

InfraRed Spectrum of Polyatomic Molecules XVI. Methyld 3Chloride and Methyld 3 Bromide

Hermann D. Noether

Citation: The Journal of Chemical Physics **10**, 664 (1942); doi: 10.1063/1.1723640 View online: http://dx.doi.org/10.1063/1.1723640 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/10/11?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

The InfraRed Spectrum of Nitrosyl Chloride J. Chem. Phys. **18**, 1411 (1950); 10.1063/1.1747486

InfraRed and Raman Spectra of Polyatomic Molecules XVII. Methyld 3Alcohold and Methyld 3Alcohol J. Chem. Phys. **10**, 693 (1942); 10.1063/1.1723650

InfraRed and Raman Spectra of Polyatomic Molecules XII. Methyl Acetylene J. Chem. Phys. **8**, 526 (1940); 10.1063/1.1750706

The InfraRed Absorption Spectrum of Methyl Amine J. Chem. Phys. **8**, 229 (1940); 10.1063/1.1750634

The InfraRed Absorption Spectrum of Methyl Alcohol J. Chem. Phys. **6**, 553 (1938); 10.1063/1.1750312

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.123.44.23 On: Sat, 20 Dec 2014 11:18:49

Infra-Red Spectrum of Polyatomic Molecules

XVI. Methyl- d_3 -Chloride and Methyl- d_3 -Bromide

HERMANN D. NOETHER Mallinckrodt Chemical Laboratory, Harvard University, Cambridge, Massachusetts (Received August 12, 1942)

Methyl-d₃-chloride and methyl-d₃-bromide have been synthesized, their infra-red spectrum in the range from 2.8 to 18μ measured, and a complete assignment of the fundamental frequencies has been given. A modified valence-type potential function including two interaction terms fits the fundamental frequencies of the four molecules CH₃Cl, CD₃Cl, CH₃Br, and CD₃Br to within one percent.

TN connection with the synthesis of methyl- d_3 alcohol-d the deutero-methyl halides were prepared. The ordinary halides and related compounds have been previously thoroughly investigated experimentally as well as theoretically. It was therefore considered of interest to see what agreement could be obtained between theory and experiment for the isotopic molecules.

EXPERIMENTAL PART

The infra-red spectrometer used has been described previously.¹ Fluorite, rocksalt, and potassium bromide prisms were used in the appropriate spectral regions. Glass tubes 30 cm long and 4.4 cm or 2.5 cm in diameter with cleaved rocksalt windows, sealed on with Duco cement or Apiezon wax, were used as absorption cells. For some of the experiments the rocksalt windows had been polished, thus increasing their transmission considerably (ca. 25 percent). Blanks were recorded over the whole spectral range.

Preparation of Sample

The methyl- d_3 -halides were synthesized from CD₃NO₂ which was prepared from CH₃NO₂ by exchange.² CD₃NO₂ was reduced to CD₃NH₂HCl as described by H. Krause.³ The reduction takes place nearly quantitatively at about 70°C with hydrochloric acid and iron filings, if air is excluded, and the medium is kept acidic to completion of the reaction. By removing CO_2 and O_2 from the water used in the reaction and

replacing the air in the reaction vessel by H_2 a yield of CD₃NH₂ of 90 percent and better was obtained. CD₃NH₂ is distilled from the strongly basic solution and collected in HCl. The CD₃NH₂HCl solution was evaporated nearly to dryness and then the benzoyl derivative of the amine was prepared in the usual manner. It was dissolved in ether and reprecipitated with ligroin.⁴ The benzoyl methyl amide on heating with PCl₅ (PBr₅) decomposes⁵ forming the methyl halides, C6H5CN, HCl (HBr), and POCl₃ (POBr₃). The methyl halide was driven over with a slow stream of N_2 , and purified by leading it through 30 and 50 percent KOH solutions and over fused KOH and CaCl₂ to remove water, finally freezing it out with a dry-ice mixture. Since the decomposition temperature of the benzoylchlorimid, formed as an intermediate, is higher than the boiling point of POCl₃ the latter has to be removed first. For the bromine compound which decomposes below the boiling point of POBr₃, this is not necessary. The CD₃-group is stable against exchange, therefore no special precautions for storage need to be taken.

