31) and methylthiomethyl- (Compound 34) groups do not reach, and cannot shield, the Ph-S bond, whereas 2-alkyl groups with five or more carbon atoms in the main chain (Compounds 21-23, 27, 28) and 2-propoxymethyl-(Compound 32) or butoxymethyl-(Compound 33) can reach and shield the Ph-S bond. The unshielded bond is thus susceptible to attack and perhaps this may account for activity of Compounds 18-20, 24-26, 29, 31 & 34. Conversely, compounds whose Ph-S bond is shielded from attack would be expected to be inactive or less active (Compounds 21-23, 27, 28, 32 & 33).

Acknowledgments

The author wishes to thank Mr. H. T. Foley for technical support, Mr. P. J. J. Sweet for fungitoxicity tests and Dr. J. E. Page for the i.r. and p.m.r. spectra.

The Murphy Chemical Co. Ltd., Wheathampstead, St. Albans, Herts.

Received 21 February, 1968

- References

- Pianka, M., J. Sci. Fd Agric., 1963, 14, 48
 Edwards, J. D., & Pianka, M., J. Sci. Fd Agric., 1963, 14, 55
 Bousquet, E. W., & Guy, H. G., U.S.P. 2,285,410
 Stevenson, H. A., Cummings, W. A. W., & Cranham, J. E., D. D. 746, 422 B.P. 748, 422 5. Kruckenberg, W., & Eue, L., Ger. P. 964,548

- Kuckenberg, W., & Luc, L., Ger. P. 1,050,049
 Scherer, O., & Hahn, H., Ger. P. 1,050,109
 Thorn, G. D., & Ludwig, R. A., Can. J. Bot., 1958, 36, 389
 Geigy, J. R., Ltd., Fr. P. 1,373,290
 Kier, L. B., Dodd, M. C., & Sapko, P., Nature, Lond., 1964, No. 2014 204, 697
- Kharasch, M. S., Walling, C., & Mayo, F. R., J. Am. chem. Soc., 1939, 61, 1559
 Ellis, L. M., & Reid, E. E., J. Am. chem. Soc., 1932, 54, 1674
 Hill, A. J., & Keach, De Witt, T., J. Am. chem. Soc., 1926, 48, 257
 Distinguishing H. & Alfordeson, B. Chem. Rev. 1953, 96, 142

- 13. Richtzenhain, H., & Alfredsson, B., Chem. Ber., 1953, 86, 142
- 14. Ullmann, F., & Sané, S. M., Ber. dt. Chem. Ges., 1911, 44, 3730 15. Hawthorne, F., & Cram, D. J., J. Am. chem. Soc., 1952, 74,
- 5859
- 16. Cortier, J., Gillon, M., & Halleux, A., Bull. Soc. chim. Belg., 1955, **64**, 667 17. Agfa, A.-G., B.P. 940,169
- Montgomery, H. B. S., & Moore, M. H., J. Pomol. Hort. Sci., 1937, 15, 253
 Pianka, M., & Hall, J. C., J. Sci. Fd Agric., 1957, 8, 432

- Pianka, M., J. Sci. Fd Agric., 1968, 19, 475
 Page, J. E., & Staniforth, S. E., J. chem. Soc., 1962, p. 1292
 Green, G. F. H., Page, J. E., & Staniforth, S. E., J. chem. Soc.,
- 1964, p. 144 23. Pianka, M., Edwards, J. D., & Smith, C. B. F., J. Sci. Fd Agric.,
- 1966, 17, 407
- 24. Pianka, M., & Edwards, J. D., J. chem. Soc. (C), 1967, p. 2290
- 25. Pianka, M., Chemy Ind., 1967, p. 1625

STUDIES IN FUNGITOXICITY VII.*—Fungicidal activity of certain ethylenes and heterocyclic compounds substituted with the 2,4-dinitrophenylthio- group

By M. PIANKA

Certain ethylenes and heterocyclic compounds substituted with the 2,4-dinitrophenylthio- group were synthesised and tested for activity against Venturia inaequalis, Borryits cinerea, Fusarium bulbigenum and Cercospora melonis. 1-Alkylthio-1-(2,4-dinitrophenylthio)-2-cyano-2-(ethoxycarbonyl or cyano) ethylenes in which the Ph-S bond is not shielded by the alkyl substituent from attack, perhaps by nucleophilic cell constituents, were found to be active against *Venturia*. 3,5-Di(methyl- or ethyl-thio)-4-cyanoisothiazoles were also active against *Venturia*. 2-Substituted-5-(2,4-dinitrophenylthio)-1,3,4-oxadiazoles had no or low fungicidal activity, and of several 2-(2,4-dinitrophenylthio) heterocyclic compounds that were tested 2-(2,4-dinitrophenylthio)-benzothiazole and -benzoxazole had good activity against Venturia. The infra-red and proton magnetic resonance spectra of several compounds were examined.

