Synthesis of *tripod* Ligands Containing Mixed Donor Sets with Phosphane and Pyrazole Donors – Bidentate Chelate Binding Modes and Dynamic Behaviour of *tripod* Ligands in d⁸-Metal Complexes (Ni^{II}, Pd^{II}, Pt^{II})

Ralf Faissner,^[a] Gottfried Huttner,^{*[a]} Elisabeth Kaifer,^[a] Peter Kircher,^[a] Peter Rutsch,^[a] and Laszlo Zsolnai^{[a][†]}

Dedicated to Professor Rolf Gleiter^[‡]

Keywords: Tripod ligands / Conformation / Nickel / Palladium / Platinum

The synthesis of a series of tripod ligands $MeOCH_2C(CH_2X)$ - $(CH_2Y)(CH_2Z)$ (X = PR₂; Y, Z = PR'₂ or pz; pz = 1-pyrazolyl) based on the 3,3-difunctionalized oxetane O^a[CH₂]₂C^a- $(CH_2OM_s)(CH_2Br)(O^a-C^a)$ as the starting material is described. With their mixed donor sets these ligands coordinate to d⁸-metal ions in a bidentate binding mode. One of the three donors remains uncoordinated in each case. Coordination of phosphane donors is generally preferred over coordination of pyrazole donors. With bulky phosphanes such as -CH₂PMes₂₁ however, pyrazole may compete with PR₂₁ depending on the kind of the d⁸ fragment. Dynamic exchange between coordinated and noncoordinated pyrazole donors is observed. Tetracoordinate complexes of the general type L_2MR_2 are formed (L_2 symbolizes the *tripod* ligand in its bidentate chelate binding mode with two donors functions coordinating and the third one serving as a dangling arm; M =Ni^{II}, Pd^{II}, Pt^{II}). With nickel(II) as the d⁸ species, tetrahedral or square-planar coordination geometries ensue, depending on the kind of donor functions and on the kind of co-ligands R. With palladium(II) and platinum(II) as the d⁸ centres, squareplanar coordination is observed throughout. The size of the chelate cycles varies from six to eight depending on the number of pyrazole entities within the cycle. The conformations and the conformational flexibility characterizing the chelate cycles have been analysed by X-ray analyses and by variable-temperature NMR. The classes of conformations observed may be formally reduced to chair, half-chair and twist-boat conformations. Dynamic exchange between these conformations is observed. In one case, the same compound forms two different types of crystals that differ by the conformation adopted by their chelate cycles. All compounds have been fully characterized by standard analytical techniques including X-ray structure analysis of 14 chelate compounds.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)

The scope of this type of reaction sequence was tested by

Introduction

The synthesis of neopentane-based tripod ligands $RCH_2C(CH_2X)(CH_2Y)(CH_2Z)$ that contain up to three different donor functions X, Y, Z, is generally well developed for different kinds of donor functions.^[1-5] The selective introduction of nitrogen donor functions is, however, in most cases limited to special kinds of nitrogen donors^[5] as well as to specific reaction schemes^[5]. Pyrazole is a nitrogendonor group of more general applicability in tripod synthesis^[5e,5f] that may be especially easily incorporated in tripod ligands HOCH₂C(CH₂pz)(CH₂PR₂)(CH₂X) by a series of nucleophilic substitutions and ring-opening reactions starting from the functionalized oxetane $O^{a}[CH_{2}]_{2}C^{a}(CH_{2}Br)(CH_{2}OMs)(O^{a}-C^{a}).^{[5e]}$

 Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany Fax: (internat.) + 496221/545707 E-mail: g.huttner@indi.aci.uni-heidelberg.de applying different phosphorus nucleophiles as well as different nitrogen nucleophiles. The coordination properties of these ligands versus the d⁸-metal ions nickel(II), palladium(II), and platinum(II) were tested to elucidate the competition between different types of donor groups. In such coordination compounds the potential *tripod* ligands will act as bidentate ligands with the third potential donor function uncoordinated.^[5b,5f,6] The dynamic exchange between coordinated and uncoordinated ligand functions in *tripod* compounds as well as the conformation of the chelate cycles are also reported here.

Results

Ligand Synthesis

The *tripod* ligands 3 and 4 were obtained from oxetane precursors 2, which were themselves synthesized from the functionally substituted oxetane 1 by standard procedures

^[†] Deceased.

^[‡] As a late contribution to his 65th birthday.

Scheme 1. Synthesis of OH-functionalized tripod compounds

(Scheme 1).^[5e] Some compounds (**2a**, **2c**, **3a**, **4a**) have already been described.^[5e] All the compounds 2-4 were fully characterized by the usual spectroscopic techniques as well as by elemental analyses (see Exp. Sect. and Tables 10, 12, and 14).

The transformation of the *tripod* ligands **3** and **4**, which bear a CH₂OH group at the backbone, into the corresponding methyl ethers **5** and **6** followed the standard protocol (Scheme 2).^[3i,7] None of the difficulties often observed in the etherification of analogous *tripod* ligands containing either three different P donors or P donors and Cp derived donor functions were encountered.^[3i,4d,8] Analytical data of **5** and **6** are given in the Exp. Sect. and Tables 10, 12, and 14.

Scheme 2. Synthesis of tripod ligands 5 and 6

Coordination Chemistry

Coordination derivatives, in which compounds 5 and 6 bind to $MHal_2$ (M = Ni^{II}, Pd^{II}, Pt^{II}) as bidentate ligands, are obtained by standard procedures (see Exp. Sect.), in some cases as single crystals suitable for X-ray analysis (Scheme 3, Table 1).

Scheme 3. Synthesis of coordination compounds 7-14

Crystal structure analyses of metal complexes derived from the ligand 5a were performed for compounds 7a, 8, and 9a (Tables 2–4, 7, and Figures 1 and 2). All these compounds show a square-planar coordination around the metal centre. Ligand 5a is observed to coordinate via its two PPh₂ donor groups exclusively while the pyrazole donor remains uncoordinated. The six-membered chelate cycle thus formed shows a half-chair conformation for 7a, 8, and 9a. Figure 1 shows two examples. Within the chelate cycles showing a half-chair conformation (7a/1, 8, 9a) the CH₂OMe group occupies the axial position, with the more bulky CH₂pz group in the equatorial position throughout.

For 7a two different crystal forms were obtained: one (7a/ 1·CH₂Cl₂) contains molecules with the chelate cycle in a half-chair conformation as well, and the other one (7a/ 2·0.5CH₂Cl₂) contains molecules in which the chelate cycle has a twist-boat conformation, showing that different conformations are accessible to the chelate cycles (Figure 2). These findings agree well with observations made on the chelate cycles in [{ $\kappa^2 P$ -R₂PCH₂CH(OH)CH₂PR'₂}Rh(\eta^4cod)]⁺PF₆⁻. For this type of diphosphane-containing chelate cycle a thorough analysis of the conformation hypersurface^[9] as well as of the NMR dynamics^[7,10] revealed a small energy difference between half-chair and twist-boat conformations of the chelate cycle. This agrees well with the fact that 7a forms two different types of ring conformation in its crystals under standard crystallization conditions.

Ligands containing one phosphane and two pyrazole N donors are found to coordinate to nickel(II) by one phosphorus and one nitrogen donor (**11a**, **11c**, see Table 1) or by two pyrazole donors with the CH_2PR_2 group playing the

Compd.	Ligand	Coord.	groups X, Y	Noncoord	l. groups Z, R	MHal ₂	Colour of compd.	Coord. geometry	Crystal structure
7a	5a	PPh ₂	PPh ₂	pz	CH ₂ OMe	NiCl ₂	orange-coloured ^[a]	square-planar	yes
7b	5b	PPh_2	$P(m-Tol)_2$	pz	CH ₂ OMe	NiCl ₂	orange-coloured	square-planar	no
7c	5c	PPh_2	PMes ₂	pz	CH ₂ OMe	NiCl ₂	ruby-coloured	square-planar	no
7d	5d	PPh_2	PPh ₂	ру	CH ₂ OMe	NiCl ₂	orange-coloured	square-planar	no
8	5a	PPh_2	PPh ₂	pz	CH ₂ OMe	NiBr ₂	red	square-planar	yes
9a	5a	PPh_2	PPh ₂	pz	CH ₂ OMe	PdCl ₂	colourless	square-planar	yes
9b	5b	PPh_2	$P(m-Tol)_2$	pz	CH ₂ OMe	PdCl ₂	pale yellow	square-planar	no
10	5a	PPh_2	PPh ₂	pz	CH ₂ OMe	PtCl ₂	colourless	square-planar	no
11a	6a	PPh_2	pz	pz	CH ₂ OMe	NiBr ₂	violet	tetrahedral	yes
11b	6a	PPh_2	pz	pz	CH ₂ OMe	NiCl ₂	violet	tetrahedral	no
11c	_[b]	PPh_2	pz	pz	CH ₂ OEt	NiBr ₂	violet	tetrahedral	yes
12	6a	PPh_2	pz	pz	CH ₂ OMe	PdCl ₂	yellow	square-planar	yes
13	6b	pz	pz	PMes ₂	CH ₂ OMe	NiCl ₂	blue-violet	tetrahedral	yes
14	_[c]	pz	pz	pz	Me	NiBr ₂	blue	tetrahedral	yes

Table 1. Coordination compounds 7-14

^[a] In crystalline form: red. ^[b] Ligand EtOCH₂C(CH₂PPh₂)(CH₂pz)₂; synthesis see ref.^[5e] ^[c] Ligand: CH₃C(CH₂pz)₃; synthesis see ref.^[5e]

Figure 1. X-ray structure of compound $8\ (\mbox{top})$ and $9a\ (\mbox{bottom})$ derived from ligand 5a

role of a dangling arm (13, see Table 1). Figure 3 shows examples of the two coordination modes (P,N versus N,N). In addition to the ligands **6a** and **6b** two other *tripod* li-

Figure 2. X-ray structure (without phenyl groups) of compound 7a/1 (top, half-chair conformation) and 7a/2 (bottom, twist-boat conformation)

gands containing a pz,pz donor set were used. Thus compounds 11c and 14 (Table 1) are derived from ligands reported earlier.^[5e] In each case the coordination geometry around nickel(II) is tetrahedral. Compounds 11a-c, 13, and 14 are paramagnetic – in contrast to compounds 7 and 8 with their square-planar nickel coordination.

Analytically pure **14** with its *tripod* ligand $CH_3C(CH_2pz)_3^{[5e]}$ crystallized as a conglomerate of different crystal forms, most of which were blue. Their structure corresponds to a tetrahedral coordination of the nickel atom as evidenced by crystallography (**14**, see Tables 1–4, 8). A few crystals were red-brown. Their quality was, however, insufficient for X-ray analysis. It is assumed that the difference in colour of these crystals is due to differing kinds of coordination, probably involving the formation of dinuclear entities with bromide acting as a bridging ligand. Thus, different chelate compounds containing NiBr₂ groups

Figure 3. X-ray structure of compound 11a (top) and 13 (bottom)

were prepared (8, 11a, 11c) in addition to 14. The phenomenon could not be observed for 8 or 11a. With 11c, however, crystallization yielded violet crystals containing the tetrahedrally coordinated monomeric compound (analogous to 11a depicted in Figure 3) and red-brown crystals containing the dinuclear species 15 (Figure 4). Both kinds of crystals were suitable for X-ray analysis. The nickel centres in 15 show idealized square-pyramidal coordination ($\tau = 0.16$, see Figure 4).^[11]

With palladium(II) as the central metal ligand **6a** acts as a P,N ligand resulting in **12** (Table 1). However, the coordination around the palladium(II) atom is square-planar (Figure 5), in contrast to the tetrahedral coordination of nickel(II) (**11**) by the same ligand arrangement.

With each pyrazole group replacing a one-atom donor group (e.g. PR_2) of a six-membered chelate cycle, the num-

ber of atoms within the cycle increases by one, such that P,N-coordinated compounds (11, 12) have seven-membered chelate cycles and N,N-coordinated compounds (13, 14) contain eight-membered chelate cycles. Because the pyrazole ligands are coplanar with their substituents – with the carbon atom bonded to one of its nitrogen centres and the metal atom coordinated to the other – the conformation of the chelate cycles may be characterized by an idealized graph with a pseudo corner (Q) at the centre of the pyrazole N–N bond (Scheme 4).