Purity of the Product

From the density measurements of the D₂O before and after the exchange with nitromethane and the distribution coefficient² the deuterium content could be calculated. This calculation gave a 95 percent pure CD₃NO₂ assuming only CD₃NO₂ and CH₃NO₂ to be present. Massspectrograph analysis by Dr. W. Kennedy,

¹ H. Gershinowitz and E. B. Wilson, Jr., J. Chem. Phys. 6, 197 (1938).
² O. Reitz, Zeits. f. physik. Chemie A176, 363 (1936).
For details, see T. P. Wilson, to be published.
³ H. Krause, Chem. Zeitung 40, 810 (1916).

⁴ P. van Romburgh, Rec. Trav. Chim. 4, 388 (1885). F. E. Dunlap, J. Am. Chem. Soc. 24, 763 (1902).

⁶H. v. Pechmann, Ber. 28, 2367 (1895); 33, 611 (1900); 44, 1465 (1911).

FIG. 1. Absorption spectrum of CD₃Cl. Curves: (a) 26 mm Hg; (b) \sim 90 mm Hg; (c) 216 mm Hg; (d) bands of the purified CD₃Cl (\sim 80 mm Hg) coincide in the C – D and C – H stretch ranges with the 90 mm Hg bands of (b) –––– visually from records. (e) bands of the impurity at \sim 5 mm Hg (transmission scale $\frac{1}{2}$ normal scale).

who determined the CD_2HNO_2 content to be about 12 percent, checks the above calculation. The nitromethane had been provided specially by the Commercial Solvents Corporation and was distilled through a fractionating column, retaining only the middle fraction.

TABLE I. Frequencies, intensities, and assignment of CD_3Cl bands.

Frequency in cm ⁻¹	Int.	Assignment	Frequence in cm ⁻¹	y Int.	Assignment
680 695 711 775 855 881 1016 1029 1043 1050–1060	S W W S M	$ \begin{array}{c} P\\ O\\ R \end{array} \\ \overset{\nu_{C}}{} - Cl^{(\pi)} \\ \overset{2\tau(\sigma)}{} \\ CD_{2}HCl \\ ? CD_{2}HCl \\ P\\ O\\ R \end{array} \\ \overset{\delta(\pi)}{} \\ \overset{2\delta(\sigma)}{} \end{array} $	1240 1310 1373 1452 1764 2040 2104 2162 2287 3043 3368	S V. W. M V. W. M M V. S. S M W	$\begin{array}{l} \underset{mp.}{\text{imp.}}\\ \underset{mp.}{\text{imp.}}\\ \text{CD}_2\text{HCl}\\ \underset{mp.}{\text{imp.}}\\ 2\delta(\pi)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

TABLE II. Frequencies, intensities, and assignment of CD₃Br bands.

Frequency in cm ⁻¹	Int.	Assignment	Frequency in cm ⁻¹ Int.	Assignment
566) 577} 588] 717 790 978 987 999] 1053 ~1200	S M W S S W	$ \begin{array}{c} P \\ Q \\ R \end{array} \right {}^{\nu}C - Br^{(\pi)} \\ CD_{2}HBr? \\ P \\ Q \\ R \end{array} \right {}^{2_{\tau}(\sigma)} \\ {}^{2_{\delta}(\sigma)} \\ {}^{2_{\delta}(\sigma)} \end{array} $	1239 S 1308 V. W. 1377 M 1455 W 1762 S 2089 S 2152 V. S. 2294 M 3035 M 3350 W	$\begin{array}{l} \lim_{\substack{i \neq p, \\ i \neq p, \\ i \neq p, \\ i \neq p, \\ i \neq p, \\ 2^{2\delta(\sigma)}, \nu(\pi) \\ \frac{2^{2}\nu(\sigma)}{2^{2}\nu(\sigma)} CD_2HBr + imp. \\ \frac{2^{2}\nu(\sigma)}{2^{2}\nu(\sigma)} + \frac{2^{2}\delta(\sigma)}{2^{2}\nu(\sigma)} \end{array}$