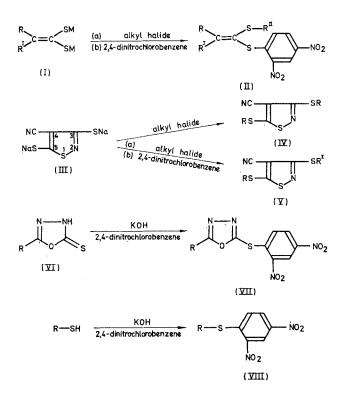
Introduction

In Part VI¹ the synthesis was reported of 2-(substituted thio)-5-(substituted nitrophenylthio)-1,3,4-thiadiazoles from the appropriate 1,3,4-thiadiazole derivatives and aryl chlor-

* Part VI: Previous paper

J. Sci. Fd Agric., 1968, Vol. 19, September

ides. The resulting compounds cleave at the Ph-S bond with nucleophilic reagents. Only compounds derived from fungitoxic aryl chlorides in which the Ph-S bond was not shielded from attack were found to be fungicidally active.


In the present paper several 1-alkylthio-1-(2,4-dinitrophenylthio)-2-cyano-2-(ethoxycarbonyl)-(II; R=CN, RI= CO₂-Et) and 2,2-di(cyano)-ethylenes (II; R, R¹=CN) were prepared and examined for their requirements for fungicidal activity.

Also 4-cyanoisothiazoles (IV; V), 2-substituted-5-(2,4dinitrophenylthio)-1,3,4-oxadiazoles (VII) and several 2-(2,4dinitrophenylthio)-heterocyclic compounds (VIII) were synthesised and their fungicidal activity was studied.

Experimental

Preparation of compounds

The compounds were synthesised by the following general routes:

1,1-Di(sodium thio)-2-cyano-2-(ethoxycarbonyl) ethylene pentahydrate (I; R=CN, $R^{I}=CO_{2}Et$, M=Na), 5H₂O

This compound (no. 1) was prepared by the method of Söderbäck.² The di(potassium thio)-salt (Compound 2) was prepared as above, but using potassium ethoxide.

1,1-Di(sodium thio)-2,2-di(cyano)ethylene (I; $R,R^{I}=CN, M=Na$)

This compound (no. 3) was prepared by the method of Hatchard.³

Condensation of 1,1-di(sodium- or potassium-thio)-2-cyano-2-(ethoxycarbonyl) ethylene or 1,1-di(sodium thio)-2,2-di(cyano) ethylene with an alkyl halide and 2,4-dinitrochlorobenzene

The di(sodium thio) ethylene derivative (0.025 mole), the alkyl halide (0.025 mole) and methanol (60-150 ml) were heated under reflux for 1-2 h. The methanol was then distilled off under reduced pressure. Acetone (100-300 ml) and a little charcoal were then added and the mixture was filtered. 2,4-Dinitrochlorobenzene (0.025 mole) was added to the filtrate, the mixture was heated under reflux for 2-3 h,

cooled to room temperature, treated with a little charcoal, filtered and the volatile components were removed from the filtrate under reduced pressure. The residue was extracted with hot benzene (20 ml), the benzene extract was washed with water (200 ml), dried (sodium sulphate) and the volatile components were removed under reduced pressure from the extract. The residue was crystallised from appropriate solvents. Tables I & II summarise the preparative details and physical properties of the compounds.

3,5-Di(methylthio)-4-cyanoisothiazole (IV; R = Me)

This compound (no. 9) was prepared by a modification of the method of Hatchard.⁴ Compound 3 ($4 \cdot 6$ g, $0 \cdot 025$ mole), methanol (50 ml) and sulphur ($0 \cdot 8$ g, $0 \cdot 025$ mole) were heated under reflux for 30 min. To 3,5-di(sodium thio)-4-cyanoisothiazole (III) thus formed methyl iodide ($7 \cdot 1$ g, $0 \cdot 05$ mole), in methanol (10 ml), was added and the mixture was heated under reflux for 2 h. The volatile components were removed from the reaction mixture (steam-bath), the residue was extracted with benzene-ether (1 : 1, 300 ml), washed with water (2×20 ml) and dried (sodium sulphate). The volatile components were then removed under reduced pressure and the residue was crystallised. The compound was obtained as white prisms (from methanol), m.p. $131-132^{\circ}$ (Hatchard⁴ reported m.p. $127-129^{\circ}$ and $130-131 \cdot 5^{\circ}$).

