Journal of Organometallic Chemistry 794 (2015) 40-47

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Role of anagostic interactions in cycloplatination of telluroethers: Synthesis and structural characterization

Siddhartha Kolay ^a, Mukesh Kumar ^b, Amey Wadawale ^a, Dasarathi Das ^a, Vimal K. Jain ^{a, *}

^a Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India ^b Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

ARTICLE INFO

Article history: Received 27 March 2015 Received in revised form 15 May 2015 Accepted 20 May 2015 Available online 19 June 2015

Keywords: Platinum Telluroether Cyclometalation Anagostic interaction NMR X-ray

ABSTRACT

Reactions of K₂PtCl₄ with TeRR' gave complexes of composition [PtCl₂(TeRR')₂] (R/R' = Ph₂(**1a**), *o*-tol₂ (**1b**), Mes₂(**1c**), Ph/Mes (**1d**), *o*-tol/Mes (**1e**)). The complex [PtCl₂(TeMes₂)₂] in refluxing THF afforded a mononuclear cyclometalated complex [PtCl₄(CH₂C₆H₂Me₂-4,6)TeMes](TeMes₂)] (**2**). It tends to remain in equilibrium with a binuclear derivative [Pt(μ -Cl){(CH₂C₆H₂Me₂-4,6)TeMes](**2**)] (**2**). It tends to remain in equilibrium with a binuclear derivative [Pt(μ -Cl){(CH₂C₆H₂Me₂-4,6)TeMes](**2**)] (**3**) in CDCl₃ solution. The complexes **1d** and **1e** did not undergo cyclometalation reaction under similar reaction conditions. The **2** on treatment with PPh₃ gave [PtCl{(CH₂C₆H₂Me₂-4,6)TeMes](PPh₃)] (**4**). All the complexes have been characterized by elemental analysis and NMR (¹H, ³¹P, ¹²⁵Te, ¹⁹⁵Pt) spectroscopy. Anagostic interactions have been recognised for facilitation of cyclometalation reactions. The molecular structures of *trans*-[PtCl₂(TeMes₂)₂] (**1c**), *trans*-[PtCl₂(PhTeMes)₂] (**1d**), *trans*-[PtCl₂(o-tolTeMes)₂] (**1e**), [PtCl{(CH₂C₆H₂Me₂-4,6)TeMes](PPh₃)] (**4**) have been established unambiguously by single crystal X-ray diffraction analyses.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The coordination chemistry of platinum group metals with heavier chalcogen (Se or Te) ligands has witnessed a rapid growth during the past two decades or so [1-6]. The sustained and growing interest in these complexes stem from their utility in diverse areas like precursors for metal chalcogenides [7,8], homogeneous catalysts for organic transformations [9,10], in materials science [11] and as antitumour agents [12].

The coordination chemistry of tellurium ligands is gaining momentum as larger atomic radius and increased metallic character and high nucleophilicity of tellurium coupled with weak Te–C bond make their chemistry distinct from analogous sulphur and selenium ligands. Accordingly coordination chemistry of different families of tellurium ligands, such as diorganoditellurides (R₂Te₂) [13], diorganotellurides (telluroethers, R₂Te), tellurolates (RTe⁻) [5], telluride (Te²⁻) [1] and polytellurides (Te²_n) [14], has been explored. Among them telluroethers have been used as ligands for a long time and in fact the first telluroether complex, [PtCl₂(TeBz₂)₂] was isolated by Fritzmann a century back [15]. Since then several simple telluroether complexes have been isolated and characterized [16–18]. Of late complexes with hybrid [19–21] and bidentate chelating telluroethers [17,22] have been synthesized. In several preparations involving telluroethers, products formed by the facile cleavage of Te-C bond, transmetallation as well as complete decomposition are well established. For instance, the reactions of palladium(0)/platinum(0) complexes, $[M(PEt_3)_n]$ (M = Pd or Pt; n = 3 or 4) with R₂Te afford oxidative addition products, trans-[M(R)(TeR)(PEt₃)₂] [23]. Dealkylation of coordinated telluroether in *cis*-[PdI₂{o-MeTeC₆H₄TeMe}] yielding a tetranuclear complex, $[Pd(\{o-C_6H_4(TeMe)Te\}]_4$ has been reported [24]. Singh and coworkers have described transmetalation of telluroether in the reaction of Te(C₆H₄CH₂NMe₂)₂ with PdCl₂(COD) affording a mixture of transmetalated products, $[Pd(\mu-Cl)(C_6H_4CH_2NMe_2)]_2$ and $[Te(\mu-Cl)(C_6H_4CH_2NMe_2)]_2$ Cl)(C₆H₄CH₂NMe₂)]₂ [25]. In no case cyclometalation of telluroether ligand is reported. In an attempt to metalate di-o-tolyl telluride, Singh and co-workers isolated Te-C bond cleaved products, $[Pd(OAc)_2 \{o-tolTe)_2 O\}$ and $[o-tol_2 Pd_3(\mu-OAc)_4 \{Te(o-tol)_2\}_2]$ (o-tol = ortho-tolyl) [26]. Recently, we have reported cyclopalladation of dimesityl telluride (Mes₂Te) using simple palladation precursors, like Na₂PdCl₄, [Pd(OAc)₂]₃ [27]. In general cyclometalation with palladium is quite facile whereas similar reactions with metals like platinum are often sluggish [1]. To assess the generality of cyclometalation of telluroether ligands, we have

^{*} Corresponding author. E-mail address: jainvk@barc.gov.in (V.K. Jain).

examined reactions with platinum complexes. Cyclometalation of telluroether ligands is shown to be equally facile with platinum. It is noted that anagostic interaction between the telluroether ligand and the metal centre facilitate cyclometalation. The results of this work are reported herein.