Spectral evidence showed the presence of an identical impurity in CD₃Cl and CD₃Br. In the case of CD₃Cl it was possible to remove the impurity by absorbing it on active charcoal at dry-ice temperature and distilling CD₃Cl off at room temperature. After this treatment the CD₃Cl did not show any of the suspected impurity bands (see Fig. 1). On heating the charcoal with the blowpipe a substance was collected in the trap of the absorption cell which gave the spectrum of the impurity. This substance has a very strong absorption even at a pressure of 5 mm Hg. In the plots of the absorption curves for CD₃Cl the absorption curve of the impurity and the pure CD₃Cl are given with the curves for the mixture of the two. The bands of the impurity at 5 mm Hg are given at reduced scale. CD₃Br could be purified in the same manner. The spectrum of the CD₃Br impurity showed the same bands as that in CD₃Cl. The separation on charcoal is not as complete as in the CD₃Cl case.

INFRA-RED ABSORPTION BANDS AND ASSIGNMENT

The bands of CD_3Cl and CD_3Br , observed at different pressures are given in Figs. 1 and 2.

FIG. 2. Absorption spectrum of CD₃Br. Curves: (a) 35 mm Hg; (b) 89 mm Hg, ---- visually from records of pure CD₃Br, solid lines in 1200–1400 cm⁻¹ range: CD₃Br+impurity. (c) 144 mm Hg.

The frequencies, their estimated intensities, and their assignments are given in Tables I and II.

Comparison of the shape and intensities of these bands with those of the ordinary methyl halides measured by Bennett and Meyer⁶ leads to this assignment. We expected three parallel type bands (eventually four, if there is resonance between the first harmonic of ${}^{2}\delta(\sigma)$ and $\nu(\pi)$) and three perpendicular type bands (doubly degenerate). The intensities of these bands for the methyl halides are as follows: The higher frequency branch of $2^2\delta(\sigma)$, $\nu(\pi)$ is about twice as strong as the lower, which is about equal to ${}^{2}\nu(\sigma), \,\delta(\pi)$ is stronger than ${}^{2}\delta(\sigma), \,{}^{2}\tau(\sigma)$ is usually quite weak, $\nu_{C-X}(\pi)$ medium strong. This agrees with the bands observed for CD₃Cl and CD₃Br. The P-R branch spacings could only be measured for two bands $\delta(\pi)$ and $\nu_{C-X}(\pi)$. They are given in Table III. The calculated values,7 with 1.72A for C-Cl, 1.88 for C-Br, 1.09 for C-H and tetrahedral angles, compare well with the measured ones. The values for CH₃Cl and CH₃Br are from Bennett and Meyer's paper:6

The position of ${}^{2}\delta(\sigma)$ in CD₃Cl cannot be determined very accurately since it forms the shoulder of the very strong $\delta(\pi)$ band. There are two indirect methods of determining it quite accurately. In the methyl halides the ${}^{2}\delta(\sigma)$ band remains nearly constant, changing from 1445 cm⁻¹ in CH₃I to 1476 cm⁻¹ in CH₃F. Then from the ${}^{2}\delta(\sigma)$ value of CD₃Br the lower limit would be 1053 cm⁻¹. The upper limit can be obtained from a consideration of the first harmonic. The

TABLE III. Doublet spacings in the isotopic methyl chlorides and bromides.