Scheme 4. Idealized graph for chelate cycles containing pyrazole donors: A: original; B: idealization

This kind of idealization reduces the pyrazole-containing chelate cycles to six-membered cycles (**B**, Scheme 4), even though they actually have seven or eight atoms within the cycle (**A**, Scheme 4). The observed conformations may therefore be characterized in the same way as for six-membered cycles.

Table 2 indicates the conformation of the chelate cycles observed in each case. The difference between the two classes - (i) twist-boat and (ii) chair or half-chair - is most clearly evident from the pseudo torsion angle 3-2-6-5(Table 2). Chair or half-chair conformations have 2-3 and 6-5 bonds that are almost parallel. The respective torsion angles are close to zero (deviation from -1.9 to $+12.9^{\circ}$, see Table 2). For twist-boat conformations these bonds cannot be parallel, of course, and the corresponding torsion angles are between 44.3 and 67.0° (for absolute values, see Table 2). These two classes are, of course, also differentiated by the sequence of sign changes of the torsion angles around the cycles (columns M-2-3-4 to 6-M-2-3 in Table 2). The different types of conformation listed in Table 2 do obviously not reflect the either square-planar or tetrahedral coordination of the metal centre since the same types of conformations are found for both coordination modes.

Table 3 shows that the nickel-ligand distances respond significantly to the kind of coordination. Ni-P distances of ca. 217 pm are found for compounds showing a square-planar coordination of the nickel atom (Table 3) and of ca. 230 pm for tetrahedrally coordinated nickel compounds (Table 3). Ni-N distances have only been measured for compounds with tetrahedrally coordinated nickel atoms, and are 198 pm, within a few standard deviations, in each case (Table 3). As expected, all nickel compounds that contain at least one nitrogen donor in their chelate cycle show tetrahedral nickel coordination. The Ni-Cl and Ni-Br distances are around 221 and 236 pm, respectively (Table 3),

Figure 4. X-ray structure of the dinuclear nickel compound 15; the compound is of crystallographic C_i symmetry

Figure 5. X-ray structure of compound 12

with no detectable influence due to the kind of coordination geometry.

Compounds **9a** and **12** contain the palladium atom in a square-planar coordination with the chelate ligand coordinating via one N and one P donor (**12**). In **12** the Pd-Cl distances (Table 3) are influenced by their *trans* ligands, with the bond *trans* to the nitrogen donor [228.2(1) pm] being significantly shorter than that *trans* to the phosphorus donor [235.6(1) pm].

The Ni-P distance of the dinuclear compound **15** is 235.9 pm (Table 3, Figure 4), which is even longer than the Ni-P distances in compounds containing tetrahedrally coordinated nickel atoms. This corresponds to the apical position of the phosphorus donor in **15** (Figure 4). The Ni-Br distances are also longer than the Ni-Br distances ob-

served in 8, 11, or 14 (Table 3). The shortest Ni-Br distance of 15 (245 pm) corresponds to the terminal Ni-Br bond. The bridging Ni-Br distances are still around 8 pm longer than this (Table 3). Consequently, all bonds are weakened by changing from tetra-coordination (8, 11, and 14) to penta-coordination (15). The fact that the monomeric arrangement in 11c and the dimeric arrangement of the same compound in 15 are of almost equal energy is indicated by their co-crystallization as a conglomerate in the same experiment. The solubility of 11c in CH₂Cl₂ is higher than that of 15, such that attempts to dissolve redbrown 15 in CH₂Cl₂ led to violet solutions (Table 1) of 11c.

The angles at the metal centre are in the ranges expected for square-planar and tetrahedral coordination (Table 4). In square-planar compounds the angles subtended by the coordinating atoms of the chelate ligands are somewhat larger than the ideal value of 90° (Table 4). For the tetrahedrally coordinated compounds these angles are smaller than expected for an ideal tetrahedron (109.4°, see Table 4). Deviation from this ideal value is greater for a P,N donor set (11 and 12, see Table 4) than for an N,N donor set (13 and 14, see Table 4).

NMR Dynamics

It is well known that L_2NiHal_2 (L = aryl phosphane) – even if square-planar in the solid state – may suffer distortions to tetrahedral arrangements at room temperature in solution such that no ³¹P NMR signals are observed.^[12]

When crystalline 7a, which consists of crystals with the ligand in the chair conformation (7a/1) and crystals in twist-boat conformation (7a/2), is dissolved in CH_2Cl_2 no ³¹P NMR signals are observed at room temperature. At $-40^{\circ}C$ a single sharp resonance is apparent, which broadens upon lowering the temperature further and gradually

Table 2.	Conformation	and torsion	angles [°]	of the	chelate cycl	es in 7	a, 8, 9a, 11–15
----------	--------------	-------------	------------	--------	--------------	---------	-----------------

Conformation of the chelate cycle ^[a]	Comj	pound	M-2-3-4	2-3-4-5	3-4-5-6	4-5-6-M	5-6-M-2	6-M-2-3	3-2-6-5
Half-chair	7a/1	(2, 6 = P)	+40.6	-68.3	+66.3	-36.9	+7.6	-9.1	-1.4
Half-chair	8	(2, 6 = P)	+42.4	-65.7	+65.3	-42.3	+14.9	-14.7	+0.2
Half-chair	9a	(2, 6 = P)	+41.9	-70.7	+68.3	-37.1	+7.5	-9.6	-1.9
Chair	11a	(2 = P, 6 = Q)	+53.3	-58.8	+75.6	-78.4	+56.3	-49.0	+12.9
λ-twist	7a/2	(2, 6 = P)	+59.7	-44.4	-16.8	+62.7	-37.0	-11.2	-44.3
λ-twist	11c	(2 = P, 6 = Q)	+52.5	-54.2	-22.4	+82.8	-61.6	+11.1	-52.9
λ-twist	12	(2 = P, 6 = Q)	+64.5	-46.8	-33.6	+86.0	-51.6	-3.9	-57.7
λ-twist	13	(2, 6 = Q)	+70.0	-55.0	-32.5	+89.6	-51.0	-6.1	-61.7
λ-twist	14	(2, 6 = Q)	+78.3	-53.0	-37.1	+89.2	-44.3	-16.5	-67.0
λ-twist	15	(2 = P, 6 = Q)	+63.9	-45.1	-37.1	+84.5	-46.9	-6.7	-56.9

^[a] A consistent numbering scheme for all the compounds as depicted below is used for the sake of easier comparison; the λ -enantiomer was considered throughout.

Table 3. Selected bond lengths [pm] in 7a, 8, 9a, 11-15

Coord. geometry ^[a]	Comp.	M, Hal	M-P	M-N	M-Hal
Square-planar	7a/1	Ni, Cl	216.8 (1), 217.4 (1)	_	221.1 (1), 221.3 (1)
Square-planar	7a/2	Ni, Cl	216.6 (1), 216.8 (1)	—	219.7 (1), 220.4 (1)
Square-planar	8	Ni, Br	217.8 (2), 217.8 (2)	—	234.5 (1), 236.0 (1)
Square-planar	9a	Pd, Cl	224.7 (2), 225.0 (2)	—	235.6 (1), 236.4 (1)
Square-planar	12	Pd, Cl	224.6 (1)	203.6 (2)	228.2 (1) (<i>trans</i> to N) 235.6 (1) (<i>trans</i> to P)
Tetrahedral	11a	Ni, Br	228.8 (1)	197.3 (1)	234.7 (1), 236.4 (1)
Tetrahedral	11c	Ni, Br	231.9 (2)	199.4 (5)	234.6 (1), 235.4 (1)
Tetrahedral	13	Ni, Cl	_	198.2 (3), 198.7 (3)	221.7 (1), 222.2 (1)
Tetrahedral	14	Ni, Br	—	197.7 (4), 198.4 (4)	234.8 (1), 237.9 (1)
Square-pyramidal	15	Ni, Br	235.9 (1)	207.0 (1)	252.6 (1) (bridged) 254.6 (1) (bridged) 245.2 (1) (terminal)

^[a] Standard deviations in units of the least significant digit are given in each case.

Compd.	M, Hal	$Hal\!-\!M\!-\!Hal^{[a]}$	Hal-M-P	Hal-M-N	Р-М-Р	P-M-N	N-M-N
7a/1	Ni, Cl	91.1(1)	86.2(1), 87.1(1), 175.2(1), 175.7(1)	_	96.0(1)	_	_
7a/2	Ni, Cl	93.0(1)	86.9(1), 88.3(1), 172.7(1), 178.0(1)	_	92.0(1)	_	_
8	Ni, Br	92.1(1)	86.1(1), 86.8(1), 174.0(1), 177.0(1)	_	95.2(1)	_	_
9a	Pd, Cl	90.0(1)	86.4(1), 88.4(1), 175.2(1), 175.8(1)	_	95.3(1)	_	_
11a	Ni, Br	124.8(1)	99.5(1), 116.7(1)	101.9(1), 113.9(1)	_ ``	97.0(1)	_
11c	Ni, Br	124.3(1)	108.4(1), 109.4(1)	103.3(1), 112.9(1)	_	94.6(1)	_
12	Pd, Cl	90.6(1)	87.2(1), 176.9(1)	88.5(1), 178.3(1)	_	93.6(1)	_
13	Ni, Cl	125.9(1)	_	103.9(1), 105.8(1),	_	_	105.3(1)
	,			106.3(1), 108.3(1)			
14	Ni, Br	123.6(1)	_	98.7(1), 106.3(1),	_	_	106.8(1)
	,			108.0(1), 112.5(1)			
15	Ni. Br	84.4(1), 89.6(1),	94.9(1), 98.1(1),	88.0(1), 91.4(1).	_	96.6(1)	_
	,	154.9(3)	110.2(1)	164.0(1)		~ /	

^[a] Standard deviations in units of the least significant digit are given in each case.

Figure 6. δ/λ isomerisation of 7a; temperature dependence of the ³¹P NMR spectra (81 MHz) of 7a in CH₂Cl₂; experiment, simulation, and rate constants

evolves into a pattern corresponding to two doublets with a coupling constant of ${}^{2}J_{\rm PP} = 108$ Hz (Figure 6). The underlying process is interpreted in terms of a δ/λ isomerisation of the chelate cycle (Scheme 5).

Scheme 5. δ/λ isomerisation of the chelate cycle in 7a/2

Due to the chiral conformation of the chelate cycle the two phosphorus nuclei within the cycle in a twist conformation are no longer equivalent. A pattern of two doublets is therefore expected for the ³¹P NMR spectrum. The observed temperature dependence of the ³¹P NMR spectra of **7a** can be neatly simulated^[13] on the hypothesis of equilibrating δ - and λ -forms of the chelate cycle. Even though **7a** has also been obtained as crystals containing the chelate cycle in a chair conformation (**7a/1**) this conformation is not observed by NMR (temperature range below -40° C), which means that in solution the chair conformation has a higher energy than the twist-boat conformation. Figure 6 shows a comparison of the observed and the simulated ³¹P NMR spectra of **7a**.

The rate constants for the δ/λ isomerisation of **7a** (Figure 6) give a linear Eyring plot with $\Delta G_{298}^{\neq} = 40.2\pm0.5$ kJ/mol, $\Delta H^{\neq} = 28.1\pm0.9$ kJ/mol and $\Delta S^{\neq} = -40.7\pm5.0$ J/mol K. The coalescence temperature is 200 K (81.015 MHz), which results in $\Delta G_{200}^{\neq} = 37.0\pm0.8$ kJ/mol, in fair agreement with the value taken from Eyring plot analysis

 $(\Delta G_{200}^{\neq} = 37.6 \pm 0.5 \text{ kJ/mol})$. The activation parameters for analogous processes, involving six-membered chelate cycles containing two phosphorus donors and a rhodium(I) centre, have recently been analysed in detail.^[10] The activation enthalpies are somewhat higher (around 60 kJ/mol). The activation entropies are negative throughout, around -35 J/mol K. The ³¹P NMR pattern observed for these rhodium chelate compounds is thus – mutatis mutandis – the same as the one observed for **7a**.^[10] The main difference being that the ligands in the rhodium compounds are chiral while the ligand in **7a** is not.