2. Results and discussion

The reactions of K_2PtCl_4 with telluroethers afforded $[PtCl_2[TeRR']_2]$ (R = R' = Ph (**1a**); *o*-tol (**1b**); Mes (**1c**); $R \neq R' = Ph$, Mes (**1d**) and *o*-tol, Mes (**1e**)). The complexes **1a**, **1b**, **1d** and **1e** on refluxing in THF for an hour did not show any change while the complex **1c** on refluxing in THF yielded a mononuclear complex $[PtCl\{(CH_2C_6H_2Me_2-4,6)TeMes\}(TeMes_2)]$ (**2**) in which one of the telluroether ligand is cyclometalated (Scheme 1). The complex **1c**, however, remained unchanged in refluxing toluene-methanol mixture in contrast to analogous palladium derivative which cyclometalate under these conditions [27]. Surprisingly, metalation of the mesityl methyl group in **1e** does not take place even in refluxing toluene-methanol mixture. Such contrasting behaviour of **1c**, **1d** and **1e** is evident from the non-bonding Pt…H interactions (anagostic interactions [28]) (see later).

telluroether Monodentate complexes, [PtCl₂(TeRR')₂] $(R = R' = Me, Et, {}^{n}Pr, CH_2CH_2Ph, CH_2SiMe_3, Ph)$ are known to be formed as cis isomer which in solution exists as a mixture of cis and trans isomers [17,18,29,30]. The relative ratio of cis and trans isomers in solution depends on the nature of the organic groups attached to tellurium and the solvent. The ¹²⁵Te{¹H} and ¹⁹⁵Pt{¹H} NMR spectra of 1a and 1b in CDCl₃ exhibited two sets of resonances attributable to *cis* and *trans* isomeric forms: the *cis* being the predominant isomer. This is in accordance with the earlier observations [17]. The ¹²⁵Te{¹H} and ¹⁹⁵Pt{¹H} NMR spectra of **1c** displayed single resonances. The magnitude of ${}^{1}J({}^{195}Pt-{}^{125}Te)$ is in accordance with the trans form [17,18,30]. The spectra of 1d and 1e (Supplementary information, Figs. S1 and S2), however, exhibited two closely spaced resonances. Tellurium with stereo-chemically active lone pair of electrons is chiral and therefore four enantiomers (viz. RR/SS and RS/SR) are expected for each (cis and trans) isomeric forms. The observed magnitude of ${}^{1}J({}^{195}Pt-{}^{125}Te)$ coupling constants for two resonances are in conformity with the *trans* form [17,18] and are assigned to the expected enantiomers.

The ¹²⁵Te{¹H} NMR spectrum (Fig. 1) of **2** displayed five signals including one for free telluroether ligand (TeMes₂ at δ 260 ppm). The other four resonances were flanked with platinum satellites. The ¹⁹⁵Pt{¹H}NMR spectrum exhibited two signals at -4286 (major) and -4450 (minor) ppm. The observed spectral pattern is indicative of existence of two species in solution, viz. **2** and a dimeric complex **3** formed by dissociation of the coordinated telluroether ligand from **2** (Scheme 1). Thus the ¹²⁵Te{¹H} NMR resonance at 336 ppm with ¹J(¹⁹⁵Pt-¹²⁵Te) of 612 Hz is assigned to the coordinated TeMes₂ while the resonance at 592 ppm with ¹J(¹⁹⁵Pt-¹²⁵Te) of 1528 Hz is attributed to metalated tellurium ligand of **2**. The remaining ¹²⁵Te NMR signals at 600 ppm with ¹J(¹⁹⁵Pt-¹²⁵Te) of 1192 Hz and 424 with ¹J(¹⁹⁵Pt-¹²⁵Te) of 788 Hz could be due to *cis* and *trans* isomers of **3**. Dissociation of TeMes₂ from **2** could be due to weakening of Pt-Te linkage owing to the presence of strong *trans* influencing metalated carbon atom *trans* to it.

To arrest dissociation of **2** in solution, the coordinated telluroether ligand was substituted by triphenylphosphine to give [PtCl{(CH₂C₆H₂Me₂-4,6)TeMes}(PPh₃)] **(4**). The **4** displayed a single ³¹P resonance with associated platinum satellites (¹J(¹⁹⁵Pt-³¹P) = 3945 Hz). The ¹²⁵Te NMR spectrum exhibited a doublet at δ 555 ppm due to coupling with phosphorus nucleus (²J(¹²⁵Te-³¹P) = 455 Hz) (Supplementary information Fig. S3). The doublet was flanked by platinum satellites with ¹J(¹⁹⁵Pt-¹²⁵Te) = 677 Hz. The observed magnitude of coupling constants is indicative of a configuration with the neutral ligands (P and Te) *trans* to each other which is further confirmed by X-ray structural analysis (see later). It is worth noting that in **2** the neutral ligands (two Te donor atoms) are *cis* disposed.

3. Crystallography

The molecular structures of $trans-[PtCl_2{Te(R)Mes}_2]$ (R = Mes (1c), Ph (1d) or o-tol (1e)), [PtCl{(CH_2C_6H_2Me_2-4,6)}

(3)

Fig. 1. $^{125}\text{Te}\{^1\text{H}\}$ NMR spectrum of [PtCl{(CH_2C_6H_2Me_2-4,6)TeMes}(TeMes_2)] (2) in CDCl_3.

TeMes}(TeMes₂)] (**2**) and [PtCl{(CH₂C₆H₂Me₂-4,6)TeMes}(PPh₃)] (**4**) were established by single crystal X-ray diffraction analyses and are shown in Figs. 2–6. Selected inter-atomic parameters are summarized in Tables 1–5. The central metal atom in these complexes adopts a square planar configuration. The Te–C distances (2.107 (12) - 2.151 (14) Å) are as expected [31,32].