Frequency	CI	H₃C1	C	D₃Cl	CF	I₃Br	CD	₃Br
$\begin{array}{l} \exp \delta(\pi) \\ \nu_{\mathrm{C}-X}(\pi) \\ \mathrm{Mean \ value} \\ \mathrm{Calculated} \end{array}$	28	cm^{-1}	27	cm^{-1}	25	cm^{-1}	21	cm ⁻¹
	35	cm^{-1}	31	cm^{-1}	28	cm^{-1}	22	cm ⁻¹
	31.5	cm^{-1}	29.0	cm^{-1}	26.5	cm^{-1}	21.5	cm ⁻¹
	31.1	cm^{-1}	29.8	cm^{-1}	25.5	cm^{-1}	23.9	cm ⁻¹

TABLE IV. The resonance frequencies $2^2\delta(\sigma)$, $\nu(\pi)$.

Frequency	CHABr	CD-Br	CH.Cl	 CD-Cl
	()960	2090	2000	2104
$2^2\delta(\sigma)$, $\nu(\pi)$	2800 cm 1	2089	2880	2104 2162
Mean value	2916	2121	2924	2133
$2^2\delta(\sigma)$	2900 16	2106 	2920	!

⁶W. H. Bennett and C. F. Meyer, Phys. Rev. **32**, 888 (1928). ⁷S. L. Gerhard and D. M. Dennison, Phys. Rev. **43**, 197 (1933).

Constant	Type	Chlorides	Bromides	Dimensions
f.	C–H stretch	5.01×10 ⁵	5.03×10 ⁵	Dynes/cm
fa	H - C - H bending	0.5346×10 ⁻¹¹	0.5334×10^{-11}	Dynes/radian
fa	H - C - X bending	0.6885×10^{-11}	0.6079×10^{-11}	Dvnes/radian
fra	H - C - X interaction	-0.0288×10^{-11}	-0.0296×10^{-11}	Dvnes/radian
fR	C - X stretch	3.368×10 ⁵	2.88×10^{5}	Dvnes/cm
fre	H-C-X, C-X interaction	0.607×10^{-3}	0.59×10^{-3}	Dynes/cm ¹ radian

TABLE V. Force constants of the isotopic methyl chlorides and bromides.

difference between the mean value of the two bands $2^2\delta(\sigma)$, $\nu(\pi)$ and $2^2\delta(\sigma)$ seems to be constant for CH₃Br and CD₃Br and allows us to fix the upper limit of ${}^{2}\delta(\sigma)$. From Table IV the upper limit of ${}^{2}\delta(\sigma)$ is 1065 cm⁻¹. Thus ${}^{2}\delta(\sigma)$ equal to 1058 cm⁻¹ should probably be correct within our limits of error.

THEORETICAL PART

The methyl group has been assumed to have the tetrahedral shape of methane, the C-Hdistance⁸ being 1.093A. The length of the carbon-halogen bond was assumed to be 1.72A

TABLE VI. Calculated and observed frequencies of CH₃Cl and CD₃Cl.

		CH₃Cl _N	on-decene	CD ₃ Cl			
Freq.	Calc.	Obs.	$\Delta \%$	Calc.	Obs.	$\Delta \%$	
$\nu(\pi)$	2948	ca. 2928	+0.7	2119	ca. 2136	-0.8	
$\delta(\pi)$	1358	1355	+0.2	1034	1029	+0.5	
$\nu_{C-X}(\pi)$	730	732	-0.3	691	695	-0.6	
			Degenera	te class (i	E1)		
$2\nu(\sigma)$	3063	3047	+0.5	2280	2287	-0.8	
$2\delta(\sigma)$	1460	1460		1053	1058	-0.5	
$2\tau(\sigma)$	1020	1020	-	776	775	-0.15	

TABLE VII. Calculated and observed frequencies of CH₃Br and CD₃Br.