3,5-Di(ethylthio)-4-cyanoisothiazole (IV; R=Et)

This compound (no. 10) was prepared by the method used for Compound 9, but ethyl bromide (5.4 g, 0.05 mole) was used and the benzene-ether extract was washed with 2 N sodium carbonate. The compound was obtained as white prisms (from ethanol, then propan-2-ol), m.p. $47.5-48^{\circ}$ (Found: N, 12.0. $C_8H_{10}N_2S_3$ requires N, 12.2°).

5(3)-Ethylthio-3(5)-(2,4-dinitrophenylthio)-4-cyanoisothiazole (V; R, R^I=Et or 2,4-dinitrophenyl) (Compound 11)

Compound 3 (9.3 g, 0.05 mole), methanol (200 ml) and sulphur (1.6 g, 0.05 mole) were heated under reflux for 30 min. To 3,5-di(sodium thio)-4-cyanoisothiazole (III) thus formed ethyl bromide (5.4 g, 0.05 mole) was added and the mixture was heated under reflux for 2 h. The volatile components were distilled off under reduced pressure and acetone (200 ml) was added. The mixture was filtered. 2,4-Dinitrochlorobenzene (10.1 g, 0.05 mole) was added to the filtrate. The mixture was heated under reflux for 2.5 h, cooled and filtered. The volatile components were removed under reduced pressure from the filtrate. Benzene (200 ml) was added to the residue, washed with water $(3 \times 100 \text{ ml})$ and dried (sodium sulphate). The residue that remained on removing the benzene was crystallised. The compound was obtained as yellow prisms (from propan-2-ol and ethanol), m.p. 130-132° (Found: N, 14.7. C12H8N4O4S3 requires N, $15 \cdot 2\%$). The alkyl group can enter position 3 or 5 of Compound (III) and therefore Compound 11 is named as above.

Condensation of 2-substituted-4H-1,3,4-oxadiazoline-5-thiones and of various heterocyclic thiols with 2,4-dinitrochlorobenzene

To the heterocyclic compound (0.02 mole) in methanol (80-200 ml) potassium hydroxide (1.12 g, 0.02 mole) was added and the mixture was heated under reflux until all dissolved (~10 min). The volatile components were then removed under reduced pressure. To the residue, acetone (200-400 ml) and 2,4-dinitrochlorobenzene (4.05 g, 0.02 mole) were added. The mixture was heated under reflux for

J. Sci. Fd Agric., 1968, Vol. 19, September

TABLE	I
-------	---

No. compo		R ^{II}	From alkyl halide	Amount of methanol (ml) added; period (h) of reflux after addition of alkyl halide	Amount of acetone (ml) added; period (h) of reflux after addition of 2,4-dinitro- chlorobenzene	M.p., °c	Appearance
	1-Alkylthio-1-(2,4-dinitr obtained from [I; R=CN, R	ophenylt ^I =CO ₂ E	hio)-2-cyano-2-(eth t, M=Na (cpd 1)	oxycarbonyl)ethy or K (cpd 2)], all	vlenes (II; R=C kyl halide and 2,	N, R ¹ =CO2Et 4-dinitrochlorol) benzene
	1-Ethylthio-1-(2,4-dinitrophenylthio)- 2-cyano-2-(ethoxycarbonyl)ethylene	Et	Ethyl bromide*	60; 1	100; 2	144–145 ^{a,b}	Pale yellow prism
	1-Butylthio-1-(2,4-dinitrophenylthio)- 2-cyano-2-(ethoxycarbonyl)ethylene	Butyl	Butyl bromide†	150; 2	300; 2	95-97ª.c	Yellow prisms
5	1-Pentylthio-1-(2,4-dinitrophenylthio)-			105 0		0.5 5 0.5 50 0	37.11.