There are two different types of molecules in the crystal lattice of **1c** which differ slightly in the relative orientation of the mesityl rings in the two molecules. Interestingly different polymorphic forms for the corresponding palladium complex, [PdCl₂(TeMes₂)₂] have been isolated and structurally characterized [27]. The dichloro complexes [PtCl₂{Te(R)Mes}₂] (1d and 1e) are iso-structural and adopt a trans configuration defined by two neutral telluroether ligands and two chloro ligands. The Pt-Te and Pt-Cl distances in all these complexes are in accordance with the trans configured telluroether complexes, such as *trans*-[PtCl₂{Te(CH₂CH₂)₂O}₂] $(Pt-Te = 2.5945 (3)Å) [31], trans-[PtCl_2{Te(CH_2SiMe_3)_2}_2]$ (Pt-Te = 2.5807 (6) Å; Pt-Cl = 2.309 (2) Å [18] and [PtCl] $\{(TeC_6H_4OEt-4)CH_2CH_2\}_2NH\}Cl(Pt-Te_{av} = 2.56 \text{ Å}; Pt-Cl = 2.306(4))$ Å) [33]. However in *cis* configured complexes the Pt–Te bond is shortened as a consequence the Pt-Cl bond is elongated (e.g., cis- $[PtCl_2{(Bu^nTeCH_2)_2SiMe_2}]; Pt-Te_{av} = 2.50 \text{ Å}, Pt-Cl_{av} = 2.34 \text{ Å} [34].$ Lengthening of Pt-Te distance in the trans complexes is in accordance with the stronger trans influence of tellurium than that of chloride. One of the Te–C bonds is marginally shorter than the other Te-C bond in the coordinated telluroether. The mesityl rings

Fig. 3. ORTEP drawing of trans- $[PtCl_2[Te(Ph)Mes]_2]$ (1d) with atomic numbering scheme (H atoms omitted for clarity).

of telluroether ligands in **1d** and **1e** lie opposite each other with respect to the metal square plane.

The interesting feature in the structure of **1c** is the Pt ... H–C interactions which are significantly longer in the case of 1d and 1e. These interactions can be characterized as anagostic interactions which have M...H distances of ~2.3–2.9 Å and M-H-C angles of ~110–170° [28] and have implication in C–H bond activation. In general, based on the M ... H distance and the M ... H-C angle three different types of M ... H–C interaction are encountered, viz. i) agostic, ii) anagostic and iii) hydrogen bonding. The former is usually encountered in the case of d^6 metal complexes while the anagostic interactions are noted with d⁸ square planar complexes. Clearly the presence of anagostic interaction in **1c** facilitate C–H bond activation leading to cyclometalation, while the absence of such interaction, as in 1d and 1e, does not result in cyclometalation. A similar situation has been reported for palladium complexes. The [PdCl₂(TeMes₂)₂] cyclometalate in refluxing toluene-methanol solution while [PdCl₂(Te(o-tolMes)₂] and [PdCl₂(o-tol₂Te)₂] fail to metalate under similar conditions [27].

The platinum atom in $[PtCl{(CH_2C_6H_2Me_2-4,6)TeMes}(TeMes_2)]$ (**2**) adopts a distorted square planar configuration and is defined by "Te₂CCl" donor set with the neutral telluroether (TeMes₂) ligand

Fig. 2. ORTEP drawing of trans-[PtCl₂(TeMes₂)₂] (1c) with atomic numbering scheme (H atoms omitted for clarity).

Fig. 4. ORTEP drawing of trans-[PtCl₂{Te(o-tol)Mes}₂] (1e) with atomic numbering scheme (H atoms omitted for clarity).

Fig. 5. ORTEP drawing of $[PtCl{(CH_2C_6H_2Me_2-4,6)TeMes}](TeMes_2)]$ (2) with atomic numbering scheme (H atoms omitted for clarity).

trans to the Pt-Carbon bond. The Pt–Te distance of metalated telluroether ligand is shorter than the neutral TeMes₂. This is owing to the strong *trans* influence of the cyclometalated carbon and weak *trans* influence of the chloride. The Pt–C distance (2.084(12) Å) is well in agreement with the values reported for metalated platinum complexes [1]. The C–Te–C angle (~101°) on coordination is little influenced from its value for the free ligand, TeMes₂ (101.0(1)°) [35]. The mesityl ring on Te is nearly perpendicular to this ring. The metalated mesityl ring plane lies at an angle of 14.06° with the metal square plane rendering the metalated five-membered "PtTeCCC" ring in puckered conformation.

The R-factor of $[PtCl{(CH_2C_6H_2Me_2-4,6)TeMes}(PPh_3)]$ (**4**) is large due to presence of disordered aromatic rings, but the overall chemical structure supports the conclusions drawn from NMR data. The crystal lattice of $[PtCl{(CH_2C_6H_2Me_2-4,6)TeMes}(PPh_3)]$ (**4**) shows two independent molecules which differ slightly in their interatomic parameters. The platinum(II) center in each molecule adopts a distorted square planar geometry with a "TeCPCI"

Fig. 6. ORTEP drawing of [Ptcl{(CH₂C₆H₂Me₂-4,6)TeMes}(PPh₃)] (4) with atomic numbering scheme (H atoms omitted for clarity).

Table 1	
Selected inter-atomic parameters (Å	°) for trans-[PtCl ₂ (TeMes ₂) ₂] (1c)

Pt1–Te1	2.5717(13)	Pt2–Te3	2.5786(11)
Pt1–Te2	2.5589(12)	Pt2–Te4	2.5763(11)
Pt1–Cl1	2.320(5)	Pt2–Cl3	2.289(5)
Pt1-Cl2	2.275(5)	Pt2–Cl4	2.301(5)
Te1-C1	2.14(2)	Te3-C37	2.161(16)
Te1-C10	2.143(18)	Te3-C46	2.115(13)
Te2-C19	2.150(18)	Te4-C55	2.168(19)
Te2-C28	2.110(17)	Te4-C64	2.121(13)
Cl1-Pt1-Cl2	179.1(3)	Cl3-Pt2-Cl4	174.1(2)
Cl1-Pt1-Te1	84.07(14)	Cl3–Pt2–Te3	94.66(12)
Cl1-Pt1-Te2	83.19(13)	Cl3–Pt2–Te4	80.63(12)
Cl2-Pt1-Te1	96.25(15)	Cl4–Pt2–Te3	85.99(12)
Cl2-Pt1-Te2	96.56(15)	Cl4–Pt2–Te4	97.62(13)
Te1-Pt1-Te2	166.41(5)	Te3-Pt2-Te4	168.39(5)
Pt1-Te1-C1	113.8(4)	Pt2–Te3–C37	115.7(5)
Pt1-Te1-C10	109.2(4)	Pt2–Te3–C46	107.4(4)
Pt1-Te2-C19	108.2(4)	Pt2–Te4–C55	113.6(4)
Pt1-Te2-C28	113.8(5)	Pt2–Te4–C64	111.9(4)
C1-Te1-C10	99.8(7)	C37-Te3-C46	98.5(6)
C19-Te2-C28	101.6(7)	C55-Te3-C64	97.7(6)
Pt1-Te1-C1-C2	1.58	Pt2-Te3-C37-C38	-2.74
Pt1-Te1-C1-C6	-176.94	Pt2-Te3-C37-C42	-177.98
Pt1-Te1-C10-C11	-77.75	Pt2-Te3-C46-C47	-65.69
Pt1-Te1-C10-C15	102.23	Pt2-Te3-C46-C51	112.65
Pt1-Te2-C19-C20	6.33	Pt2-Te4-C55-C56	3.01
Pt1-Te2-C19-C24	-164.71	Pt2-Te4-C55-C60	-170.04
Pt1-Te2-C28-C29	-67.03	Pt2-Te4-C64-C65	-67.4
Pt1-Te2-C28-C33	113.81	Pt2-Te4-C64-C69	115.06