Nickel compounds **7b** and **7c** contain two different PR₂ groups in the chelate cycle and their ligands are therefore chiral (Table 1). It was not possible to obtain crystals suitable for X-ray analysis of these compounds. With **7b** containing a PPh₂ donor and a P(m-Tol)₂ donor the limit of slow exchange could not be reached experimentally at the lowest achievable temperature in CH₂Cl₂ (-100° C for **7b**). With the more bulky PMes₂ donor group in the chelate cycle of **7c** (Table 1) a ³¹P NMR spectrum close to the slow exchange limit was evident at -90° C. The solution could be undercooled to -110° C, at which point the slow exchange limit is not yet reached, paramagnetic broadening starts to obscure individual resonances.

Throughout the temperature range -30 to -110° C a pattern with two doublets (${}^{2}J_{PP} = 95$ Hz) persists. A second structure, which appears as a broad singlet at -30° C, evolves into a pattern composed of a pair of two doublets with coupling constants of ${}^{2}J_{PP} = 98$ and 101 Hz (Figure 7). This type of pattern is typical for the twist-boat conformation of a chiral chelate cycle.^[10] The two doublets, which do not significantly change their appearance between

 -30° C and -110° C (signals at the left- and right-hand side of the spectrum depicted in Figure 7), are ascribed to the chair conformation of the chelate cycle, which is in only slow exchange with the twist-boat conformation, such that the appearance of the signals is not affected by exchange processes (Scheme 6). The thermodynamic stability of the chair and the twist-boat forms of the chelate cycle is different: the signals corresponding to the chair conformation have a 4:1 integral ratio to the signals corresponding to the twist-boat conformation at -30° C, while this ratio is only 3:2 at -110° C.

FULL PAPER

Figure 7. ³¹P NMR spectrum of 7c in CH₂Cl₂ at -110°C

The NMR data of 7b-7d also clearly show that the ligands 5b-5d bind by two phosphorus donors, with the CH₂pz group serving as a dangling arm. The structures of 7b-7d are thus analogous to that of 7a (Figure 2), which is known from crystallography (Tables 1-4). Interestingly, when the potential *tripod* ligands contain two pyrazole donors and one PR_2 donor (**6a**, **6b**) the preference for P coordination versus N coordination appears to depend on the bulkiness of the PR₂ ligand. While ligands containing one PPh₂ and two pyrazole donors show P,N coordination exclusively (11a, 11c, 12, 15), ligand 6b with a PMes₂,pz,pz donor set coordinates via the two pyrazole functions, with the CH₂PMes₂ group serving as a dangling arm in 13 (tetrahedral coordination). In 7c where ligand 5c offers a PPh₂, a PMes₂, and a pyrazole donor set the two phosphorus donors are bonded exclusively with the CH₂pz function playing the role of a dangling arm (square-planar coordination).

Temperature-dependent ${}^{1}H{}^{31}P$ NMR spectra of the palladium compound **12** (Figure 5) reveal a different type of dynamic exchange different to those already described. While the ${}^{31}P$ NMR signal of **12** is a singlet in the range -80 to $120^{\circ}C$ the appearance of the proton spectrum changes drastically (Figure 8).

Figure 8. Variable-temperature ¹H{³¹P} NMR spectra (200 MHz) of **12**; dynamic exchange is clearly apparent at $\delta \approx 4.5$ ppm and $\delta \approx 6.5$ ppm; spectra at 105 and 120°C were recorded in DMSO as solvent; at lower temperatures the solvent was CH₂Cl₂; asterisks designate solvent peaks

At -40°C a pattern of sharp signals is clearly evident, with all the resonances expected for 12 (Figure 8, Table 11). The signals corresponding to the coordinated CH₂pz arm and the noncoordinated one are clearly separated. The resonances of the coordinated pyrazole group are shifted downfield significantly ($\delta = 6.64, 8.98, 8.11$), in contrast to the noncoordinated one ($\delta = 6.30, 7.33, 7.60$). The methylene protons of the CH₂pz groups give rise to two doublets at $\delta = 3.79$ and 4.02 ppm (noncoordinated) and 4.56 and 4.82 (coordinated), with similar coupling constants of about ${}^{2}J_{\rm HH} = 14.5$ Hz. At higher temperatures the corresponding signals coalesce. From the protons of the pyrazole groups (Table 11) only H4 (Scheme 13, Exp. Sect.) gives rise to a signal, which does not overlap with the signals of aromatic protons over the whole temperature range. Coalescence of signals of H4 for the coordinated and noncoordinated pro-

7c/2: δ-twist-boat

Scheme 6. Interconversion of the conformation of the chelate cycle in 7c

16-19

ton occurs at 105°C ($k_c = 350 \text{ s}^{-1}$), corresponding to $\Delta G_{378}^{\neq} = 77.5 \pm 0.8 \text{ kJ/mol}$. The signals of the methylene group of the CH₂pz functions (coordinated and noncoordinated) are free from overlap with other signals over the whole temperature range. Coalescence is observed at 120°C ($k_c = 150 \text{ s}^{-1}$), corresponding to $\Delta G_{403}^{\neq} = 80.0 \pm 0.8 \text{ kJ/mol}$. This kind of exchange phenomenon (Scheme 7) has not yet been observed for potential *tripod* ligands containing a P,N,N donor set.^[5b]

Scheme 7. Dynamic exchange of the coordinated and noncoordinated CH_2pz function of **12** at higher temperatures

Substitution Products

All compounds 7-14 (Table 1) contain the chelate ligands bonded to an MHal₂ entity. Even though the metal-halide bond lengths are independent of the type of chelate ligand within each set of compounds (square-planar, tetrahedral, see Table 3), exchange of the halide ligands by other functions might well influence the binding mode of the chelate ligand. To analyse this potential influence derivatives 16-19 (Scheme 8, Table 5) were synthesized in which one or both of the halide functions are replaced by organic substituents.

Scheme 8. General structure of 16-19

Compound **7a**, after activation with TlPF₆, reacts with C_3H_5MgBr to produce **16a·PF₆** in which the phosphorus donors of the chelate cycle are *trans* to an η^3 -coordinated allylic system (Scheme 9). The palladium compound **16b·PF₆** was obtained by treating [Pd(η^3 -C₃H₅)Cl]₂ with the ligand EtOCH₂C(CH₂PPh₂)(CH₂pz)₂^[5e] and with KPF₆ as the halide-abstracting reagent (Scheme 9).

Direct, selective substitution of just one halide function in compounds of the type [(chelate) $M^{II}Hal_2$] was, however, not successful. Substitution products [(chelate) $M^{II}RHal$] were synthesized by starting from [$L_2M^{II}RHal$] [$L_2 = cod$, (PPh₃)₂] by reaction with the *tripod* ligands.

Compound 17 was obtained from $[trans-(PPh_3)_2Ni-(Mes)Br]$ using 5a as the chelating agent (Scheme 10).

Similarly, the palladium compound **18** was obtained by the reaction of $[(\eta^4-cod)PdCIMe]$ with **5a** (Scheme 11).

The structures of compounds $16a \cdot PF_6$, $16b \cdot PF_6$, and 18 (Figure 9, Tables 6 and 9) were analysed by crystallography. Suitable single crystals could not be obtained for 17.

When, instead of **5a**, ligand **6a** – with its two pyrazole functions – was treated with [*trans*-(PPh₃)₂Ni(Mes)Br] the formation of **6a**·Ni(Br)Mes as an analogue of **17** (Scheme 10) was indicated by its ³¹P NMR spectrum (a sin-

Table 5. Substitution compounds 16–19

Compd.	Ligand	Coord. group X	Noncoord. group R'	M(R)(L)	Colour of compd.	Coord. geometry	Crystal structure
16a·PF ₆	5a	PPh ₂	CH ₂ OMe	Ni(allyl) ⁺	yellow	square-planar	yes
16b·PF ₆	_[^{a]}	pz	CH ₂ OEt	Pd(allyl) ⁺	colourless	square-planar	yes
17	5a	PPh ₂	CH ₂ OMe	Ni(Mes)Br	yellow	square-planar	no
18	5a	PPh ₂	CH ₂ OMe	PdMeCl	pale grey	square-planar	yes
19·PF ₆	6a	pz	CH ₂ OMe	Ni(Mes)(PPh ₃) ⁺	yellow	square-planar	yes

^[a] Ligand EtOCH₂C(CH₂PPh₂)(CH₂pz)₂; synthesis see ref.^[5e]

Scheme 9. Synthesis of cationic (η^3 -allyl)metal complexes 16a·PF₆ and 16b·PF₆

Scheme 11. Synthesis of compound 18

glet at $\delta = 11.8$ ppm). However, the compound could not be crystallized. Treatment of the reaction mixture with TIPF₆ resulted in the expected Br⁻ \rightleftharpoons PPh₃ exchange to produce **19·PF₆** (Scheme 12), which could be characterized by X-ray analysis (Figure 10, Tables 6, 9).

The conformation of the chelate cycles (Table 6) in $16a^+$, 16b⁺, 18, and 19⁺ is quantitatively similar to that described for [(chelate)M^{II}Hal₂] compounds (Table 2). In all four compounds the coordination around the metal atom is square-planar. The conformation of the chelate cycles (Table 6) corresponds to a chair (16a⁺, 19⁺), a half-chair (18) and a twist-boat conformation (16b⁺). The bond lengths between the chelate donor atoms and the metal atoms are very similar to the ones shown in Table 3. The M-C and M-Hal distances to the external ligands, as well as the valence angles at the metal centre, are all in the usual and normal range (Table 6). The only clear indication of a trans influence is observed for the M-P bonds in 18. The N-P bond *trans* to the chloride ligand is not much different from the one observed in 12 (224.6 pm) with its P_2Cl_2 donor set (Table 3). The M-P distance trans to the methyl substituent in 18 is lengthened by the *trans* influence of the methyl group to 231.4 pm (Table 6). There is, however, some uncertainty with respect to the exact values of both distances, which may be larger than the calculated standard deviation (Table 6), due to the fact that crystals of 18 show some positional disorder between the chloride and the methyl substituents even though this disorder could be resolved by appropriate refinement (Table 9).

While the structure of the intermediate $[6a\cdot Ni(Br)Mes]$ formulated in the synthesis of $19\cdot PF_6$ may be – albeit indirectly – inferred from X-ray analysis of $19\cdot PF_6$ (see above) the structure of 17 $[5a\cdot Ni(Br)Mes]$ has to be inferred

Figure 9. X-ray structure of the cation $16a^+$ (top) and $16b^+$ (bottom)

inter alia from NMR data. As expected for the diastereotopic phosphorus nuclei in 17 (the compound as a whole is chiral!) two doublets are observed in its ³¹P NMR spectrum (see Exp. Sect. and remark therein). The diamagnetism of 17 proves the square-planar coordination of the nickel centre.

Even if the above results show that the conformation of the chelate cycles is not very much dependent on the kind

Scheme 12. Synthesis of **19**•**PF**₆

Figure 10. X-ray structure of the cation 19^+ (for the sake of clarity, the phenyl groups of the *tripod* ligand are represented by their *ipso*-carbon atom only)

of co-ligands L in [(chelate) $M^{II}L_2$] there is a definite influence due to the kind of co-ligands on the type of coordination around a nickel(II) centre: ligand **6a** results in a tetrahedral coordination of the nickel atom with the NiBr₂ fragment (**11a**) while the same ligand coordinated to an [Ni^{II}(PPh₃)(Mes)]⁺ fragment induces a square-planar coordination in **19**⁺. The greater ligand field of PPh₃ and Mes (**19**⁺) as compared with the two Br (**11a**) must be the reason for this.

Conclusion

1. The synthesis of *tripod* ligands $RCH_2C-(CH_2PR_2)(CH_2pz)(CH_2X)$ with X being a phosphorus or a nitrogen donor has broad applicability.

