Exhaustive hydrodefluorination of aryl trifluoromethyl ketones in a Zn-HOAc-DMF system

N. V. Moskalev, ** S. P. Zhuravkov, b and V. D. Ogorodnikovb

^aDepartment of Chemistry, Tomsk Polytechnical University, 634004 Tomsk, Russian Federation. Fax: 007(382 2) 22 4607. E-mail: oldnick@postbox.tomsk.su ^bInstitute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences, 634050 Tomsk, Russian Federation. Fax: 007 (382 2) 23 0227

Perfluoroalkyl groups are stable, as a rule, to the action of Zn or even Na in various reaction media.¹ However, a few examples of reductive substitution of α -fluorine atoms in carbonyl compounds and azomethine derivatives are known.^{2,3} Boiling of 1,1,1-trifluoro-acetophenone or 1,1,1,2,2-pentafluoropropiophenone with Zn in hydrochloric acid causes not only hydro-defluorination of both α -CF₃ and α -CF₂ fragments, but also reduction of carbonyl groups leading to ethylbenzene or 1,1,1-trifluoro-3-phenylpropane, respectively.⁴

We have found that some aryl trifluoromethyl ketones la-d undergo smooth hydrodefluorination into the corresponding acetyl derivatives 2a-d when treated with Zn and acetic acid in DMF (Table 1).

$$\begin{array}{c} \text{ArCOCF}_{3} & \xrightarrow{\text{Zn/HOAc}} & \text{ArCOMe} \\ \hline \text{DMF} & \text{2a-d} \end{array}$$
(1)

The products of the carbonyl group reduction have not been detected. Small amounts (5%) of monofluoroand difluoromethyl ketones were detected in the reac-

	Table	1.	Properties	of	compounds	2
--	-------	----	------------	----	-----------	---

tion mixtures by TLC, ¹H NMR, and mass spectrometry. Apparently, the process occurs as follows:

$$1 \xrightarrow{H^{+}} \operatorname{ArC}^{+}(\operatorname{OH})\operatorname{CF}_{3} \xrightarrow{e^{-}} \operatorname{ArC}(\operatorname{OH})\operatorname{CF}_{3} \xrightarrow{e^{-}}$$
$$\xrightarrow{-F^{-}} \operatorname{ArC}(\operatorname{OH})\operatorname{CF}_{3} \xrightarrow{} \operatorname{ArC}(\operatorname{OH})=\operatorname{CF}_{2} \xrightarrow{}$$
$$\xrightarrow{} \operatorname{ArCOCHF}_{2} \xrightarrow{} \xrightarrow{} \operatorname{ArCOCHF}_{2} \xrightarrow{} \xrightarrow{} 2$$

Thus, the reaction described is a unique example of regiospecific α -hydrodefluorination of a fluorine-containing moiety in aryl perfluoroalkyl ketones.

Hydrodefluorination (general procedure). A mixture of 1 (2 g), Zn dust (5 g), and AcOH (10 mL) in DMF (60 mL) was stirred at 20 or 50 °C (see Table 1). The process was monitored by TCL (benzene/ether, 10/1). The reaction mixture was then poured into water, product 2 was extracted with ether, and purified by recrystallization. Compounds 2 were identified with authentic samples (prepared by acetylation) according to IR, ¹H NMR, and mass spectral data.

Compound	Ar	Reaction conditions		M.p./°C	IR,	¹ H NMR	Yield
		t/h	<i>T</i> /°C		v(CO)/cm ⁻¹	δ(COMe)	(%)
2a	4-Me2NC6H4	1.5	50	93-94	1662	2.31	78
2b	4-Ph2NC6H4	0.5	50	132-133	1670	2.52	90
2c	9-Methylcarbazol- 3-yl	- 18	20	95—96	1667	2.53	82
2d	10-Methylpheno- thiazin-3-yl	72	20	100-101	1675	2.42	51

References

- 1. M. Hudlicky, *Chemistry of Organic Fluorine Compounds*, Ellis Horwood, Chichester, 1976.
- Yu. V. Zeifman, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1990, 202 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1990, **39**, 186 (Engl. Transl.)].
- 3. V. M. Koshelev, I. N. Barsukov, N. V. Vasil'ev, and A. F. Gontar', *Khim. Geterotsikl. Soedin.*, 1989, 1699 [*Chem. Heterocycl. Compd.*, 1989 (Engl. Transl.)].
- 4. E. V. Eliseenkov, A. S. Koginov, and A. S. Dneprovskii, Zh. Org. Khim., 1978, 14, 781 [J. Org. Chem. USSR, 1978, 14 (Engl. Transl.)].

Received December 14, 1995

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2592-2593, October, 1996.

1066-5285/96/4510-2461 \$15.00 © 1997 Plenum Publishing Corporation