1-Alkylthio-1-(2,4-dinitrophenylthio)-2,2-di(cyano)ethylenes (II; R, RI=CN) obtained from [I; R, R¹=CN; M=Na (cpd 3)], alkyl halide and 2,4-dinitrochlorobenzene

125; 2

Pentyl 1-Iodopentane‡

7	1-Ethylthio-1-(2,4-dinitrophenylthio)- 2,2-di(cyano)ethylene	Et	Ethyl bromide	60; 1	100; 2‡	113-113·5ª,b	Yellow prisms
8	1-Butylthio-1-(2,4-dinitrophenylthio)- 2,2-di(cyano)ethylene	Butyl	Butyl bromide	125; 1	165; 3	98-99 ^{d, c, a}	Pale yellow prisms

2-cyano-2-(ethoxycarbonyl)ethylene

Solvents for crystallisation: ^apropan-2-ol; ^bmethanol; ^cbutanol; ^dethanol. *Compound 1 was used. †Compound 2 was used. ‡The extraction was carried out with a mixture of benzene and ether (1:1; 200 ml)

TABLE II Analyses of compounds 4-8

No. of	Economia	Nitrogen, %		
compound	Formula	Found	Required	
4	C14H13N3O6S2	11.1	11.0	
5	$C_{16}H_{17}N_{3}O_{6}S_{2}$	9.9	10.2	
6	$C_{17}H_{19}N_{3}O_{6}S_{2}$	6·3§	6.6	
7	$C_{12}H_8N_4O_4S_2$	17·0ັ	16.7	
8	$C_{14}H_{12}N_4O_4S_2$	14.7	15.4	

SDetermined as aromatic nitro-groups by reduction with titanous chloride.

2-4 h, cooled, treated with a little charcoal and filtered (in certain preparations, the solid that was filtered off contained, in addition to potassium chloride, the expected condensation product; the filtered solid was therefore triturated with water and the water-insoluble part was combined with the residue obtained on removal of the volatile components from the filtrate, or the filtered solid was extracted with acetone and the extract was added to the filtrate). The volatile components were removed from the filtrate under reduced pressure and the residue was crystallised from suitable solvents. The results are summarised in Tables III-VI.

Infra-red measurements

The infra-red absorption bands of Compounds 4-14, 16 and 17 are summarised in Table VII. The measurements were conducted as described previously.19

Proton magnetic resonance (p.m.r.) measurements

These were conducted as described previously.²⁰ Multi-

J. Sci. Fd Agric., 1968, Vol. 19, September

plicity and J (c/sec) are given in parentheses. P.m.r. spectra in deuteriochloroform of Compound 9 showed peaks centred at τ 7.28 & 7.32 (methyl groups) and of Compound 10 at τ 6.73 (q, 7.5) & 8.58 (t, 7.5) and at τ 6.83 (q, 7.5) & 8.52 (t, 7.5) (ethyl groups). Compound 11 gave peaks centred at τ 6.66 (q, 7.5) & 8.52 (t, 7.5) (ethyl) and τ 0.85 (d, 2.5), 1.65 (dd, 9, 2.5) & 2.80 (d, 9) (protons of the benzene ring in 3-, 5and 6- positions, respectively).

250; 3

95.5-96.5ª,c

Yellow prisms

Compound 12 showed peaks at τ 2.64 (d, 3.5), 3.18 (dd, $1 \cdot 5, 3 \cdot 5$ & $1 \cdot 90$ (d, $1 \cdot 5$) (protons of the furan ring in the 3-, 4- and 5- positions, respectively) and at $\tau = -0.86$ (broad) indicative of NH. This and the presence of the infra-red band at 1260 cm⁻¹ (C=S) suggests structure (VI) for this compound, corresponding to the structures assigned to related compounds.^{8,21}

Compounds 13, 14, 16 & 17 in deuterated dimethyl sulphoxide solutions showed water peaks at τ 6.65-6.68. Compound 13 showed a peak at 7.32 (methyl), and Compound 14 gave peaks at 2.44 (d, 3.5), 3.12 (dd, 2, 3.5) & 1.83 (d, 2) (protons of the furan ring in the 3-, 4- and 5positions, respectively). All these compounds showed the expected peaks for the protons of the benzene rings confirming the substitution patterns.

Fungitoxicity tests

All the tests were carried out by the Montgomery-Moore²² slide germination technique using Venturia inaequalis (Cooke) Wint., Botrytis cinerea Pers., Fusarium bulbigenum, Cooke & Massee, var. lycopersici (Brushi) Wollenw. and Cercospora melonis Cooke. The values of LD95 were determined as described in Part I.23

TABLE III

2-Substituted-5-(2,4-dinitrophenylthio)-1,3,4-oxadiazoles (VII) prepared from 2-substituted-4H-1,3,4-oxadiazolines and 2,4-dinitrochlorobenzene