coordination core [36]. The neutral ligands (Te and P) are mutually *trans* with P–Pt–Te angle of 175.50(11) and 177.37(12) °. The fivemembered cyclometalated ring is almost planar.

A comparison of all the above structures (Table 5) shows increase in steric bulkiness of the groups on tellurium leads to gradually decrease of the torsion angles Pt1–Te–C1–C2 from **1d** to **1e** to **1c** leading to increase in proximity of the methyl group C7 with the metal centre. This may lead to favourable anagostic interactions resulting in cyclometalation of ligands with bulky groups while others despite the presence of bulky mesityl group show reluctance under similar conditions.

4. Conclusion

In summary platinum(II) telluroether complexes have been synthesized and characterized by NMR spectroscopy and X-ray crystallography. The complexes with sterically bulky organic groups on tellurium tend to exist as *trans* isomers, while ligands with smaller R groups yield *cis* isomers which isomerise to *trans*

Table 2 Selected bond length (Å) and angles (°) of *trans-*[PtCl₂{Te(R)Mes}₂].

Table 3

Selected bond length (Å) and angles (°) for [PtCl{($CH_2C_6H_2Me_2-4,6$)TeMes}(TeMes_2)] (2).

Pt1–Te1	2.4870(11)	Te1-C1	2.121(12)
Pt1–Te2	2.6138(10)	Te1-C10	2.141(13)
Pt1–Cl1	2.342(4)	Te2-C19	2.151(14)
Pt1–C7	2.084(12)	Te2–C28	2.112(14)
C7-Pt1-Cl1	87.3(4)	C1-Te1-C10	100.8(5)
C7-Pt1-Te1	86.7(4)	C1-Te1-Pt1	93.4(4)
Cl1-Pt1-Te1	173.59(10)	C10-Te1-Pt1	105.9(4)
C7-Pt1-Te2	172.4(4)	C28-Te2-C19	100.9(5)
Cl1-Pt1-Te2	86.46(9)	C28-Te2-Pt1	112.7(4)
Te1-Pt1-Te2	99.34(3)	C19–Te2–Pt1	113.7(3)

form in solution. The complexes with asymmetric telluroethers exist as diastereomers which can readily be identified from their ¹²⁵Te/¹⁹⁵Pt NMR spectra. The role of anagostic interaction in cycloplatination reactions has been demonstrated.

5. Experimental section

Solvents were dried and distilled under a nitrogen atmosphere prior to use according to a literature method [37]. All the reactions were carried out in an argon atmosphere. Diaryltellurides, ArTeAr' were prepared by the reaction of ArTeBr, obtained *in-situ* by bromination of diaryl ditellurides (Ar₂Te₂) with bromine in THF, with an appropriate aryl magnesium bromide (Supplementary material) [38]. Elemental analyses were carried out on a Thermo Fischer Flash EA 1112 CHNS micro-analyser. Melting points were determined in capillary tubes and are uncorrected. ¹H, ¹³C(¹H), ¹²⁵Te {¹H} and ¹⁹⁵Pt{¹H} NMR spectra were recorded on a BrukerAvance-II 300 (300.1, 75.5, 94.7 and 64.5 MHz, respectively) and Bruker Ascend TM-400 (400, 100.61, 126.24, 86.02 MHz, respectively) NMR spectrometers. The chemical shifts are relative to an internal chloroform peak (δ 7.26 for ¹H and 77.0 ppm for ¹³C) and external Me₂Te for ¹²⁵Te (secondary reference Ph₂Te₂, δ 421 ppm in C₆D₆) and external Na₂PtCl₆ in D₂O.

6. Synthesis

6.1. cis-[PtCl₂(TePh₂)₂] (1a)

To an aqueous solution of K_2PtCl_4 (100 mg, 0.24 mmol), a toluene-acetone solution of diphenyl telluride (135 mg, 0.475 mmol) was added and the reaction mixtures were stirred at room temperature for 12 h. The acetone was removed under vacuum and the organic layer was separated out and washed with

	<i>trans</i> -[PtCl ₂ {Te(Ph)Mes} ₂] (1d)	<pre>trans-[PtCl₂{Te(o-tol)Mes}₂] (1e)</pre>		
Pt1–Te1	2.5785(13)	2.5771(7)		
Pt1-Cl1	2.287(6)	2.309(3)		
Te1-C1	2.10(2)	2.131(12)		
Te1-C10	2.11(2)	2.107(12)		
Te1-Pt1-Te1 ⁱ	180	180		
Te1-Pt1-Cl1	93.75(16)	95.81(8)		
Cl1-Pt1-Te1 ⁱ	86.25(16)	84.19(8)		
(Cl1-Pt1-Te1)				
Cl1-Pt1-Cl1 ⁱ	180	180		
Pt1-Te1-C1	110.4(6)	109.4(4)		
Pt1-Te1-C10	106.3(6)	108.2(3)		
C1-Te1-C10	95.9(9)	96.7(5)		
Pt1-Te1-C1-C2	-58.31	31.47		
Pt1-Te1-C1-C6	121.65	-147.69		
Pt1-Te1-C10-C11	-19.50	-101.12		
Pt1-Te1-C10-C15	-163.58	79.54		

Table 4

Selected bond length (Å) and angles (°) for $[PtCl{(CH_2C_6H_2Me_2-4,6)TeMes}(PPh_3)]$ (4).