2. These potential *tripod* ligands coordinate to d⁸-metal ions (Ni^{II}, Pd^{II}, Pt^{II}) as bidentate chelate cycles, leaving the third group as a dangling arm. For ligands with a P,P,N donor set, coordination via the two phosphorus donors is generally observed. For ligands with a P,N,N donor set containing a bulky phosphorus donor (CH₂PMes₂), *N*,*N* coordination may be preferred over *P*,*N* coordination.

Table 6. Selected bond	l lengths [pm],	, bond angles [°], and	torsion angles [°]	of compounds 16a,	, 16b, 18, and 19
------------------------	-----------------	------------------------	--------------------	-------------------	-------------------

Chelate cycle ^{[a][b]}	$\begin{array}{ccc} 16a \cdot PF_6 \\ M & X & R, L \\ Ni & PPh_2 & \eta^3 \cdot C_3H_5^- \\ Chair (2, 6 = P) \end{array}$	16b·PF ₆ M X R, L Pd pz η^{3} -C ₃ H ₅ ⁻ λ-twist (2 = P, 6 = Q)	$\begin{array}{ccc} 18 \\ M & X & R & L \\ Pd & PPh_2 & CH_3^- & Cl^- \\ Half-chair \left(2, \ 6 = P\right) \end{array}$	$\begin{array}{ccc} 19 \cdot PF_6 \\ M & X & R & L \\ Ni & pz & Mes^- & PPh_3 \\ chair (2 = P, 6 = Q) \end{array}$
M-2-3-4	+45.3	+60.2	+42.4	+58.6
2-3-4-5	-62.4	-50.2	-67.3	-51.1
3-4-5-6	+62.9	-32.1	+69.3	+65.5
4-5-6-M	-46.7	+84.5	-45.2	-80.0
5 - 6 - M - 2	+25.6	-53.7	+17.1	+66.8
6-M-23	-24.8	+0.9	-16.4	-61.0
3-2-6-5	+0.7	-57.0	+0.7	+11.9
M-C	200.8(1) (internal) 202.3(1), 204.6(1) (terminal)	214.4(4) (internal) 211.2(4) (<i>trans</i> to N) 220.7(3) (<i>trans</i> to P)	218.0(3)	194.5(4) (<i>trans</i> to N)
M-C1	_		236 3(1)	_
M-P	217.0(2), 217.4(2)	230.0(1)	223.7(1) (trans to Cl^{-}) 231.4(1) (trans to CH_{2}^{-})	222.4(3) ($P = ligand$) 225.8(3) ($P = PPh_2$)
M-N	-	209.5(3)		196.1(7) (<i>trans</i> to Mes ⁻)
P-M-R	93.5(1)	97.1(1)	88.1(1)	88.4(1)
P-M-X	99.5(1)	96.5(1)	95.8(1)	91.0(1)
L-M-X	94.8(1)	98.3(1)	90.1(1)	94.2(1)
L-M-R	72.1(1)	67.8(1)	86.2(1)	87.3(1)
L-M-P	166.4(1)	164.7(1)	173.6(1)	172.2(1)
X-M-R	165.3(1)	165.7(1)	174.4(1)	171.6(1)

^[a] Standard deviations in units of the least significant digit are given in each case. ^[b] A consistent numbering scheme for all the compounds as depicted below is used for the sake of easier comparison.

3. For palladium(II) compounds derived from ligands containing a P,N,N donor set, dynamic exchange between coordinated and noncoordinated N donors is observed.

4. While palladium(II) and platinum(II) derivatives show a square-planar coordination throughout, the kind of coordination around the nickel atom (square-planar versus tetrahedral) depends on the donor set of the chelate ligand as well as on the kind of co-ligands.

Experimental Section

General Remarks: All manipulations involving phosphanes were carried out under argon by means of standard Schlenk techniques. All solvents were dried by standard methods^[14] and distilled under argon. The solvents CDCl₃ and CD₂Cl₂ used for NMR spectroscopic measurements were degassed by three successive freezepump-thaw cycles and dried over molecular sieves (4 Å). NMR: Bruker Avance DPX 200 at 200.12 MHz (¹H); 50.323 MHz (¹³C{¹H}); 81.015 MHz (³¹P{¹H}); T = 303 K unless stated otherwise; chemical shifts (δ) in ppm with respect to CDCl₃ (¹H: $\delta = 7.27$ ppm; ¹³C: $\delta = 77.0$ ppm) and CD₂Cl₂ (¹H: $\delta = 5.32$ ppm; ¹³C: $\delta = 53.5$ ppm) as internal standards. ³¹P chemical shifts (δ) in ppm with respect to 85% H₃PO₄ (³¹P: $\delta = 0$ ppm) as external standard. The NMR numbering scheme for the pyrazole cycle is shown in Scheme 13.^[15] MS: Finnigan MAT 8230; EI (70 eV); FAB (xenon; matrix: 4-nitrobenzyl alcohol). UV/Vis: Perkin–Elmer Lambda 19. Elemental analyses: Microanalytical Laboratory of the Organisch-Chemisches Institut, University of Heidelberg.

Scheme 13. Numbering scheme of pyrazole as used for NMR data

Crystallographic Structure Determinations: Suitable crystals were taken directly from the mother liquor, immersed in perfluorinated polyether oil, and fixed to a glass capillary at 200 K. The measurements were carried out with a Siemens P4 four-circle diffractometer or with an Enraf–Nonius Kappa CCD diffractometer, using graphite-monochromated Mo- K_{α} radiation throughout. For the Siemens P4 diffractometer measurements the intensities of three check reflections (measured every 100 reflections) remained constant throughout the data collection, thus indicating crystal and electronic stability. The data collected with the Siemens P4 diffractometer were corrected as usual, including an experimental ab-

Table 7. Crystallographic data of compounds 7a/1, 7a/2, 8, 9a, and 11a

	7a/1	7a/2	8	9a	11a
Empirical formula (without solvate)	$C_{33}H_{34}Cl_2N_2NiOP_2$	$C_{33}H_{34}Cl_2N_2NiOP_2$	$C_{33}H_{34}Br_2N_2NiOP_2$	$C_{33}H_{34}Cl_2N_2OP_2Pd$	C ₂₄ H ₂₇ Br ₂ N ₄ NiOP
Formula mass [g/mol]	666.2	666.2	755.1	713.9	637.0
Solvate	1 CH ₂ Cl ₂	0.5 CH ₂ Cl ₂	_	1 CH ₂ Cl ₂	_
Crystal size [mm]	$0.20 \times 0.30 \times 0.40$	0.20×0.30×0.40	$0.30 \times 0.30 \times 0.40$	$0.20 \times 0.20 \times 0.30$	0.30×0.20×0.05
Crystal system	monoclinic	triclinic	monoclinic	monoclinic	monoclinic
Space group	$P2_1/c$ (no. 14)	<i>P</i> 1 (no. 2)	$P2_1/n$ (no. 14)	$P2_1/c$ (no. 14)	$P2_1/n$ (no. 14)
Lattice constants:	1 ()		1 ()	1 ()	1 ()
<i>a</i> [pm]	1136.6(3)	1140.2(3)	1110.1(3)	1144.0(2)	1082.5(2)
b [pm]	2283.6(5)	1118.0(3)	1304.6(2)	2300.8(4)	2004.4(4)
c [pm]	1359.7(6)	1609.3(3)	2211.3(4)	1367.4(2)	1168.4(2)
α [°]	90	81.27(2)	90	90	90
β [°]	93.68(2)	89.71(2)	93.41(1)	86.51(1)	92.75(3)
γ [°]	90	61.75(1)	90	90	90
$V [10^6 \times \text{pm}^3]$	3522(1)	1781(1)	3197(1)	3593(1)	2532(1)
Ζ	4	2	4	4	4
$d_{\rm x} [{\rm g} \times {\rm cm}^{-3}]$	1.417	1.320	1.569	1.473	1.671
<i>T</i> [K]	200	200	200	200	200
Measuring device	Siemens Nicolet-	Siemens Nicolet-	Siemens Nicolet-	Siemens Nicolet-	Nonius Kappa
	Syntex	Syntex	Syntex	Syntex	CCD
No. of reflect. for cell	31	31	37	33	
refinement					
Scan range [°]	$3.5 \le 2\Theta \le 54.0$	$4.1 \le 2\Theta \le 48.0$	$3.6 \le 2\Theta \le 51.0$	$3.5 \le 2\Theta \le 51.0$	$4.0 \le 2\Theta \le 55.0$
Method	ω -scan, $\Delta \omega = 0.54^{\circ}$	ω -scan, $\Delta \omega = 1.00^{\circ}$			
Scan speed	$10^{\circ} \text{ mm}^{-1}$	$12^{\circ} \text{ mm}^{-1}$	$12^{\circ} \text{ mm}^{-1}$	$8^{\circ} \text{ mm}^{-1}$	5 s/frame
No. of measured reflections	8071	5826	6225	7030	10996
No. of unique reflections	7689	5510	5908	6681	5742
No. of observed reflections	5/69	4543	3916	4626	4682
Observation criterion	$I \ge 2\sigma$				
No. of param. refined	403	411	398	403	302
Kesia. el. density $[10^{\circ}e\cdot pm^{\circ}]$	0.01	0.95	0.01	0.79	0.45
K_1/K_w [%] (refinement on F^2)	4.5/15.5	4.9/15.4	4.5/12.2	5.0/11.0	5.2//.6

	11c	12	13	14	15
Empirical formula (without solvate)	C ₂₅ H ₂₉ Br ₂ N ₄ NiOP	C ₂₄ H ₂₇ Cl ₂ N ₄ OPPd	C ₃₀ H ₃₉ Cl ₂ N ₄ NiOP	$C_{14}H_{18}Br_2N_6Ni$	$C_{50}H_{58}Br_4N_8Ni_2O_2P_2$
Formula mass [g/mol]	651.0	595.8	632.2	488.8	1302.0
Solvate	0.5 CH ₂ Cl ₂	_	-	-	_
Crystal size [mm]	0.30×0.30×0.30	0.20×0.10×0.05	$0.08 \times 0.15 \times 0.40$	$0.30 \times 0.20 \times 0.20$	0.30×0.30×0.30
Crystal system	monoclinic	triclinic	triclinic	orthorhombic	triclinic
Space group	$P2_1/c$ (no. 14)	<i>P</i> 1 (no. 2)	<i>P</i> 1 (no. 2)	<i>Pbca</i> (no. 61)	<i>P</i> 1 (no. 2)
Lattice constants:					
<i>a</i> [pm]	958.4(3)	792.1(2)	790.0(2)	1418.7(3)	943.3(2)
b [pm]	1345.0(3)	852.9(2)	1225.0(3)	1486.7(3)	982.3(2)
<i>c</i> [pm]	2266.8(5)	1860.4(4)	1577.2(3)	1694.3(3)	1574.2(2)
α [°]	90	94.76(3)	91.48(3)	90	80.15(1)
β [°]	80.63(2)	100.88(3)	90.15(3)	90	74.09(1)
γ [°]	90	91.97(3)	97.29(3)	90	70.04(1)
$V[10^{6} \times \text{pm}^{3}]$	2883(1)	1228(1)	1514(1)	3574(1)	1314(1)
Ζ	4	2	2	8	1
$d_{\rm x} [{\rm g} \times {\rm cm}^{-3}]$	1.600	1.611	1.387	1.817	1.646
<i>T</i> [K]	200	200	200	200	200
Measuring device	Siemens Nicolet- Syntex	Nonius Kappa CCD	Nonius Kappa CCD	Nonius Kappa CCD	Siemens Nicolet- Syntex
No. of reflect. for cell	31				32
refinement					
Scan range [°]	$4.3 \le 2\Theta \le 52.0$	$4.5 \le 2\Theta \le 55.0$	$3.4 \le 2\Theta \le 55.1$	$4.6 \le 2\Theta \le 52.0$	$4.4 \le 2\Theta \le 51.0$
Method	ω -scan, $\Delta \omega = 0.54^{\circ}$	ω -scan, $\Delta \omega = 1.00^{\circ}$	ω -scan, $\Delta \omega = 1.00^{\circ}$	ω -scan, $\Delta \omega = 1.00^{\circ}$	ω -scan, $\Delta \omega = 0.54^{\circ}$
Scan speed	$8^{\circ} \min^{-1}$	10 s/frame	2 s/frame	10 s/frame	$8^{\circ} \min^{-1}$
No. of measured reflections	5939	7896	13724	15731	5162
No. of unique reflections	5599	5538	6951	3525	4848
No. of observed reflections	3702	4670	4260	1544	3833
Observation criterion	$I \ge 2\sigma$	$I \ge 2\sigma$	$I \ge 2\sigma$	$I \ge 2\sigma$	$I \ge 2\sigma$
No. of param. refined	341	302	362	212	312
Resid. el. density $[10^{-6}e \cdot pm^{-3}]$	0.87	0.43	0.83	0.78	0.76
R_1/R_w [%] (refinement on F^2)	5.5/15.3	3.1/6.8	5.2/12.7	4.9/6.5	3.6/9.9