No. o compoi	Name of compound	R	Obtained from heterocyclic compound
13	2-Methyl-5-(2,4-dinitrophenylthio)-1,3,4-oxadiazole	Me	2-Methyl-4H-1,3,4-oxadiazoline-5-thione ⁸
14	2-(2-Furyl)-5-(2,4-dinitrophenylthio)-1,3,4-oxadiazole	2-Furyl	2-(2-Furyl)-4H-1,3,4-oxadiazoline-5-thione ^{b, c}
15	2-Phenyl-5-(2,4-dinitrophenylthio)-1,3,4-oxadiazole	Ph	2-Phenyl-4H-1,3,4-oxadiazoline-5-thione ^b
16	2-(p-Chlorophenyl)-5-(2,4-dinitrophenylthio)-1,3,4-oxadiazole	p-Cl·Ph	2-(<i>p</i> -Chlorophenyl)-4H-1,3,4-oxadiazoline-5-thione ^b
17	2-(p-Nitrophenyl)-5-(2,4-dinitrophenylthio)-1,3,4-oxadiazole	p-NO ₂ ·Ph	2-(<i>p</i> -Nitrophenyl-4H-1,3,4-oxadiazoline-5-thione ^d

^aPrepared by the method of Hoggarth⁵ ^bPrepared by the method of Young & Wood⁷ ^eDesignated as Compound 12 ^aPrepared by the method of Ainsworth.⁸

TABLE	I	٧
-------	---	---

Physical data and analyses of compounds 13-1'	Physical	data and	analyses of	compounds	13-17
---	----------	----------	-------------	-----------	-------

No. of	M.p., °c Appearance		Formula	Nitrogen, %		
compound	wi.p., c	Appearance	Tornua	Found	Required	
13	186-188*	Yellow prisms	C9H6N4O5S	9·8§	9.9	
14	150-151+.ª	Yellow prisms				
15	185188*	Pale green needles	$C_{14}H_8N_4O_5S$	8 · 2 §	8.2	
16	200-201*	Pale yellow needles	C14H7CIN4O5S	14·7	14.8	
17	207-209*	Yellow prisms	$C_{14}H_7N_5O_7S$	18.0	18.0	

Solvents for crystallisation: *acetone; †butanol

Determined as aromatic nitro-groups by reduction with titanous chloride *Turilli & Gandino⁶ reported m.p. 150-151°C

TABLE V

Compounds (VIII) obtained on condensing various 2-thiols with 2,4-dinitrochlorobenzene

No. of compound	Name of compound	2-R	Obtained from heterocyclic compound
18	2-(2,4-Dinitrophenylthio)benzoxazole	Benzoxazolyl	Benzoxazole-2-thiola
19	2-(2.4-Dinitrophenylthio)benzothiazole	Benzothiazolyl	Benzothiazole-2-thiolb
20	2-(2,4-Dinitrophenylthio)-6-nitrobenzothiazole	6-Nitrobenzothiazolyl	6-Nitrobenzothiazole-2-thiol ^e
21	2-(2,4-Dinitrophenylthio)benzimidazolee	Benzimidazolyl	Benzimidazole-2-thiold
22	2-(2,4-Dinitrophenylthiomethyl)benzimidazole	Methylbenzimidazolyl	Benzimidazole-2-methanethiol
23	2-(2,4-Dinitrophenylthio)quinoline	Ouinolyl	Ouinoline-2-thiol
24	2-(2,4-Dinitrophenylthio)-4(3H)-quinazolinone	4(3H)-Quinazolinonyl	4(3H)-Quinazolinone-2-thiol

^aPrepared by the method of Desai *et al.*⁹ and designated as Compound 25 ^bCompound 26 was obtained commercially ^cPrepared by the method of Teppema & Sebrell¹¹ ^dCompound 27 was prepared by the method of van Allan & Deacon¹³ ^eThe acetone mixture was filtered hot as the compound is sparingly soluble in cold acetone ^fPrepared according to Howard & Klein¹⁸

TABLE VI

Physical data and analyses of compounds 18-24

No. of compound	M.p., °c	Appearance	Formula	Nitro: Found	gen, % Required
18	163-165*†	Cream coloured prisms	C13H7N3O5S	13.4	13.2
19	162ª	Yellow prisms	$C_{13}H_7N_3O_4S_2$	8.48	8.4
20	190–191*‡ ^ъ	Yellow prisms	$C_{13}H_6N_4O_6S_2$	10.88	11-1
21	230¶°	Yellow prisms	$C_{13}H_8N_4O_4S$	8.98	8.8
22	260-263঻	Yellow prisms	C14H10N4O4S	16.6	16.9
23	158–159 ^{*°}	Yellow prisms	C15H9N3O4S	8.58	8.6
24	229-230*‡	Yellow prisms	C14H8N4O5S	8 · 2 §	8.1