Pt1-P1	2.268(4)	Pt2–P2	2.273(4)
Pt1–Cl2	2.412(5)	Pt2–Cl1	2.410(5)
Pt1–Te1	2.5504(11)	Pt2–Te2	2.5410(12)
Pt1–C7	2.029(14)	Pt2-C43	2.09(2)
Te1-C1	2.080(17)	Te2–C37	2.15(2)
Te1-C10	2.161(17)	Te2-C46	2.13(2)
P1-Pt1-Cl2	94.49(15)	P2-Pt2-Cl1	91.07(17)
P1-Pt1-Te1	175.50(11)	P2-Pt2-Te2	177.37(12)
P1-Pt1-C7	91.8(4)	P2-Pt2-C43	94.8(5)
Cl2-Pt1-Te1	86.25(11)	Cl1-Pt2-Te2	86.35(13)
Cl2-Pt1-C7	173.4(5)	Cl1-Pt2-C43	174.0(5)
Te1-Pt1-C7	87.6(4)	Te2-Pt2-C43	87.8(4)
Pt1-C7-C2	119.2(10)	Pt2-C43-C38	119.1(12)
Pt1-Te1-C1	92.5(5)	Pt2-Te2-C37	93.0(4)
Pt1-Te1-C10	104.2(4)	Pt2-Te2-C46	107.7(4)
C1-Te1-C10	102.2(7)	C37-Te2-C46	103.0(7)

distilled water and dried over anhydrous Na₂SO₄. The clear solution was passed through Cellite and concentrated to 5 ml. The title complex was precipitated as a greenish yellow powder by addition of hexane and then was washed with hexane and diethyl ether and dried, (Yield: 123 mg, 61%), m.p. 196 °C (dec). Anal. calcd. for C₂₄H₂₀Cl₂PtTe₂: C, 34.75; H, 2.42%. Found: C, 34.31; H, 2.40%. ¹H NMR (CDCl₃) δ : 7.22–7.27 (m), 7.35–7.40 (m), 7.61–7.64 (m) [Ph] ppm. ¹²⁵Te{¹H} NMR (CDCl₃) δ : 717 (major, ¹J(¹⁹⁵Pt–¹²⁵Te) = 1329 Hz) and 728 (minor) ppm. ¹⁹⁵Pt{¹H} NMR (CDCl₃) δ : -3650 (major), -3653 (minor). When a CDCl₃ solution of the complex is left for longer duration of acquisition additional peaks in the ¹²⁵Te{¹H} and ¹⁹⁵Pt{¹H} NMR spectra were observed which could be due to dissociation in solution.

6.2. trans-[PtCl₂{(Te(tol-o)₂}₂] (**1b**)

Prepared similar to **1a** and recrystallized from dichloromethane—hexane as yellow needles (Yield: 155 mg, 73%); m. p. >210 °C. Anal. calcd. for C₂₈H₂₈Cl₂PtTe₂: C, 37.97; H, 3.19%, Found: C, 37.23; H, 3.16.%. ¹H NMR (CDCl₃) δ : 2.25, 2.56 (each s); 7.08–7.15 (m), 7.24–7.36 (m); 7.79 (dd, 1.2, 7.5 Hz); 7.88 (d,d, 1.2, 7.5 Hz) ppm. ¹²⁵Te{¹H} NMR (CDCl₃) δ : 622 (¹J(¹⁹⁵Pt–¹²⁵Te) = 793 Hz) ppm; when this solution was left for overnight a new additional peak appeared in ¹²⁵Te NMR spectrumat δ : 605 (¹J(¹⁹⁵Pt–¹²⁵Te) = 1357 Hz) ppm while ¹⁹⁵Pt{¹H} NMR (CDCl₃) showed two resonances at δ : –3717, –4324 ppm.

6.3. trans-[PtCl₂(TeMes₂)₂] (1c)

Prepared similar to **1a** and recrystallized from dichloromethane-hexane in 64% yield as light orange crystalline solid; m.p. 180 °C. Anal. calcd. for $C_{36}H_{44}Cl_2PtTe_2$: C, 43.33; H, 4.44%.

Found: C, 43.64; H, 4.87%. ¹H NMR (CDCl3) δ : 2.24 (s, 4-Me); 2.61 (s, 2,6-Me); 6.85 (s, 3,5-CH). ¹³C{¹H} NMR (CDCl₃) δ : 20.9, 26.8, 116.8 (Te-C), 129.3 (3,5-CH), 139.8, 143.6. ¹²⁵Te{¹H} NMR (CDCl₃) δ : 467 (¹J(¹⁹⁵Pt-¹²⁵Te) = 379 Hz) ppm. ¹⁹⁵Pt{¹H} NMR (CDCl₃) δ : -3449 (¹J(¹⁹⁵Pt-¹²⁵Te) = 359 Hz) ppm.

6.4. trans-[PtCl₂(PhTeMes)₂] (1d)

Prepared similar to **1a** and recrystallized from dichloromethane-hexane in 75% yield as orange crystals; m. p. 198 °C (dec). Anal. calcd. for $C_{30}H_{32}Cl_2PtTe_2$: C, 39.43; H, 3.53%. Found: C, 39.07; H, 3.45%. ¹H NMR (CDCl₃) δ : 2.29 (s, 4-Me), 2.68 (s, 2,6-Me); 6.96 (s, 3,5-CH); 7.30 (br, m); 7.59 (br) (Ph). ¹²⁵Te{¹H} NMR (CDCl₃) δ : 575 (¹J(¹⁹⁵Pt-¹²⁵Te) = 366 Hz), 576 (¹J(Pt-Te) = 369 Hz) ppm. ¹⁹⁵Pt{¹H} NMR (CDCl₃) δ : -3555, -3557 ppm.