Table 8.	Crystallographic	data of compounds	11c, and 12-15
----------	------------------	-------------------	----------------

sorption correction. Data from the Enraf-Nonius Kappa CCD device were processed using the standard Nonius software.^[16] The calculations were performed using the SHELXT PLUS software package. Structures were solved by direct methods with the SHELXS-97 program and refined with the SHELXL-97 program.^[17] Graphical handling of the structural data during solution and refinement was performed with XMPA.^[18] Atomic coordinates and anisotropic thermal parameters of the non-hydrogen atoms were refined by full-matrix least-squares calculations. Data relating to the structure determinations are collected in Tables 7, 8, and 9. Figures 1-5, 9, and 10 were prepared using WinRay-32.^[19] CCDC-194026 to -194039 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (internat.) + 44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Materials: Silica gel (Kieselgel 32–63 µm, ICN Biomedicals GmbH) used for chromatography was degassed at 1 mbar for 24 h and saturated with argon. A solution of *n*BuLi in hexane (2.5 M) was used for deprotonations. 1,^[1c] 2a,^[5e] 2c,^[5e] 3a,^[5e] 4a,^[5e] EtOCH₂C(CH₂PPh₂)(CH₂pz)₂,^[5e] CH₃C(CH₂pz)₃,^[5e] HPPh₂,^[20] HPMes₂,^[21] [*trans*-(PPh₃)₂Ni(Mes)Br],^[22] and [(cod)PdCIMe]^[23] were prepared according to or by adaptation of literature procedures. All other chemicals were obtained from commercial suppliers and used without further purification. Boiling range of the light petroleum ether used: 40–60°C. NMR and analytical data are collected in Tables 10–15.

Ligand Synthesis

Synthesis of 2b: Pyrrole (0.81 g, 12 mmol) was dissolved in THF (50 mL) and deprotonated at 0°C with 1 equiv. of KOtBu (1.35 g, 12 mmol). After warming to 25°C, the solution was stirred for 30 min and then added at 0°C to a solution of 1 (2.59 g, 10 mmol) in THF (50 mL). The reaction was completed by refluxing for 4 h. In another flask, HPPh₂ (2.23 g, 12 mmol) was dissolved in THF (50 mL) and deprotonated at 0°C with 1 equiv. of KOtBu (1.35 g, 12 mmol). After warming to 25°C and stirring for 30 min, the red potassium phosphide solution was added dropwise to the first reaction mixture, which was maintained at 0°C. After warming to 25°C and stirring for 10 h (the phosphide substitution was monitored by TLC), the then yellow solution was guenched by the addition of deoxygenated water (20 mL). The aqueous phase was extracted with diethyl ether (30 mL, $2\times$). The combined organic phases were washed with deoxygenated brine, dried with MgSO₄, filtered, and concentrated in vacuo. The resulting viscous oil was purified by column chromatography on silica gel by using petroleum ether/ diethyl ether (1:1; $R_{\rm f} = 0.47$) as eluent to obtain 1.84 g (5.5 mmol, 55%) of **2b** as a colourless, microcrystalline powder. $^{31}\mathrm{P}$ NMR (CDCl₃): $\delta = -26.9$ (s, PPh₂) ppm. For further analytical data see Tables 10, 12, and 14.

General Procedure for the Synthesis of 3 and 4 The appropriately substituted oxetane 2 (1 equiv.) was dissolved in THF (50 mL). In a second flask, HPR₂ (1.2 equiv.) was dissolved in THF (50 mL) and deprotonated at 0°C with *n*BuLi (1.2 equiv.). After warming to 25°C and stirring for 30 min, the red lithium phosphide solution

	16a·PF ₆	16b·PF ₆	18	19·PF ₆
Empirical formula (without solvate)	$C_{36}H_{39}F_6N_2NiOP_3$	$C_{28}H_{34}F_6N_4OP_2Pd$	$C_{34}H_{37}ClN_2OP_2Pd$	$C_{51}H_{53}F_6N_4NiOP_3$
Formula mass [g/mol]	781.3	725.0	693.5	1003.6
Solvate	0.75 CH ₂ Cl ₂	_	_	0.35 CH ₂ Cl ₂
Crystal size [mm]	$0.30 \times 0.30 \times 0.40$	$0.05 \times 0.05 \times 0.30$	0.20×0.10×0.05	0.10×0.05×0.05
Crystal system	monoclinic	orthorhombic	monoclinic	triclinic
Space group	<i>Cc</i> (no. 9)	<i>Pna</i> 2 ₁ (no. 33)	$P2_1/n$ (no. 14)	<i>P</i> 1 (no. 2)
Lattice constants:				
<i>a</i> [pm]	1706.3(3)	1947.8(4)	1110.9(2)	1091.5(2)
<i>b</i> [pm]	1207.7(2)	1712.2(3)	1328.7(3)	1186.1(2)
<i>c</i> [pm]	1875.0(5)	898.3(2)	2174.2(4)	2098.4(4)
α [°]	90	90	90	91.25(3)
β [°]	95.80(1)	90	91.70(3)	105.04(3)
γ [°]	90	90	90	111.04(3)
$V [10^6 \times \text{pm}^3]$	3844(1)	2996(1)	3208(1)	2429(1)
Z	4	4	4	2
$d_{\rm x} [{\rm g} \times {\rm cm}^{-3}]$	1.460	1.607	1.430	1.412
T [K]	200	200	200	200
Measuring device	Siemens Nicolet-Syntex	Nonius Kappa CCD	Nonius Kappa CCD	Nonius Kappa CCD
No. of reflect. for cell	25			
refinement				
Scan range [°]	$4.1 \le 2\Theta \le 51.0$	$3.2 \le 2\Theta \le 52.0$	$3.7 \le 2\Theta \le 55.0$	$3.7 \le 2\Theta \le 50.0$
Method	ω -scan, $\Delta \omega = 0.54^{\circ}$	ω -scan, $\Delta \omega = 1.00^{\circ}$	ω -scan, $\Delta \omega = 1.00^{\circ}$	ω -scan, $\Delta \omega = 0.50^{\circ}$
Scan speed	$12^{\circ} \text{ min}^{-1}$	30 s/frame	30 s/frame	30 s/frame
No. of measured reflections	3430	43721	13378	16851
No. of unique reflections	3430	5882	7316	8526
No. of observed reflections	2772	5315	5458	5380
Observation criterion	$I \ge 2\sigma$	$I \ge 2\sigma$	$I \ge 2\sigma$	$I \ge 2\sigma$
No. of param. refined	477	399	375	548
Resid. el. density $[10^{-6} \text{e} \text{pm}^{-3}]$	0.44	0.39	0.62	1.02
R_1/R_w [%] (refinement on F^2)	5.3/14.6	2.8/6.3	5.5/10.0	14.6/24.3

Table 9.	Crystallogr	aphic data	of com	pounds 16a,	16b, 18,	and 19
	2 0				/ /	

was added dropwise to the oxetane solution at 0°C. The mixture was allowed to warm to 25°C, while the reaction progress was monitored by TLC. Upon completion (10 h stirring at 25°C), the reaction was quenched by the addition of deoxygenated water (50 mL). The aqueous phase was extracted with diethyl ether $(30 \text{ mL}, 2 \times)$. The combined organic phases were washed with deoxygenated brine, dried with MgSO₄, filtered, and concentrated in vacuo yielding the crude products as pale yellow oils. The crude product was purified by column chromatography on silica gel. 3b: Starting material 2a (2.02 g, 6.0 mmol). Eluent petroleum ether/ diethyl ether (2:1; $R_{\rm f} = 0.24$). Yield 1.90 g (3.45 mmol, 58%) as a colourless, microcrystalline powder. ³¹P NMR (CDCl₃): $\delta = -29.9$ $[d, {}^{4}J_{PP} = 10 \text{ Hz}, P(m\text{-Tol})_{2}], -29.5 (d, {}^{4}J_{PP} = 10 \text{ Hz}, PPh_{2}) \text{ ppm}.$ 3c: Starting material 2a (1.97 g, 5.85 mmol). Eluent petroleum ether/diethyl ether (1:1; $R_{\rm f} = 0.51$). Yield 2.89 g (4.75 mmol, 81%) as a colourless, microcrystalline powder. ³¹P NMR (CDCl₃): $\delta =$ -35.9 (d, ${}^{4}J_{PP} = 16$ Hz, PMes₂), -28.3 (d, ${}^{4}J_{PP} = 16$ Hz, PPh₂). 3d: Starting material 2a (2.02 g, 6.0 mmol). Eluent petroleum ether/ diethyl ether (3:1; $R_f = 0.35$). Yield 1.35 g (2.5 mmol, 42%) as a colourless, microcrystalline powder. ³¹P NMR (CDCl₃): $\delta = -29.9$ (br. s, PPh₂), -18.5 [br. s, P(c-C₆H₁₁)₂] ppm. 3e: Starting material 2b (670 mg, 2.0 mmol). Eluent petroleum ether/diethyl ether (2:1, $R_{\rm f} = 0.36$). Yield 830 mg (1.6 mmol, 80%) as a colourless, microcrystalline powder. ³¹P NMR (CDCl₃): $\delta = -29.5$ (s, *PPh*₂) ppm. 4b: Starting material 2c (1.75 g, 8.0 mmol). Eluent petroleum ether/ diethyl ether (2:3; $R_{\rm f} = 0.35$). Yield 2.65 g (5.4 mmol, 68%) as a colourless, microcrystalline powder. ³¹P NMR (CDCl₃): $\delta = -36.5$ (s, PMes₂) ppm. For further analytical data see Tables 10, 12, and 14.