Solvents for crystallisation: *acetone; *butanol; *ethanol; *propan-2-ol

^aCherntsov & Chalykh¹⁰ reported m.p. 160–162° ^bTaniyama¹² reported m.p. 187° Fry¹⁵ reported m.p. 120–122° ^dFedorov & Mamedov¹⁶ reported m.p. 249–251° ^eLea needles, m.p. 160–161° (from ethanol) ^cAngelini¹⁴ reported m.p. 181° and Duffin and eLeandri & Tundo17 obtained this compound as yellow

Results and Discussion

Table VIII shows the results of fungitoxicity tests with 1-alkylthio-1-(2,4-dinitrophenylthio)-2-cyano-2-(ethoxy-carbonyl or cyano) ethylenes, Table IX those with 3,5-di-(substituted thio)-4-cyanoisothiazoles, Table X those with 2-substituted-5-(2,4-dinitrophenylthio)-1,3,4-oxadiazoles and Table XI presents tests with several 2-(2,4-dinitrophenylthio)-heterocyclic compounds.

All the compounds examined had low activity against Botrytis, Fusarium or Cercospora (LD₉₅ was > 100 or > 1000

ppm). An examination of Table VIII shows that certain condensation products with 2,4-dinitrochlorobenzene (Compound 28), itself active against *Venturia*, were active against this organism (Compounds 4 & 7). These compounds yielded, with potassium hydroxide in methanol, brilliant orange-red suspensions indicative of an aci-salt.²⁴ As with 2-(substituted thio)-5-(2,4-dinitrophenylthio)-1,3,4-thiadiazoles discussed in Part VI,¹ cleavage of the Ph–S bond occurs here under a nucleophilic attack and perhaps one may postulate that activity of 1-alkylthio-1-(2,4-dinitrophenylthio)-2-cyano-2-(ethoxycarbonyl or cyano)ethylenes (II) depends on

TABLE VII	
Infra-red absorption bands (cm ⁻¹) for bromoform solution	ons

No. of –	Infra-red bands						
compound	CN	-C=C-COOR	NO ₂	<i>p</i> -Disubstituted benzene	NH	C=S?	
4	2230	1714; 1275	1536; 1345	832			
5	2222	1708; 1270	1530; 1342	832			
6	2222	1702, 1268	1532; 1340	830			
7	2234		1536: 1345	832			
8	2225		1532; 1340	830			
8 9 10	2240 2235		, ,				
11 12	2244		1534; 1340	826	3375	1260	
13			1532; 1342	830		1200	
14			1530; 1340	830			
16			1536; 1342	832			
1 7			1528; 1342	832			

TABLE VIII

Results of fungitoxicity tests with 1-alkylthio-1-(2,4-dinitrophenylthio)-2-cyano-2-(ethoxycarbonyl or cyano) ethylenes (II) and with their precursors

No. comp			R	RI	RII	Venturia	<i>Botrytis</i> LD95 val	<i>Fusarium</i> ues, ppm	Cercospora
1	1,1-(Disodium thio)-2-cyano-2-								<u></u>
•	(ethoxycarbonyl)ethylene	(I) $M = Na$	CN	CO ₂ Et		> 100	>1000	>1000	>1000
3	1,1-(Disodium thio)-2,2- di(cyano)ethylene	(I) $M = Na$	CN	CN		>1000	>1000	>1000	>1000
4	1-Ethylthio-1-(2,4-dinitrophenylthio)-2- cyano-2-(ethoxycarbonyl)ethylene	(II)	CN	CO ₂ Et	Et	25	> 100	> 100	> 100
5	1-Butylthio-1-(2,4-dinitrophenylthio)-2- cyano-2-(ethoxycarbonyl)ethylene	(II)	CN	CO ₂ Et	Bun	>1000	>1000	>1000	> 1000
6	1-Pentylthio-1-(2,4-dinitrophenylthio)-2- cyano-2-(ethoxycarbonyl)ethylene	(II)	CN	CO ₂ Et	Pentyl	>1000	> 1000	> 1000	> 1000
7	1-Ethylthio-1-(2,4-dinitrophenylthio)-	(**		C1	T .			100	400
8	2,2-di(cyano)ethylene 1-Butylthio-1-(2,4-dinitrophenylthio)-	(II)	CN	CN	Et	90	> 1000	> 100	> 100
0	2.2-di(cyano)ethylene	(II)	CN	CN	Bun	> 100	> 1000	> 100	> 1000
28	2,4-Dinitrochlorobenzene	()				45	> 100	> 100	> 100
29	2,4-Dinitrophenol					> 100	> 100	> 100	> 100