6.5. trans-[PtCl₂(o-tolTeMes)₂] (1e)

Prepared similar to **1a** and recrystallized from dichloromethane-hexane in 70% yield as orange crystals; m. p. > 200 °C. Anal. calcd. for $C_{32}H_{36}Cl_2PtTe_2$: C, 40.81; H, 3.85%. Found: C,40.65; H, 3.78%. ¹H NMR (CDCl₃) δ : 2.29, 2.30 (each s, 4-Me of Mes), 2.45, 2.48 (each s, 2-Me of tol); 2.72, 2.74 (each s, 2,6-Me of Mes); 6.95, 6.97 (each s, 3,5-CH of Mes); 7.02–7.22 (m, tol); 7.51, 7.64 (each d, 7.8 Hz, tol) ppm. ¹²⁵Te{¹H} NMR (CDCl₃) δ : 541; 543 (¹J(¹⁹⁵Pt–¹²⁵Te) = 515 Hz) ppm. ¹⁹⁵Pt{¹H} NMR (CDCl₃) δ : -3611, -3615 ppm.

6.6. [PtCl{(CH₂C₆H₂Me₂-4,6)TeMes}(TeMes₂)] (**2**)

A THF (~25 ml) solution of trans-[PtCl₂(TeMes₂)₂] (60 mg, 0.06 mmol) was refluxed with stirring for 2 h under an argon atmosphere whereupon the initial orange colour faded. After cooling the solution, the solvent was evaporated under reduced pressure to give a yellow residue which was washed with hexane and recrystallized from dichloromethane-hexane mixture as red prismatic crystals (Yield: 40 mg, 70%); m.p. 182 °C (dec). Anal. calcd. for C₃₆H₄₃ClPtTe₂: C, 44.97; H, 4.51%. Found: C, 45.02; H, 4.61%. ¹H NMR (CDCl₃) δ: 2.02, 2.19, 2.24, 2.27, 2.34, 2.53 (each s for Me); 4.0 $(J_{AX} = 16.8, \Delta v_{AX} = 105.8 \text{ Hz}; \text{ metalated CH}_2); 6.66 (s, 4,6-CH of Mes$ of metalated); 6.71 (s, 4,6-CH, Mes₂Te); 6.86, 7.04 (CH of metalated ring) ppm.¹²⁵Te{¹H} NMR (CDCl₃) δ : 336 (¹J(¹⁹⁵Pt-¹²⁵Te) = 612 Hz); $592 ({}^{1}J({}^{195}Pt-{}^{125}Te) = 1528 Hz) ppm;$ for the dimer: 424 $({}^{1}J({}^{195}Pt-{}^{125}Te) = 788 \text{ Hz})$ and $600 ({}^{1}J({}^{195}Pt-{}^{125}Te) = 1192 \text{ Hz});$ 260(s, TeMes₂) ppm. ¹⁹⁵Pt{¹H} NMR (CDCl₃) δ : -4286 (minor); -4450 (major).

6.7. [PtCl{(CH₂C₆H₂Me₂-4,6)TeMes}(PPh₃)] (4)

To a dichloromethane solution of 2 (45 mg, 0.047 mmol) a

Fable 5	
Secondary C–H M interactions with the metal centre $(\text{\AA}/^{\circ})^{a}$.	

	<i>trans</i> -PtCl ₂ (PhTeMes) ₂ (1d)	<i>trans</i> -PtCl ₂ (<i>o</i> -tolTeMes) ₂ (1e)	trans-PtCl ₂ (TeMes ₂) ₂ (1c)	
			Molecule A	Molecule B
C7–H7c Pt1	3.114	2.850	2.794	2.689
∠C7–H7c-Pt1	157.06	119.37	122.89	134.74
Pt1-Te1-C1-C2	-58.31	31.47	1.58	-2.74
Pt1–Cl1	2.286	2.309	2.320	2.289
$\angle Cl1 - Pt1 - Cl2$	180	180	179.06	174.08
Pt1–Te1	2.578	2.577	2.572	2.579
∠Te1-Pt1-Te2	180	180	166.41	168.39
Mean sq. plane-M			0.042	0.180

^a The distances have been noted down using mercury program, hence do not have esds.

Table 6

 $Crystallographic and Structural Refinement Data for {\it trans-[PtCl_2{Te(R)Mes}_2]} (R = Mes, Ph, o-tol), [PtCl{(CH_2C_6H_2Me_2-4,6)TeMes}(TeMes_2)] and [PtCl{(CH_2C_6H_2Me_2-4,6)TeMes}] (R = Mes, Ph, o-tol), [PtCl{(CH_2C_6H_2Me_2-4,6)TeMes}(TeMes_2)] and [PtCl{(CH_2C_6H_2Me_2-4,6)TeMes}] (R = Mes, Ph, o-tol), [PtCl{(CH_2C_6H_2Me_2-4,6)TeMes}(TeMes_2)] and [PtCl{(CH_2C_6H_2Me_2-4,6)TeMes}(TeMes_2)] (R = Mes, Ph, o-tol), [PtCl{(CH_2C_6H_2Me_2-4,6)TeMes}(TeMes_2)] and [PtCl{(CH_2C_6H_2Me_2-4,6)TeMes}(TeMes_2)] (R = Mes, Ph, o-tol), [PtCl{(CH_2C_6$