General Procedure for the Synthesis of 5 and 6: The substituted hydroxy compound 3 or 4 (1 equiv.), respectively, was dissolved in THF (50 mL) and the solution was cooled to 0°C. Addition of solid KOtBu (2 equiv.) yielded a clear, pale yellow solution. After 5 min of stirring at 0°C, 2 equiv. of methyl iodide was added rapidly. Within a few minutes KI precipitated. The suspension was stirred for at 0°C 1 h (the methylation was monitored by TLC). The solvent was evaporated in vacuo at 0°C. The residue was dissolved in diethyl ether (30 mL) and the solution was filtered to remove potassium iodide. Removal of the solvent yielded the crude products as colourless oils. The crude product was purified by column chromatography on silica gel. 5a: Starting material 3a (1.77 g, 3.4 mmol). Eluent petroleum ether/diethyl ether (3:1; $R_{\rm f} = 0.36$). Yield 1.41 g (2.6 mmol, 78%) as a colourless, microcrystalline powder. ³¹P NMR (CDCl₃): $\delta = -28.7$ (s, PPh₂) ppm. **5b**: Starting material 3b (1.60 g, 2.9 mmol). Eluent petroleum ether/diethyl ether (3:1; $R_{\rm f} = 0.36$). Yield 1.31 g (2.3 mmol, 80%) as a colourless, microcrystalline powder. ³¹P NMR (CDCl₃): $\delta = -29.0$ [d, ⁴J_{PP} = 6 Hz, $P(m\text{-Tol})_2$, -28.7 (d, ${}^4J_{PP}$ = 6 Hz, PPh_2) ppm. 5c: Starting material 3c (700 mg, 1.15 mmol). Eluent petroleum ether/diethyl ether (3:1; $R_{\rm f} = 0.43$). Yield 615 mg (1.0 mmol, 87%) as a colourless, microcrystalline powder. ³¹P NMR (CDCl₃): $\delta = -35.8$ (d, ${}^{4}J_{PP} = 6$ Hz, PMes₂), -28.3 (d, ${}^{4}J_{PP} = 6$ Hz, PPh₂). 5d: Starting material 3e (625 mg, 1.2 mmol). Eluent petroleum ether/diethyl ether (2:1; $R_f = 0.65$). Yield 560 mg (1.05 mmol, 87%) as a colourless, microcrystalline powder. ³¹P NMR (CDCl₃): $\delta = -29.2$ (s, PPh₂) ppm. 6a: Starting material 4a (1.62 g, 4.0 mmol). Eluent petroleum ether/diethyl ether (2:1; $R_f = 0.49$). Yield 1.49 g (3.6 mmol, 89%) as a colourless, microcrystalline powder. ³¹P

Table 10. Chemical shifts	(δ values)	, integrals [x]	I] and coup	oling constants	J in the ¹]	$H{^{31}P}$	NMR s	spectra of $2-6$ in	CHCl ₃
---------------------------	------------	------------------	-------------	-----------------	-------------------------	-------------	-------	---------------------	-------------------

Compd. ^{[a][b]}	CH ₂ N [2 H]	CH ₂ O [2 H]	CH ₂ P [4 H]	OH [1 H]	OCH ₃ [3 H]	H4 ^[d] [1 H]	Pyrazole-H ^[c] H5 ^[d] [1 H]	H3 ^[d] [1 H]	Aryl-H	Other
2b	4.48 s	4.30 d, 4.42 d [4 H] ${}^{2}J_{\rm HH} = 6.2$	2.44 s [2 H]	_	_	_	_	-	7.36-7.51 m [10 H]	6.19 pt, 6.72 pt [4 H] pyrrole- <i>H</i> ^[c]
3a	4.23 s	3.26 s	2.46 br. s	n. d.	-	6.18 t	7.09 d	7.49 d	7.33–7.46 m [20 H]	1.2
3b	4.28 s	3.31 s	2.49 br. s	4.06 br. s	-	6.21 t	7.15 d	7.50 d	7.22-7.49 m [18 H]	2.35 br. s [6 H] <i>m</i> -C <i>H</i> ₃
3c	4.13 d, 4.26 d ${}^{2}J_{\rm HH} = 14.2$	3.23 d, 3.36 d ${}^{2}J_{\rm HH} = 12.0$	2.49 m, 2.72 d, 2.86 d ${}^{2}J_{\rm HH} = 14.3$	3.92 br. s	_	6.16 t	6.90 d	(0)	6.78 m [4 H], 7.29-7.48 m	2.24 s [6 H] <i>p</i> -C <i>H</i> ₃ 2.38 s, 2.40 s [12 H] <i>p</i> -C <i>H</i> ₂
3d	4.29 br. s	3.30 d, 3.46 d ${}^{2}J_{\rm HH} = 11.8$	1.73 m, 2.33 d, 2.46 d ${}^{2}J_{\rm HH} = 14.7$	4.22 br. s	_	6.24 t	(0)	(0)	7.30–7.52 m [10 H]	1.21 m, 1.48 m, 1.73 m [22 H] cvclohexyl- <i>H</i>
3e	4.11 s	3.43 s	2.24 d, 2.39 d $^2J_{\text{HH}} = 14.3$	n. d.	-	_	_	_	7.28–7.51 m [20 H]	6.12 pt, 6.69 pt [4 H] pyrrole- <i>H</i> ^[c]
4a	4.22 d, 4.46 d [4 H] ${}^{2}J_{\text{HH}} = 14.3$	3.27 s	2.13 s [2 H]	4.37 br. s	-	6.26 t [2 H]	7.31 d [2 H]	7.60 d [2 H]	7.35–7.48 m [10 H]	15
4b	4.24 d, 4.38 d [4 H] $^{2}J_{\text{HH}} = 14.3$	3.33 s	2.55 s [2 H]	4.01 br. s	_	6.22 t [2 H]	7.38 d [2 H]	7.54 d [2 H]	6.83 m [4 H]	2.26 s [6 H] <i>p</i> -C <i>H</i> ₃ 2.40 br. s [12 H] <i>o</i> -C <i>H</i> ₂
5a	4.44 s	3.03 s	2.51 br. s	_	2.80 s	6.24 t	(0)	7.56 d	7.32-7.48 m [20 H]	[] • •;
5b	4.44 s	3.04 s	2.48 m	_	2.81 s	6.24 t	7.13 d	7.55 d	7.22–7.43 m [18 H]	2.33 s, 2.35 s [6 H] <i>m</i> -C <i>H</i> ₃
5c	4.36 d, 4.45 d ${}^{2}J_{\rm HH} = 14.0$	3.00 d, 3.16 d ${}^{2}J_{\rm HH} = 9.2$	2.38 br. s, 2.54 d, 2.77 br. s ${}^{2}J_{\rm HH} = 14.6$	-	2.77 s	6.19 t	(0)	7.51 d	6.76 m [4 H], 7.28–7.50 m [10 H]	2.21 s [6 H] p-CH ₃ 2.34 s, 2.48 s [12 H] q-CH ₂
5d	4.14 s	2.99 s	2.42 br. s	_	2.80 s	-	-	_	7.31–7.46 m [20 H]	6.12 pt, 6.62 pt [4 H] pyrrole- <i>H</i> ^[c]
6a	4.32 d, 4.43 d [4 H] ${}^{2}I = 14.2$	3.03 s	2.23 s [2 H]	-	2.92 s	6.28 t [2 H]	7.58 d [2 H]	7.71 d [2 H]	7.33–7.50 m [10 H]	FJIIOIC II
6b	2 $^{4.34}$ d, $^{4.43}$ d [4 H] 2 $J_{\rm HH} = 14.2$	3.11 s	2.66 s [2 H]	_	3.03 s	6.25 t [2 H]	7.55 br. s [2 H]	7.55 br. s [2 H]	6.82 m [4 H]	2.26 s [6 H] <i>p</i> -C <i>H</i> ₃ 2.42 br. s [12 H] <i>o</i> -C <i>H</i> ₃

^[a] s = singlet; d = doublet; t = triplet; m = multiplet; br. s = broad signal; pt = pseudo triplet; (o) = overlapped; n. d. = not detected. ^[b] Coupling constants in Hz. ^[c] Coupling constant ${}^{3}J_{HH} = 2.0$ Hz. ^[d] See Scheme 13 for numbering scheme of the pyrazole.

NMR (CDCl₃): $\delta = -28.6$ (s, *P*Ph₂) ppm. **6b**: Starting material **4b** (1.95 g, 4.0 mmol). Eluent petroleum ether/diethyl ether (2:1; $R_f = 0.65$). Yield 1.65 g (3.3 mmol, 82%) as a colourless, microcrystalline powder. ³¹P NMR (CDCl₃): $\delta = -36.6$ (s, *P*Mes₂) ppm. For further analytical data see Tables 10, 12, and 14.

Coordination Chemistry

General Procedure for the Synthesis of 7a-d: A solution of the respective *tripod* ligand 5 (1.05 mmol) in ethanol (10 mL) was added rapidly to a solution of NiCl₂·6H₂O (240 mg, 1.0 mmol) in ethanol (10 mL). The colour of the reaction mixture changed immediately to red and within a few minutes the nickel complexes precipitated. After stirring at 25°C for 1 h, the precipitate was filtered off, washed with 10-mL portions of diethyl ether (3×), and dried in vacuo. **7a**: Starting material **5a** (565 mg). Yield 540 mg (0.85 mmol, 85%) as an orange-coloured microcrystalline solid.

Recrystallization from CH2Cl2/Et2O afforded two different kinds of red crystals (7a/1·CH₂Cl₂ and 7a/2·0.5CH₂Cl₂), both suitable for X-ray structure analysis. ³¹P NMR (CD₂Cl₂, -30° C): $\delta = 11.2$ (s, *PPh*₂) ppm. ³¹P NMR (CD₂Cl₂, -100°C): $\delta = 9.6$ (d, ²J_{PP} = 108 Hz, PPh₂), 13.6 (d, ${}^{2}J_{PP} = 108$ Hz, PPh₂) ppm. 7b: Starting material **5b** (590 mg). Yield 500 mg (0.72 mmol, 72%) as an orangecoloured, microcrystalline solid. ³¹P NMR (CD₂Cl₂, -30° C): $\delta =$ 11.3 [br. s, PPh₂, P(m-Tol)₂] ppm. ³¹P NMR (CD₂Cl₂, -100°C): $\delta = 9.4$ (d, ${}^{2}J_{PP} = 110$ Hz), 12.1–15.0 (m) ppm. 7c: Starting material 5c (650 mg). Yield 710 mg (0.95 mmol, 95%) as a ruby-coloured, microcrystalline solid. ¹H NMR and ¹³C NMR: due to dynamic processes, no sharp signals could be detected. ³¹P NMR $(CD_2Cl_2, -30^{\circ}C): \delta = -6.6 \text{ (d, } {}^2J_{PP} = 95 \text{ Hz, chair-}PMes_2), -0.5$ (br. s, twist-PMes₂, twist-PPh₂), 2.2 (d, ${}^{2}J_{PP} = 95$ Hz, chair-PPh₂) ppm. ³¹P NMR (CD₂Cl₂, -100° C): $\delta = -4.8$ (d, ²J_{PP} = 95 Hz, chair-PMes₂), -3.0 (d, ${}^{2}J_{PP} = 98$ Hz, twist-PMes₂), -0.2 (d,

Table 11. Chemical shifts (δ values), integrals	[x H] and coupling constants J	in the ${}^{1}H{}^{31}P$ NMR spectra of i	7-18 in CH ₂ Cl ₂
---	--------------------------------	---	---

Compd. ^{[a][b]}	CH ₂ N [2 H]	CH ₂ O [2 H]	CH ₂ P [4 H]	OCH ₃ [3 H]	H4 ^[d] [1 H]	Pyrazole-H ^[c] H5 ^[d] [1 H]	H3 ^[d] [1 H]	Aryl-H	Other
7a	3.82 s	1.98 s	2.26 d, 2.92 br. s ${}^{2}J_{\rm HH} = 15.2$	2.45 s	6.22 t	7.20 d	7.47 d	7.57-8.32 m [20 H]	
7b	3.82 s	1.96 d, 2.03 d ${}^{2}J_{\rm HH} = 9.6$	2.28 d, 2.30 d, 2.97 br. s ${}^{2}L_{m} = 15.2$	2.52 s	6.23 t	7.21 d	(0)	7.38-8.35 m [18 H]	2.51 br. s [6 H] <i>m</i> -CH ₃
7d	3.66 s	2.24 s	$J_{\rm HH} = 15.2$ 2.08 d, 4.01 br. s $^2J_{\rm HH} = 14.8$	2.39 s	-	_	-	7.44-8.42 m [20 H]	6.09 pt, 6.43 pt [4 H] pyrrole- <i>H</i> ^[c]
8	3.74 s	1.88 s	2.50-2.60m	2.58 s	6.19 t	7.16 d	7.44 d	7.44-8.28 m [20 H]	pyriole II
9a	4.07 s	2.09 s	2.33 d, 2.89 d ${}^{2}J_{\rm HH} = 15.1$	2.24 s	6.25 t	7.23 d	(0)	7.53–8.24 m [20 H]	
9b	4.02 s	1.99 d, 2.08 d	2.33 br. s, 2.81 d, 2.82 d	2.25 s	6.21 t	7.20 d	7.60 d	7.38-8.17 m [18 H]	2.43 br. s [6 H] <i>m</i> -CH ₃
10	4.01 s	$^{2}J_{\rm HH} = 9.8$ 2.12 s	${}^{2}J_{\rm HH} = 15.3$ 2.44 d, 2.94 d ${}^{2}J_{\rm HH} = 15.3$	2.25 s	6.24 t	7.23 d	(0)	7.52-8.21 m [20 H]	
12 ^[e]	3.79 d ^[f] , 4.02 d ^[f] [2 H] 4.56 d ^[g] , 4.82 d ^[g] [2 H] ${}^{2}J_{HH} = 14.4^{[f]},$ 14 8 ^[g]	1.89 d, 1.96 d $^2J_{\rm HH} = 9.6$	1.51 d, 2.49–2.64 m [2 H] ${}^{2}J_{\rm HH} = 14.4$	2.59 s	6.30 t ^[f] [1 H] 6.64 t ^[g] [1 H]	7.33 d ^[f] [1 H] 8.98 d ^[g] [1 H]	7.60 d ^[f] [1 H] 8.11 d ^[g] [1 H]	7.51-8.25 m [10 H]	
16a∙PF ₆	4.19 s	2.32 s	2.52 d, 2.99 d ${}^{2}J_{\rm HH} = 15.2$	2.15 s	6.26 t	7.36 d	7.54 d	7.35–7.63 m [20 H]	2.15 br. s, 4.07 br. s [4 H] CH ₂ 5.56 m [1 H] allyl-CH
17	3.84 s	2.30 d, 2.68 d ${}^{2}J_{\rm HH} = 9.6$	1.90–1.99 m, 2.36–2.47 m, 2.95 m	2.62 s	6.24 t	7.24 d	7.48 d	6.09-6.13 m [2 H], 7.09-8.22 m [20 H]	1.99 s [3 H] <i>p</i> -CH ₃ 2.79 s, 2.83 s [6 H] <i>p</i> -CH ₂
18 ^[c]	4.06 pt ${}^{2}J_{\rm HH} = 14.0$	2.12 d, 2.46 d ${}^{2}J_{\rm HH} = 9.6$	2.00-2.31 m, 2.89 pt, 3.09 pt ${}^{2}J_{\rm HH} = 14.2, 15.4$	2.21 s	6.22 t	7.17 d	(0)	7.40-8.18 m [20 H]	0.67 s ^[h] [3 H] Pd-CH ₃