Table IX	2
----------	---

	o. of pound	Name of compound		R	R ^I	Venturia	<i>Botrytis</i> LD95 val		Cercospora
10 1 11 1	3,5-Di(3,5-Di(methylthio)-4-cyanoisothiazole 3,5-Di(ethylthio)-4-cyanoisothiazole 5(3)-Ethylthio-3(5)-(2,4-dinitrophenylthio)-4- cyanoisothiazole	(IV) (IV)	Me Et		40 35	> 1000 > 100	> 1000 > 100	> 1000 > 100
			(V)	Et or	2,4-dinitrophenyl	25	> 1000	> 100	> 100

J. Sci. Fd Agric., 1968, Vol. 19, September

TABLE X Results of fungitoxicity tests with 2-(2-furyl-4H-1,3,4-oxadiazoline-5-thione and 2-substituted-5-(2,4-dinitrophenylthio)-1,3,4-oxadiazoles (VII)

No. of compound	d Name of compound		R	Venturia	<i>Botrytis</i> LD95 val	<i>Fusarium</i> ues, ppm	Cercospora
13 2-Ň 14 2-(2 15 2-P 16 2-(2	2-Furyl)-4H-1,3,4-oxadiazoline-5-thione Methyl-5-(2,4-dinitrophenylthio)-1,3,4-oxadiazole 2-Furyl)-5-(2,4-dinitrophenylthio)-1,3,4-oxadiazole Phenyl-5-(2,4-dinitrophenylthio)-1,3,4-oxadiazole p-Chlorophenyl)-5-(2,4-dinitrophenylthio)-1,3,4-oxadiazole p-Nitrophenyl)-5-(2,4-dinitrophenylthio)-1,3,4-oxadiazole	(VI) (VII) (VII) (VII) (VII) (VII) (VII)	2-Furyl Me 2-Furyl Ph <i>p</i> -Cl·Ph <i>p</i> -NO ₂ ·Ph	> 100 > 1000 94 > 1000 > 100 100	> 100 >1000 >1000 >1000 > 1000 > 100 > 100	> 100 >1000 >1000 >1000 > 1000 > 1000	> 100 > 1000 > 100 > 100 > 1000 > 100 > 100

TABLE XI

Results of fungitoxicity tests with several 2-(2,4-dinitrophenylthio) heterocyclic compounds (VIII) and with their precursors

No. of compound	Name of compound	2-R	Venturia	Venturia Botrytis Fusarium Cercospor LD95 values, ppm				
19 2-(2,4) 20 2-(2,4) 21 2-(2,4) 23 2-(2,4) 24 2-(2,4) 24 2-(2,4) 25 Benzz 26 Benzz	4-Dinitrophenylthio)benzoxazole 4-Dinitrophenylthio)benzothiazole 4-Dinitrophenylthio)-6-nitrobenzothiazole 4-Dinitrophenylthio)benzimidazole 4-Dinitrophenylthiomethyl)benzimidazole 4-Dinitrophenylthio)quinoline 4-Dinitrophenylthio)-4(3H)-quinazolinone toxazole-2-thiol tothiazole-2-thiol timidazole-2-thiol	Benzoxazolyl Benzothiazolyl 6-Nitrobenzothiazolyl Benzimidazolyl Methylbenzimidazolyl Quinolyl 4(3H)-Quinazolinonyl	89 10 >1000 >1000 >1000 >1000 >1000 >1000 >1000 >1000	> 100 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000	> 100 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000	> 100 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000		

the ability of these compounds to suffer nucleophilic attack by the fungal cell constituents.¹ The parallel between activity and structure of compounds (II) and of compounds discussed in Part VI1 becomes even closer on examination of the molecular models of compounds (II). The size of the 1-alkyl substituent determines the activity of ethylenes (II): whereas the 1-ethyl group cannot shield the Ph-S bond from attack and Compounds 4 & 7 are active, the 1-butyl group in Compounds 5 & 8 and the 1-pentyl group in Compound 6 can reach and shield the Ph-S bond from attack and the compounds are inactive. Perhaps therefore the steric effects discussed here influence activity against Venturia of ethylenes (II) and of 1,3,4-thiadiazoles of Part VI.1 Steric effects may also affect activity of 2,6-dinitro-4-alkylphenols against mildews.25