	trans- [PtCl ₂ {Te(Ph)Mes} ₂] (1d)	trans-[PtCl ₂ {Te(o-tol)Mes} ₂] (1e)	trans-[PtCl ₂ {TeMes} ₂] (1c)	[PtCl{(CH ₂ C ₆ H ₂ Me ₂ -4,6)TeMes} (TeMes ₂)] (2)	[PtCl{(CH ₂ C ₆ H ₂ Me ₂ -4,6)TeMes} (PPh ₃)] (4)
Formula	C ₃₀ H ₃₂ Cl ₂ PtTe ₂	C ₃₂ H ₃₆ Cl ₂ PtTe ₂	C ₃₆ H ₄₄ Cl ₂ PtTe ₂	C ₃₆ H ₄₃ ClPtTe ₂	C ₃₆ H ₃₆ ClPPtTe
Μ	913.74	941.80	997.90	961.44	857.76
Size(mm)	$0.73 \times 0.45 \times 0.12$	$0.20\times0.20\times0.10$	$\textbf{0.078} \times \textbf{0.180} \times \textbf{0.400}$	$0.27 \times 0.15 \times 0.08$	$0.19\times0.39\times0.87$
Crystal system	triclinic	monoclinic	triclinic	monoclinic	triclinic
Space group	P1	P2 ₁ /c	P1	$P2_1/n$	P1
a/Å	8.3863(7)	12.2222(7)	12.2279(4)	12.3617 (3)	9.2579(3)
b/Å	8.8308(9)	9.8439(6)	15.9978(5)	15.0672(3)	18.5589(8)
c/Å	11.8748(15)	14.6962(9)	18.9292(6)	18.7395(4)	20.6306(9)
α/°	68.588(11)	_	84.313(3)	_	106.161(4)
β/°	76.008(9)	113.953(7)	83.183(3)	100.793(2)	97.925(3)
γ/°	68.321(9)	-	86.493(3)	-	101.363(3)
V/Å ³	754.98(16)	1615.88(19)	3654.1(2)	3428.60(13)	3267.2(2)
Z	1	2	4	4	4
d _{calc} /g cm ⁻³	2.010	1.936	1.814	1.863	1.744
μ (mm ⁻¹)/F(000)	25.378/428	23.737/888	21.034/1904	21.689/1832	16.317/1656
θ for data collection/°	4.0580 to 69.3280	3.958 to 70.405	2.779 to 70.106	3.791 to 69.987	2.841to 69.969
Limiting indices	$-10 \leq h \leq 9$	$-14 \leq h \leq 12$	$-14 \leq h \leq 14$	$-14 \le h \le 12$	$-11 \leq h \leq 8$
	$-10 \leq k \leq 10$	$-11 \leq k \leq 11$	$-19 \leq k \leq 18$	$-17 \leq k \leq 18$	$-22 \leq k \leq 22$
	$-14 \leq l \leq 14$	$-12 \leq l \leq 17$	$-22 \leq l \leq 17$	$-22 \leq l \leq 19$	$-25 \le l \le 23$
No. of unique reflns	2784	3028	13593	6364	12159
No. of obsd reflns with $I > 2\sigma(I)$	1745	2659	10182	5045	8245
Data/restraints/parameters	2784/0/165	3028/0/173	13593/6/764	6364/0/372	12159/0/731
Final R_1 , ωR_2 indices	0.0872/0.2304	0.0707/0.2022	0.0877/0.2597	0.0763/0.2246	0.1158/0.3000
R_1 , ωR_2 (all data)	0.1237/0.2778	0.0759/0.2068	0.1102/0.2790	0.0891/0.2351	0.1436/0.3379
Goodness of fit on F ²	1.022	1.075	1.064	1.077	1.160
Largest diff. peak and	2.629 and -2.121	3.698 to -1.831	4.711 to -2.702	3.950 to -2.023	4.681 to -4.816
hole (e.Å ⁻³)					

solution of triphenylphosphine (13 mg; 0.05 mmol) was added with stirring under argon. After stirring the reactants for 3 h at room temperature, the solvent was evaporated under vacuum and the residue was washed with hexane. The complex on recrystallization from acetone –hexane (1:1) mixture at room temperature gave pale yellow rod like crystals (27 mg, 67%); m. p. 167 °C. Anal. calcd. for C₃₆H₃₆ClPPtTe: C, 50.41; H, 4.23%. Found: C, 50.63; H, 4.21%. ¹H NMR (CDCl₃) δ :2.12, 2.26, 2.28 (each s, 1 Me), 2.58 (s, 2Me); 2.89 (br, CH₂), 6.47, 6.68 (each s; 1CH); 6.87 (s, 2CH); 7.44 (m, 7.74–7.81 (m) (Ph). ³¹P{¹H} NMR (CDCl₃) δ : 23.6 (¹J(¹⁹⁵Pt–³¹P) = 3945 Hz; ²J(¹²⁵Te–³¹P) = 456 Hz) ppm.¹²⁵Te {¹H} NMR (CDCl₃) δ : 555 (¹J(¹⁹⁵Pt–¹²⁵Te) = 677 Hz; ²J(¹²⁵Te–³¹P) = 455 Hz) ppm.

7. X-ray crystallography

Single crystal X-ray data on *trans*-[PtCl₂(TeMes₂)₂] **(1c**), *trans*-[PtCl₂(PhTeMes)₂] **(1d**), *trans*-[PtCl₂(*o*-tolTeMes)₂] **(1e**), [PtCl {(CH₂C₆H₂Me₂-4,6)TeMes}(TeMes₂)] **(2**) and [PtCl{(CH₂C₆H₂Me₂-4,6)TeMes}(PPh₃)] **(4**) were collected on a Agilent SuperNova CCD diffractometer. Crystallographic data, together with data collection and refinement details are given in Table 6. All the data were corrected for Lorentz and polarization effects. The structures were solved by direct methods [39] and expanded using Fourier technique [40]. Hydrogen atoms were added to the parent atom with idealized geometry and refined isotropically. Molecular structures were drawn using ORTEP [41].

Supporting information

CCDC-Nos. 1043744–1043748 for *trans*-[PtCl₂(TeMes₂)₂] (**1c**), [PtCl{(CH₂C₆H₂Me₂-4,6)TeMes}(PPh₃)] (**4**), *trans*-[PtCl₂(PhTeMes)₂] (**1d**), *trans*-[PtCl₂(*o*-tolTeMes)₂] (**1e**) and [PtCl{(CH₂C₆H₂Me₂-4,6) TeMes}(TeMes₂)] (**2**), respectively contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12 Union Road, CambridgeCB2 1EZ, UK [Fax: + 44–1223/336-033; E-mail: deposit@ ccdc.cam.ac.uk].