^[a] s = singlet; d = doublet; t = triplet; m = multiplet; br. s = broad signal; pt = pseudo triplet; (o) = overlapped. ^[b] Coupling constants in Hz. ^[c] Coupling constant ${}^{3}J_{HH} = 2.0$ Hz. ^[d] See Scheme 13 for numbering scheme of the pyrazole. ^[e] Measuring temperature -40°C. ^[f] Noncoordinated CH₂pz group. ^[g] Coordinated CH₂pz group. ^[h] In ¹H NMR spectra: $\delta = 0.67$ (dd, ${}^{3}J_{PH} = 3.8$ and 7.8 Hz).

 ${}^{2}J_{PP} = 101$ Hz, twist-*P*Mes₂), 1.8 (d, ${}^{2}J_{PP} = 101$ Hz, twist-*P*Ph₂), 3.1 (d, ${}^{2}J_{PP} = 98$ Hz, twist-*P*Ph₂), 4.8 (d, ${}^{2}J_{PP} = 95$ Hz, chair-*P*Ph₂) ppm, see Figure 7. **7d**: Starting material **5d** (560 mg). Yield 630 mg (0.95 mmol, 95%) as an orange-coloured, microcrystalline solid. ${}^{31}P$ NMR (CD₂Cl₂, -30° C): $\delta = 9.8$ (s, *P*Ph₂) ppm. ${}^{31}P$ NMR (CD₂Cl₂, -100° C): $\delta = 10.4 - 10.8$ (m, *P*Ph₂) ppm. For crystallographic data see Table 7; for further analytical data see Tables 11, 13, and 15.

General Procedure for the Synthesis of 8, 11a–c, 13, and 14: A solution of the respective *tripod* ligand 5 or 6 (1.05 mmol) in THF (20 mL) was added rapidly to a suspension of [(dme)NiCl₂] (220 mg, 1.0 mmol) or [(dme)NiBr₂] (310 mg, 1.0 mmol), respectively, in THF (20 mL). After stirring at 25°C for 12 h, all volatiles were removed in vacuo. The residual solid was washed with 10-mL portions of diethyl ether (3×) and dried in vacuo. 8: Starting materials 5a (565 mg) and [(dme)NiBr₂]. Yield 515 mg (0.68 mmol, 68%) as a red, microcrystalline solid. Recrystallization from CH₂Cl₂/ Et₂O afforded red crystals suitable for X-ray structure analysis. ³¹P NMR (CD₂Cl₂, -30° C): $\delta = 10.7$ (s, PPh₂) ppm. 11a: Starting materials 6a (440 mg) and [(dme)NiBr₂]. Yield 580 mg (0.91 mmol,

91%) as a blue-violet, microcrystalline solid. Recrystallization from CH2Cl2/Et2O afforded blue-violet crystals suitable for X-ray structure analysis. UV/Vis (CH₂Cl₂): λ (ϵ) = 552 nm (200 M⁻¹·cm⁻¹), 912 (110), 1007 (sh, 70). NMR: no NMR signals due to paramagnetism. 11b: Starting materials 6a (440 mg) and [(dme)NiCl₂]. Yield 485 mg (0.88 mmol, 88%) as a violet, microcrystalline solid. UV/Vis (CH₂Cl₂): λ (ϵ) = 527 nm (180 m⁻¹·cm⁻¹), 890 (100), 997 (80). NMR: no NMR signals due to paramagnetism. 11c: Starting materials EtOCH₂C(CH₂PPh₂)(CH₂pz)₂^[5e] (455 mg) and [(dme)-NiBr₂]. Yield 525 mg (0.80 mmol, 80%) as a blue-violet, microcrystalline solid. Recrystallization from CH2Cl2/Et2O afforded two different kinds of crystals, both suitable for X-ray structure analysis, which were identified as 11c.0.5CH2Cl2 (blue-violet) and the dimer **15** (red-brown). UV/Vis (**11c**, CH₂Cl₂): λ (ϵ) = 550 nm (195 M⁻¹·cm⁻¹), 913 (120), 1109 (sh, 50). NMR: no NMR signals due to paramagnetism. 13: Starting materials 6b (525 mg) and [(dme)Ni-Cl₂]. Yield 495 mg (0.78 mmol, 78%) as a blue-violet, microcrystalline solid. Recrystallization from CH₂Cl₂/Et₂O afforded blue-violet crystals suitable for X-ray structure analysis. UV/Vis (CH₂Cl₂): λ $(\varepsilon) = 520 \text{ nm} (100 \text{ m}^{-1} \cdot \text{cm}^{-1}), 579 (140), 974 (60). \text{ NMR: no NMR}$ signals due to paramagnetism. 14: Starting materials

Compd. ^{[a][b]}	$\mathrm{CH}_2\mathrm{N}$	CH ₂ O	CH ₂ P	OCH_3	C_q	F C4 ^[c]	yrazole-	C3 ^[c]	Aryl-C	Other
						01	05	05		
2b	55.3 d	79.7 d	34.4 d	_	44.6 d	_	_	_	129.0–138.9 m	108.7, 121.9
	${}^{5}J_{\rm CP} = 10.1$	${}^{5}J_{\rm CP} = 9.6$	${}^{1}J_{\rm CP} = 16.6$		${}^{2}J_{\rm CP} = 13.6$					pyrrole-C
3a	58.4 m	68.8 m	35.0 m	-	46.7 m	105.5	131.7	139.3	128.9-139.3 m	
3b	58.4 t	68.9 t	35.5 m	-	45.5 t	105.4	131.8	139.8	128.7-140.0 m	21.9 <i>m</i> - <i>C</i> H ₃
	${}^{3}J_{\rm CP} = 9.7$	${}^{3}J_{\rm CP} = 8.8$			${}^{2}J_{\rm CP} = 11.5$					
3c	57.6 t	68.6 dd	31.9 dd, 34.6 dd	-	46.3 dd	105.4	131.6	139.7	128.6-143.4 m	21.2 d <i>p</i> - <i>C</i> H ₃
	${}^{3}J_{\rm CP} = 8.7$	${}^{3}J_{\rm CP} = 8.3,$ 10.1	${}^{1}J_{\rm CP} = 17.5, 19.3$ ${}^{3}J_{\rm CP} = 9.2, 10.1$		${}^{2}J_{\rm CP} = 12.0,$ 15.6					${}^{5}J_{CP} = 1.8$ 23.7 d, 23.9 d <i>o</i> - <i>C</i> H ₃
		69.4								$J_{\rm CP} = 13.8$
3d	58.7 t $^{3}J_{\text{CP}} = 9.9$	$^{69.1}$ t $^{3}J_{CP} = 8.6$	26.8–35.1 m	-	44.2 t $^{2}J_{\text{CP}} = 12.4$	105.5	131.8	139.7	128.8–140.1 m	26.8-35.1 m cyclohexyl-C
3e	54.8 t	67.9 t	35.1 dd	-	45.3 t	-	-	-	128.9-139.5 m	108.3, 123.0
	${}^{3}J_{\rm CP} = 8.1$	${}^{3}J_{\rm CP} = 8.3$	${}^{1}J_{\rm CP} = 18.1,$ ${}^{3}J_{\rm CP} = 9.5$		${}^{2}J_{\rm CP} = 11.1$					pyrrole-C
4a	54.9 m	65.5 m	32.1 m	-	46.7 m	105.6	132.3	140.0	128.9-139.8 m	
4b	55.2 d	65.8 d	29.7 d	-	47.2 d	105.7	132.0	139.9	130.9-143.0 m	21.2 p-CH ₃
	${}^{3}J_{\rm CP} = 9.6$	${}^{3}J_{\rm CP} = 10.0$	${}^{1}J_{\rm CP} = 20.1$		${}^{2}J_{\rm CP} = 15.1$					23.8 d o -CH ₃ ³ $L_{CP} = 13.6$
5a	57.6 t	76.8 t	35.4 dd	58.3	44.3 t	105.5	131.5	139.4	128.7-140.0 m	VCr 1510
	${}^{3}J_{\rm CP} = 9.3$	${}^{3}J_{\rm CP} = 8.6$	${}^{1}J_{\rm CP} = 18.5,$ ${}^{3}J_{\rm CP} = 9.5$		${}^{2}J_{\rm CP} = 12.0$					
5b	57.6 t	76.8 t	35.2 m	58 3	44 3 t	1054	131.5	1393	128 5-140 0 m	21.8 <i>m</i> -CH ₂
	${}^{3}L_{CD} = 9.2$	${}^{3}L_{CD} = 8.5$	0012 III	0010	${}^{2}L_{\rm CP} = 12.0$	10011	10110	10010	12010 11010 111	2110 /// 0113
5c	${}^{5}CP = 9.2$ 57.6 t ${}^{3}J_{CP} = 9.2$	77.1 m	32.6-34.7 m	58.5	${}^{45.2}_{45.2}$ dd ${}^{2}_{J_{CP}} = 11.0,$ 15.6	105.4	131.4	139.3	128.5–143.1 m	21.2 <i>p</i> -CH ₃ 23.7 d, 23.9 d <i>o</i> -CH ₃
	55.0.1		25.0.11	50.0					100 5 140 0	${}^{3}J_{\rm CP} = 13.8$
5d	${}^{3}J_{\rm CP} = 8.7$	${}^{76.6}$ t ${}^{3}J_{\rm CP} = 8.3$	${}^{3}J_{CP} = 19.3,$ ${}^{3}J_{CP} = 11.0$	58.2	${}^{44.4}$ t ${}^{2}J_{\rm CP} = 12.0$	_	-	_	128.7–140.0 m	108.1, 123.0 pyrrole-C
6a	54.8 d	74.1 d	32.0 d	58.6	45.6 d	105.5	132.2	139.8	128.8-139.9 m	
	${}^{3}J_{CP} = 8.6$	${}^{3}J_{CP} = 8.1$	${}^{1}J_{CP} = 18.1$		${}^{2}J_{CP} = 12.1$					
6b	55.0 d	74.2 d	28.9 d	58.8	46.1 d	105.5	132.0	139.6	130.7-143.1 m	21.2 p-CH ₃
	${}^{3}J_{\rm CP} = 10.6$	${}^{3}J_{\rm CP} = 9.6$	${}^{1}J_{\rm CP} = 19.1$		${}^{2}J_{\rm CP} = 15.6$					$23.8 \text{ d} o\text{-}CH_3$ ${}^3J_{CP} = 14.0$

Table 12. Chemical shifts (δ values) and coupling constants J in the ¹³C{¹H} NMR spectra of 2-6 in CHCl₃

^[a] All signals are singlets unless otherwise stated; d = doublet; dd = doublet of doublet; t = triplet; m = multiplet. ^[b] Coupling constants in Hz. ^[c] See Scheme 13 for numbering scheme of the pyrazole.

