full crystallographic data were deposited in the form of CIF files at the Cambridge Structural Database (CCDC-Nos. 870373 and 870374 for $[Pd_2(\mu-Sepy)_2(Me_2NCH_2C_6H_4-C,N)_2](2b)$ and $[Pd_2(\mu-Spy)_2(Me_2NCH_2C_6H_4-C,N)_2](2a)$, respectively) and are available freely on request citing the deposition number from the website: www.ccdc.cam.ac.uk/conts/retrieving.html.

REFERENCES

- 1. Cope, A. C.; Siekman, R. W. J. Am. Chem. Soc. 1965, 87, 3272-3273.
- 2. Jain, V. K.; Jain, L. Coord. Chem. Rev. 2005, 249, 3075-3197.
- (a) Dupont, J.; Consorti, C.S.; Spencer, J. Chem. Rev. 2005, 105, 2527-2571 (b) Ghedini, M.; Aiello, I.; Crispini, A.; Golemme, A.; La Deda, M.; Pucci, D. Coord. Chem. Rev. 2006, 250, 1373-1390 (c) Alonso, D.A.; Najera, C. Chem. Soc. Rev. 2010, 39, 2891-2902.
- 4. Ghavale, N. D.; Dey, S.; Jain, V. K.; Nethaji, M. Inorg. Chim. Acta. 2008, 361, 2462-2470.
- 5. Ghavale, N.; Wadawale, A.; Dey, S.; Jain, V. K. J. Organomet. Chem. 2010, 695, 1237-1245.
- 6. Ghavale, N.; Wadawale, A.; Dey, S.; Jain, V. K. J. Organomet. Chem. 2010, 695, 2296-2304.
- 7. Ghavale, N.; Dey, S.; Wadawale, A.; Jain, V. K. J. Organomet. Chem. 2011, 696, 3491-3498.
- 8. Koshiyama, T.; Omura, A.; Kato, M. Chem. Lett. 2004, 33, 1386-1387.
- Saito, K.; Hamada, Y.; Takahashi, H.; Koshiyama, T.; Kato, M. Jap. J. Appl. Phys. 2005, 44, L 500-501.
- Santama, M. D.; Garcia-Bueno, R.; Garcia, G.; Sanchez, G.; Garcia, J.; Perez, J.; Garcia, L.; Serrano, J. L. *Dalton Trans.* **2011**, 40, 3537-3546.
- Kato, M.; Omura, A.; Toshikawa, A.; Kishi S.; Sugimoto, Y. Angew. Chem. Int. Ed. 2002, 41, 3183-3185.
- Tzeng, B. C.; Fu, W. F.; Che, C. M.; Chao, H. Y.; Cheung, K. K.; Peng, S. M. J. Chem. Soc. Dalton Trans. 1999, 1017-1023.
- Deeming, A. J.; Meah, N.; Bates, P. A.; Hursthouse, M. B. J. Chem. Soc. Dalton Trans. 1988, 2193-2199.
- Buey, J.; Diez, G. A.; Espinet, P.; Garcia-Granda, S.; Perez-Carreno, E. *Eur. J. Inorg. Chem.* 1998, 1235-1241.
- Ruiz, J.; Florenciano, F.; Lopez, G.; Chaloner, P. A.; Hitchcock, P. B. *Inorg. Chim. Acta* 1998, 281, 165-173.
- 16. Umakoshi, K.; Ichimura, A.; Kinoshita, I.; Ooi, S. Inorg. Chem. 1990, 29, 4005-4101.
- 17. Dey, S.; Jain, V. K. Platinum Met. Rev. 2004, 48, 16-29.
- 18. Ghavale, N.; Dey, S.; Wadawale, A.; Jain, V. K. Organometallics 2008, 27, 3297-3302.
- 19. Ferrer, I. J.; Diaz-Chao, P.; Pascual, A.; Sanchez, C. Thin Solid Films. 2007, 515, 5783-5786.
- 20. Radha, B.; Kulkarni, G.U. Adv. Funct. Mater. 2010, 20, 879-884.
- 21. Singh, P.; Das, D.; Kumar, A.; Singh, A. K. Inorg. Chem. Commun. 2012, 15, 163-166.
- 22. Singh, V. V.; Rao, G. K.; Kumar, A.; Singh, A. K. Dalton Trans. 2012, 41, 1142-1145.
- Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals, 2nd ed.; Pergamon, Oxford, 1980.
- Ryabov, A. D.; Polyakov, V. A.; Yatsimirsky, A. K. J. Chem. Soc., Perkin Trans. II 1983, 1503-1509.

- Costanza, A. J.; Coleman, R. J.; Pierson, R. M.; Marvel, C. S.; King, C. J. Poly. Sci. 1955, 17, 319-340.
- Bochmann, M.; Webb, K. J.; Hursthouse, M. B.; Mazid, M. J. Chem. Soc. Dalton Trans. 1991, 2317-2323.
- 27. Bhasin, K. K.; Arora, V.; Klapotke, T. M.; Crawford, M. J. Eur. J. Inorg. Chem. 2004, 4781-4788.
- Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M.C.; Polidori, G.; Camalli, M. Appl. Cryst., 1994, 27, 435.
- 29. Sheldrick, G. M. Acta Cryst., 2008, A64, 112-122.
- Crystal structure 3.7.0: Crystal structure Analysis Package, Rigaku, Rigaku / MSC 2000–2005, 9009 New Trials Dr. Spring. The Woodlands, TX 77381 USA.
- Watkins, D. J.; Prout, C. K.; Carruthers, J. R.; Betteridge, P. W. CRYSTALS, version 10; Chemical Crystallography Laboratory, Oxford (U.K.) 1996.
- Johnson, C. K. ORTEP–II, Report ORNL–5136 Oak Ridge National Laboratory, Oak Ridge TN 1976.