		CH3Br	on-decene	rate class	$CD_{3}Br$	
Freq.	Calc.	Obs.	$\Delta \%$	Calc.	Obs.	Δ %
$\nu(\pi)$	2954	ca. 2932	+0.8	2123	ca. 2134	- 0.5
$\delta(\pi)$	1302	1305	-0.2	983	987	- 0.4
$\nu_{\rm C-Br}(\pi)$	613	610	+0.5	576	577	- 0.2
			Degenera	te class ()	E1)	
$2\nu(\sigma)$	3074	3061	+0.4	2297	2294	+ 0.1
$2\delta(\sigma)$	1452	1450	+0.1	1048	1053	- 0.5
$2\tau(\sigma)$	953	957	-0.4	717	717	

⁸ E. F. Barker and N. Ginsburg, J. Chem. Phys. 3, 668 (1935).

for the C-Cl and 1.88A for the C-Br bonds, respectively.9

The following modified valence-force type potential function* was used for the calculation:

$$\begin{split} 2V = & f_r \sum^{3} (\Delta CH)^2 + f_{\alpha} \sum^{3} (\Delta HCH)^2 \\ & + f_{\beta} \sum^{3} (\Delta HCX)^2 + f_{\beta\beta} \sum^{6} (\Delta HCX) (\Delta HCX) \\ & + f_R (\Delta CX)^2 + f_{R\beta} \sum^{6} (\Delta CX) (\Delta HCX). \end{split}$$

With six force constants, it was possible to account for the 12 frequencies of the isotopic molecules to within 1 percent. The values of the force constants do not differ much from those calculated by Linnett¹⁰ which were based on the light molecules only. The frequencies calculated and observed are given in Tables VI and VII.

Due to resonance between $\nu(\pi)$ and $2^2\delta(\sigma)$ the exact frequency of $\nu(\pi)$ cannot be obtained in the halides, thus making it impossible to determine the necessity for an interaction constant in the C-H stretches. $\nu(\pi)$ for this calculation was found by adding Δ to the mean value of the

* Note: This is not the most general potential function which can be written for the methyl halides. It has been found possible to represent the frequencies of the E_1 factor by a diagonal potential function: $F_{\alpha'} = (f_{\alpha} - f_{\alpha\alpha})$; $F_{\beta'} = (f_{\beta} - f_{\beta\beta})$ and $F_{r'} = (f_r - f_{rr})$. The A_1 frequencies can be reproduced by a diagonal potential function with one interaction term, involving $f_{R\alpha}$ and $f_{R\beta}$. The A_1 force constants in terms of internal displacement coordinates or $F_{\alpha} = (f_{\alpha} - f_{\alpha\beta})$; $F_{\beta} = f_{\alpha\beta} = F_{\alpha\beta} = f_{\alpha\beta} = f_{\alpha\beta} + f_{\alpha\beta}$. constants in terms of internal displacement coordinates are: $F_r = (f_r + 2f_{rr}); F_R = f_R; F_\alpha = [(f_\alpha + 2f_{\alpha\alpha}) + (f_\beta + 2f_{\beta\beta}) - 2(f_{\alpha\beta} + 2f_{\alpha\beta})]$ and $F_{\alpha R} = \sqrt{3}(f_{R\alpha} - f_{R\beta})$. It is found experi-mentally that $F_r = F_r$ which makes $f_{rr} = 0$. Since $f_{\alpha\alpha}, f_{\beta\beta}, f_{\alpha\beta}$ cannot be determined separately $f_{\alpha\alpha} = f_{\alpha\beta} = f_{\alpha\beta} = 0$ has been assumed conditionally and the difference $F_\alpha - 2(F_\alpha' + F_\beta')$ expressed in terms of $f_{\beta\beta}$. The same has been done in the case of $(f_{R\alpha} - f_{R\beta});$ i.e., $f_{R\alpha}$ set equal to zero. The correctness of these assumptions can only be compounds of different symmetry with this set of force constants and comparing with experiment. ¹⁰ J. W. Linnett, J. Chem. Phys. 8, 91 (1940).