References

- [1] V.K. Jain, L. Jain, Coord. Chem. Rev. 254 (2010) 2848–2903. V. K. Jain, L. Jain, Coord. Chem. Rev., 249 (2005) 3075–3197.
- [2] A. Panda, Coord. Chem. Rev. 253 (2009) 1947–1965.
- [3] W. Levason, S.D. Orchard, G. Reid, Coord. Chem. Rev. 225 (2002) 159–199.
- [4] A.K. Singh, S. Sharma, Coord. Chem. Rev. 209 (2000) 49–98.
- [5] J. Arnold, Prog. Inorg. Chem. 43 (1995) 353-417.
- [6] E.G. Hope, W. Levason, Coord. Chem. Rev. 122 (1993) 109–170. H. J. Gysling, Coord. Chem. Rev., 42(1982) 133–244.
- [7] S. Dey, V.K. Jain, Platinum Met. Rev. 48 (2004) 16-29.
- [8] L.B. Kumbhare, V.K. Jain, P.P. Phadnis, M. Nethaji, J. Organomet. Chem. 692 (2007) 1546–1556.
- [9] Q. Yao, E.P. Kinney, C. Zheng, Org. Lett. 6 (2004) 2997–2999.
- [10] A. Kumar, G.K. Rao, S. Kumar, A.K. Singh, Organometallics 33 (2014) 2921–2943.
- [11] M. Ghedini, I. Aiello, A. Crispini, A. Golemme, M. La Dedo, D. Pucci, Coord. Chem. Rev. 250 (2006) 1373–1390.
- [12] S.M. Chopade, P.P. Phadnis, A. Wadawale, A.S. Hodage, V.K. Jain, Inorg. Chim. Acta 385 (2012) 185–189. S. M. Chopade, P. P. Phadnis, A. S. Hodage, A. Wadawale, V. K. Jain, Inorg. Chim. Acta, 427(2015) 72–80.
- [13] R.S. Chauhan, G. Kedarnath, A. Wadawale, A. Muñoz-Castro, R. Arratia-Perez, V.K. Jain, W. Kaim, Inorg. Chem. 49 (2010) 4179–4185.
- [14] M.G. Kanatzidis, Comments Inorg. Chem. 10 (1990) 161–195.
- [15] E. Fritzmann, J. Russ, Phys. Chem. Soc. 47 (1915) 588.
- [16] K.A. Jensen, Z. Anorg, Allg. Chem. 229 (1936) 252–264. D. M. Admas, J. Chatt, J. Gerratt, A. D. Westland, J. Chem. Soc. (A), (1964) 734–739.
- [17] T. Kemmitt, W. Levason, Inorg. Chem. 29 (1990) 731-735.
- [18] L. Vigo, R. Oilunkaniemi, R.S. Laitinen, Eur. J. Inorg. Chem. (2008) 284–290.
- [19] P.R. Kumar, S. Upreti, A.K. Singh, Inorg. Chim. Acta. 361 (2008) 1426–1436.
- [20] P. Singh, A.K. Singh, Inorg. Chim. Acta. 387 (2012) 441–445.
 [21] D.K. Paluru, S. Dey, A. Wadawale, D.K. Maity, N. Bhuvanesh, V.K. Jain, Eur. J. Inorg. Chem. (2015) 397–407.
- [22] T. Kemmitt, W. Levason, M. Webster, Inorg. Chem. 28 (1989) 692-696.
- [23] L.B. Han, N. Choi, M. Tanaka, J. Am. Chem. Soc. 119 (1997) 1795-1796.
- [24] T. Kemmitt, W. Levason, M.D. Spicer, M. Webster, Organometallics 9 (1990)

1181-1184.

- [25] R. Kaur, S.C. Menon, S. Panda, H.B. Singh, R.P. Patel, R.J. Butcher, Organometallics 28 (2009) 2363–2371.
- [26] T. Chakraborty, S. Sharma, H.B. Singh, R.J. Butcher, Organometallics 30 (2011) 2525–2530.
- [27] S. Kolay, M. Kumar, A. Wadawale, D. Das, V.K. Jain, Dalton Trans. 43 (2014) 16056-16065.
- [28] M. Brookhart, M.L.H. Green, G. Perkin, Proc. Natt. Acad. Sci. U. S. A. 104 (2007) 6908–6914. H.V. Huynth, L. R. Wong and P. S. Ng, Organometallics, 27(2008) 2231–2237; A. T. Colak, O. Z. Yesilel and O. Büyükgüngör, J. Molecular Struct., 991 (2011) 68–72.
- [29] J.R. Allkins, P.J. Hendra, J. Chem. Soc. (A) (1967) 1325–1329. R. J. Cross, T. H. Green, R. Keat, J. Chem. Soc. Chem. Commun., (1974) 207-208; R. J. Cross, T. H. Green, R. Keat, J. Chem. Soc. Dalton, (1976) 1150–1152.
- [30] H.J. Gysling, N. Zumbulyadis, J.A. Robertson, J. Organomet. Chem. 209 (1981) C41-C44.
- [31] A.K. Singh, M. Kadarkaraisamy, S. Husebye, K.W. Tomroos, J. Chem. Res. (2000) 64–65. A. K. S. Chauhan, S. N. Bharti, R. C. Srivastava, R. J. Butcher, A. Duthie, J. Organomet. Chem., 708-709(2012) 75–81.

- [32] A.K. Singh, J.S. Kumar, R.J. Butcher, Inorg. Chim. Acta 312 (2001) 163–169.
- [33] J.E. Drake, J.H.E. Bailey, A.K. Singh, V. Srivastava, Acta Cryst. C 49 (1993)
- 684–687. [34] M. Knorr, F. Guyon, I. Jourdain, S. Kneifel, J. Frenzel, C. Strohmann, Inorg. Chim. Acta 350 (2003) 455–466.
- [35] T.M. Klapötke, B. Krumm, P. Mayer, K. Polborn, I. Schwab, Z. Anorg, Allg. Chem. 631 (2005) 2677–2682.
- [36] K.V. Vivekananda, S. Dey, A. Wadawale, N. Bhuvanesh, V.K. Jain, Dalton Trans. 42 (2013) 14158–14167.
- [37] D.D. Perrin, W.L.F. Armarego, D.R. Perrin, Purification of Laboratory Chemicals, second ed., Percamon, Oxford, 1980.
- [38] N. Petragnani, L. Torres, K.J. Wynne, J. Organomet. Chem. 92 (1975) 185–189.
 [39] SIR92, A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M.C. Burla,
- G. Polidori, M. Camalli, J. Appl. Crystallogr. 27 (1994) 435. [40] SHELX, G.M. Sheldrick, Acta Cryst. Sect. A – Found. Crystallogr. 64 (2008)
- 112–122.[41] C.K. Johnson, ORTEP-ii, Report ORNL-5136, Oak Ridge National Laboratory, Oak Ridge TN, 1976.