Other effects obviously come into play and influence activity: the lower activity of the 2,2-di(cyano) compound (no. 7) than that of the 2-cyano-2-(ethoxycarbonyl) analogue (no. 4) in which the ethoxycarbonyl group is capable of some steric interference with the Ph-S bond is a case in point, and so is the generally low activity of 2-substituted-5-(2,4-dinitrophenylthio)-1,3,4-oxadiazoles (Table X) and of compounds of Table XI. It is surprising to note that the 4-nitro-substituent in Compound 17 renders the unsubstituted Compound 15 more active, whereas substitution with a 6-nitro-group (Compound 20) annuls the high activity of the unsubstituted Compound 19.

3,5-Di(methyl- or ethyl-thio)-4-cyanoisothiazoles (Compounds 9 & 10) are themselves active against Venturia as is Compound 11 in which the one alkyl group has been replaced by the 2,4-dinitrophenyl group (Table IX).

2-(2,4-Dinitrophenylthio)benzothiazole (Compound 19) proved much more active against Venturia than its benzoxazole (no. 18) analogue in contrast to the results obtained with carbocyanines²³ or anilinovinyl quaternaries²⁶ where the oxawere more active than the thia-compounds.

Acknowledgments

The author thanks Mr. H. T. Foley for technical support, Mr. P. J. J. Sweet for fungitoxicity tests and Dr. J. E. Page for i.r. and p.m.r. spectra.

The Murphy Chemical Co. Ltd.,

Wheathampstead,

St. Albans, Herts.

Received 6 February, 1968

References

- 1. Pianka, M., J. Sci. Fd Agric., 1968, 19, 502

- rianka, M., J. Sci. Fa Agric., 1968, 19, 502
 Söderbäck, E., Acta chem. scand., 1963, 17, 362
 Hatchard, W. R., J. org. Chem., 1964, 29, 660
 Hatchard, W. R., J. org. Chem., 1964, 29, 665
 Hoggarth, E., J. chem. Soc., 1952, p. 4811
 Turilli, O., & Gandino, M., Ann. Chim. (Italy), 1963, 53, 1687
 Young, R. W., & Wood, K. H., J. Am. chem. Soc., 1955, 77, 400
 Ainsworth, C., J. Am. chem. Soc., 1956, 78, 4475
 Desai, R. D., Hunter, R. F., & Rahman Khan Khalidi, J. chem. Soc., 1934, p. 1186 Soc., 1934, p. 1186 Cherntsov, O. M., & Chalykh, E. A., Zh. obshch. Khim., 1963,
- 10. 33, 1958
- Teppema, J., & Sebrell, L. B., J. Am. chem. Soc., 1927, 49, 1779

- Taniyama Hyozo, J. Pharm. Soc. Japan, 1947, 67, 83
 Taniyama Hyozo, J. Pharm. Soc. Japan, 1947, 67, 83
 van Allan, J. A., & Deacon, B. D., Org. Synth., 1950, 30, 56
 Angelini, C., Ann. Chim. (Italy), 1955, 45, 162
 Duffin, G. F., & Fry, D. J., Ger. P., 1, 129, 369
 Fedorov, B. P., & Mamedov, R. M., Izv. Akad. Nauk SSSR, On the King Neuk Neuk SSSR, 2000 Otdel. Khim. Nauk, 1962, p. 1626

- Leandri, G., & Tundo, A., Ann. Chim. (Italy), 1955, 45, 832
 Howard, J. C., & Klein, G., J. org. Chem., 1962, 27, 3701
 Page, J. E., & Staniforth, S. E., J. chem. Soc., 1962, p. 1292
 Green, G. F. H., Page, J. E., & Staniforth, S. E., J. chem. Soc., 1964, p. 144
- 21. Pianka, M., J. Sci. Fd Agric., 1968, **19**, 403 22. Montgomery, H. B. S., & Moore, M. H., J. Pomol. Hort. Sci., Monigomer, J. a. 2019
 1937, 15, 253
 Pianka, M., & Hall, J. C., J. Sci. Fd Agric., 1957, 8, 432
 Pianka, M., & Edwards, J. D., J. chem. Soc. (C), 1967, p. 2290
 Pianka, M., Chemy Ind., 1967, p. 1625
- - 25. Pianka, M., Chemy Ind., 1967, p. 1625 26. Pianka, M., & Hall, J. C., J. Sci. Fd Agric., 1959, 10, 385