⁹ These values are rather arbitrarily chosen from electron diffraction and spectroscopic measurements by G. B. B. M. Sutherland, Nature 140, 239 (1937); J. Chem. Phys. 7, 1066 (1939)

two observed frequencies, Δ being the difference between this value and $2^2\delta(\sigma)$. This gave for the force constants of the C-H and C-D stretches in the degenerate and non-degenerate classes nearly the same value. It is also found that the force constant for the C-D stretch is always a little (ca. 0.1 unit) higher than the corresponding constant for C-H. This apparent difference is due to different anharmonicity effects for the

protium and deuterium stretching vibrations. The observed and calculated product rule ratios for the isotopic methyl halides differ as predicted by O. Redlich¹¹ in accordance with the theory.

In conclusion I should like to thank Professor E. Bright Wilson, Jr. for suggesting the study of these molecules and for his continued interest during the course of this work.

¹¹ O. Redlich, J. Chem. Phys. 7, 865 (1939).

NOVEMBER, 1942 JOURNAL OF CHEMICAL PHYSICS VOLUME 10

The Near Infra-Red Absorption Spectrum of Methyl Iodide

R. T. LAGEMANN* AND H. H. NIELSEN Mendenhall Laboratory of Physics, The Ohio State University, Columbus, Ohio (Received August 31, 1942)

The infra-red absorption spectrum of methyl iodide vapor has been reexamined under improved conditions at 3.3, 6.9, 8, and 11.3 microns with the result that each region reveals new detail. Near 3.36 microns some regular structure of mean separation 4.8 cm⁻¹ overlaps the parallel band. The Q branches of the 6.9 mu band show a definite fine structure. The Q branch of the 8 mu band converges toward lower frequencies. In the 11.3 mu band the lines composing the Q branches converge toward higher frequencies.

INTRODUCTION

HE methyl halides have long been of interest in molecular spectroscopy. Of these, methyl iodide is of present interest, both because iodine has no known isotopes to complicate the spectrum, and because none of the parallel bands have ever been resolved. Bennett and Meyer,¹ and others²⁻⁵ also, have located and examined the absorption bands in the near infra-red as well as their instruments permitted. In view, however, of the advances in experimental technique it was felt a reexamination was warranted. This has resulted in the finding of additional detail in each region examined as well as the revealing of several interesting convergence features.

The grating spectrometer, equipped with rocksalt foreprism, used in this work has been described in earlier publications⁶ from this laboratory. While measuring the absorption, appropriate echelette gratings were rotated at intervals of five seconds of arc, and at each setting a measure of the transmitted light intensity was observed with the cell of CH₃I gas in and out of the light beam. The cells were made of cylindrical glass tubing closed off at the ends with carefully prepared rocksalt windows. The cells and gratings were maintained at about 30°C. The methyl iodide was secured from the Eastman Kodak Company.

In regions where atmospheric water vapor might obscure the absorption of the CH₃I, the air in the spectrometer case was dried by means of trays of phosphoric pentoxide. Both original and replica gratings by R. W. Wood were employed. Table I lists the gratings and spectrometer constants used for each of the regions measured.

THE 3.3-MICRON REGION

Figure 1 shows the observations near 3.3 microns plotted with ordinates in percent ⁶ W. B. Steward and H. H. Nielsen, Phys. Rev. 47, 828 (1935).

^{*} Now at Emory University. ¹W. H. Bennett and C. F. Meyer, Phys. Rev. **32**, 888 (1928).

¹⁹20.
²W. W. Coblentz, Publication No. 35, Carnegie Institution of Washington, 1905, p. 61.
³W. W. Sleator, Phys. Rev. 38, 147 (1931).
⁴ J. G. Moorhead, Phys. Rev. 39, 788 (1932).
⁵ E. F. Barker and E. K. Plyler, J. Chem. Phys. 3, 367 (1032)

^{(1935).}