CH₃C(CH₂pz)₃^[5e] (285 mg) and [(dme)NiBr₂]. Yield 425 mg (0.87 mmol, 87%) as a blue, microcrystalline solid. Recrystallization from CH₂Cl₂/Et₂O afforded blue and red-brown crystals, but only the former were suitable for X-ray structure analysis. UV/Vis (CH₂Cl₂): λ (ϵ) = 550 nm (180 M⁻¹·cm⁻¹), 600 (230), 1004 (90). NMR: no NMR signals due to paramagnetism. For crystallographic data see Tables 7 and 8; for further analytical data see Tables 11, 13, and 15.

General Procedure for the Synthesis of 9a, 9b, and 12: A solution of the respective *tripod* ligand 5 or 6 (0.5 mmol) in ethanol (15 mL) was added rapidly to a suspension of $[(\eta^4-cod)PdCl_2]$ (145 mg, 0.5 mmol) in ethanol (10 mL). Within a few minutes the yellow reaction mixture was clearing up. After stirring at 25°C for 12 h, all volatiles were removed in vacuo. The residual solid was washed with portions of diethyl ether (10 mL, 3×) and dried in vacuo. 9a: Starting material 5a (270 mg). Yield 265 mg (0.37 mmol, 74%) as a colourless, microcrystalline solid. Recrystallization from CH₂Cl₂/ Et₂O afforded colourless crystals suitable for X-ray structure analysis. ³¹P NMR (CD₂Cl₂): $\delta = 15.8$ (s, *P*Ph₂) ppm. ³¹P NMR (CD₂Cl₂, -100°C): $\delta = 15.8$ (d, ²J_{PP} = 115 Hz, *P*Ph₂), 15.9 (d, ²J_{PP} = 115 Hz, *P*Ph₂) ppm. 9b: Starting material 5b (280 mg). Yield 255 mg (0.34 mmol, 69%) as a pale yellow microcrystalline solid. ³¹P NMR (CD₂Cl₂): $\delta = 15.8$ [br. s, *P*Ph₂, *P*(*m*-Tol)₂] ppm. ³¹P NMR (CD₂Cl₂, -100° C): $\delta = 14.9-15.8$ (m), 16.6-17.1 (m) ppm. **12**: Starting material **6a** (210 mg). Yield 245 mg (0.41 mmol, 82%) as a yellow, microcrystalline solid. Recrystallization from CH₂Cl₂/ Et₂O afforded yellow crystals suitable for X-ray structure analysis. ³¹P NMR (CD₂Cl₂): $\delta = 9.8$ (s, *P*Ph₂) ppm. For crystallographic data see Tables 7 and 8; for further analytical data see Tables 11, 13, and 15.

Synthesis of 10: A solution of the *tripod* ligand 5a (135 mg, 0.25 mmol) in ethanol/THF (2:1; 15 mL) was added rapidly to a suspension of [*cis*-(CH₃CN)₂PtCl₂] (85 mg, 0.25 mmol) in ethanol (10 mL). Within a few minutes the reaction mixture was clearing up and the platinum complex precipitated. After stirring at 25°C for 12 h, all volatiles were removed in vacuo. The residual solid was washed with portions of diethyl ether (10 mL, 3×) and dried in vacuo. Recrystallization from CH₂Cl₂/Et₂O afforded 150 mg (0.19 mmol, 75%) of 10 as colourless crystals. ³¹P NMR (CD₂Cl₂): $\delta = -2.5$ (s, with Pt satellites, ¹J_{PtP} = 1720 Hz, *PPh*₂). ³¹P NMR (CD₂Cl₂, -100°C): $\delta = -3.2$ (d, ²J_{PP} = 20 Hz, *PPh*₂), -2.5 (d, ²J_{PP} = 20 Hz, *PPh*₂). For further analytical data, see Tables 11, 13, and 15.

Synthesis of 16a·PF₆: Solid TlPF₆ (2 equiv., 210 mg) was added, at 0°C, to a suspension of 7a (200 mg, 0.3 mmol) in THF (50 mL) to

Compd. ^{[a][b]}	CH ₂ N	CH ₂ O	CH ₂ P	OCH	₃ C _q	C4 ^[c]	Pyrazole-(C5 ^[c]	C3 ^[c]	Aryl-C	Others
7a	58.5	72.7	29.1	57.7	42.3	105.8 br.	s 133.2 br.	s 140.2 br. :	s 129.0–136.3 m	
7b	58.3	72.7	28.7 m	57.6	42.3	105.6	132.6	140.0	128.8-140.2 m	21.7, 21.8 m-CH3
7d	58.0	73.1	30.3	57.6	43.4	-	-	-	128.8-138.8 m	108.9, 122.6 pvrrole- <i>C</i>
8	57.4	72.6	26.4	57.7	42.6	105.5	131.5	139.8	128.7-139.8 m	1.5
9a	59.8 t	72.3 t	30.7-31.5 m	57.4	43.9	105.8	131.7	140.1	128.8-136.2 m	
	${}^{3}J_{\rm CP} = 11.0$	${}^{3}J_{\rm CP} = 5.2$								
9b	59.6 t	72.3 br. s	30.7-31.4 m	57.5	43.8	105.8	131.6	140.0	128.8–138.9 m	21.6, 21.7 <i>m</i> - <i>C</i> H ₃
10	$J_{CP} = 11.0$ 59.9 $^{3}J_{CP} = 11.6$	72.1 t ${}^{3}J_{CP} = 5.1$	29.9-30.8 m	57.5	43.9	105.8	131.7	140.1	128.8–136.1 m	
12	52.4 br. s ^[d] , 54.0 br. s ^[e]	68.6 br. s	29.4 d ${}^{1}J_{CP} = 27.7$	58.2	45.2	105.9 ^[e] , 108.5 ^[d]	131.8 ^[e] , 136.2 ^[d]	140.3 ^[e] , 145.5 ^[d]	128.8–132.7 m	
16a·PF ₆	60.3 br. s	74.0 br. s	30.6-31.3 m	57.5	43.6	105.9	132.2	140.2	129.8–134.5 m	72.6 allyl- <i>C</i> H ₂ , 117.6 allyl- <i>C</i> H
17	59.0 dd ${}^{3}I = 6.0 10$	74.6 dd	27.8 dd, 29.9 dd	58.0	42.5 br. s	105.6	131.4	139.6	127.2-140.3 m	20.0 <i>p</i> - <i>C</i> H ₃
18	$J_{\rm CP} = 0.0, 10.$ 60.8 t $^{3}J_{\rm CP} = 10.6$	$J_{\rm CP} = 5.3, 7.$ 72.8 t $^{3}J_{\rm CP} = 5.9$	$J_{CP} = 18.0, J_{CP} = 8.8$ 32.2 dd, 34.5 dd $J_{CP} = 27.6, J_{CP} = 9.8$	57.3	44.2 br. s	105.8	131.6	139.7	128.6-140.1 m	$^{20.8}$ $^{O-CH_3}$ 14.5 dd Pd-CH ₃ $^{2}J_{CP} = 6.0, 103.0$

Table 13. Chemical shifts (δ values) and coupling constants J in the ¹³C{¹H} NMR spectra of 7–18 in CH₂Cl₂

^[a] All signals are singlets unless otherwise stated; d = doublet; dd = doublet of doublet; t = triplet; m = multiplet; (o) = overlapped. ^[b] Coupling constants in Hz. ^[c] See Scheme 13 for numbering scheme of the pyrazole. ^[d] Coordinated CH₂pz group. ^[e] Noncoordinated CH₂pz group.

Table 14. Analytical data of ligands 2-6

Compd.	Formula	M [g/mol]	EI-MS [m/z (%)]	C _{calcd.} /C _{found}	H _{calcd.} /H _{found}	N _{calcd.} /N _{found}	P _{calcd.} /P _{found}
2b	C ₂₁ H ₂₂ NOP	335.38	336 (100), 305 (39), 199 (57), 183 (66), 120 (97)	75.21/75.33	6.61/6.95	4.18/3.61	9.24/n. d.
3b	$C_{34}H_{36}N_2OP_2$	550.62	551 (28), 474 (100), 460 (76)	74.17/74.25	6.59/6.88	5.09/4.89	11.25/n. d.
3c	$C_{38}H_{44}N_2OP_2$	606.73	607 (15), 529 (5), 487 (100), 369 (10), 337 (11)	75.23/75.46	7.31/7.98	4.62/4.40	10.21/n. d.
3d	$C_{32}H_{44}N_2OP_2$	534.66	534 (1), 452 (100), 183 (10)	71.89/71.67	8.29/8.15	5.24/5.10	11.59/11.47
3e	C ₃₃ H ₃₃ NOP ₂	521.57	521 (10), 444 (100), 199 (14), 183 (24)	75.99/75.98	6.38/6.63	2.69/2.49	11.88/n. d.
4b	$C_{29}H_{37}N_4OP$	488.61	489 (49), 473 (67), 407 (22), 369 (45), 269 (100), 250 (39)	71.29/72.00	7.63/8.43	11.47/10.74	6.34/n. d.
5a	C33H34N2OP2	536.59	536 (11), 459 (100), 183 (10)	73.87/73.98	6.39/6.39	5.22/5.26	11.54/11.71
5b	C35H38N2OP2	564.64	564 (18), 487 (100), 473 (77), 183 (14)	74.45/74.71	6.78/7.07	4.96/4.84	10.97/n. d.
5c	C ₃₉ H ₄₆ N ₂ OP ₂	620.75	620 (2), 543 (2), 501 (100), 269 (10)	75.46/75.50	7.47/7.65	4.51/4.49	9.98/n. d.
5d	C ₃₄ H ₃₅ NOP ₂	535.60	535 (8), 458 (100), 199 (10), 183 (13)	76.24/76.11	6.59/6.58	2.62/2.54	11.57/11.50
6a	C ₂₄ H ₂₇ N ₄ OP	418.47	418 (100), 341 (82), 337 (52), 305 (37), 269 (59), 199 (52), 183 (44), 151 (36)	68.88/69.19	6.50/6.68	13.39/12.77	7.40/n. d.
6b	$C_{30}H_{39}N_4OP$	502.64	502 (100), 487 (41), 421 (34), 383 (59)	71.69/71.74	7.82/8.06	11.15/11.02	6.16/6.18

yield a white precipitate of TICl. After stirring the reaction mixture at 0°C for 1 h, allylmagnesium bromide (0.35 mL of a 1 M solution in THF) was added dropwise. After stirring at 25°C for 10 h, the precipitate was filtered off through 2 cm of Kieselguhr and all volatiles were removed in vacuo. The orange-coloured residue was washed with portions of diethyl ether (10 mL, 2×) and then recrystallized from CH₂Cl₂/Et₂O to give 170 mg (0.22 mmol, 72%) of **16a·PF**₆·0.75CH₂Cl₂ as air-stable, yellow crystals suitable for X-ray structure analysis. ³¹P NMR (CD₂Cl₂): $\delta = -144.0$ (sept, ¹*J*_{PF} = 712 Hz, *P*F₆⁻), 13.0 (s, *P*Ph₂) ppm. For crystallographic data see Table 9; for further analytical data see Tables 11, 13, and 15.

Synthesis of 16b·PF₆: A solution of the *tripod* ligand EtOCH₂C(CH₂PPh₂)(CH₂pz)₂^[5e] (130 mg, 0.3 mmol) in EtOH (10 mL) was added rapidly to a suspension of $[Pd(\eta^3-C_3H_5)Cl]_2$ (55 mg, 0.15 mmol) in EtOH (10 mL). When a clear solution had formed (after about 30 min), solid KPF₆ (55 mg, 0.3 mmol) was added and within a few minutes the allyl complex precipitated. For

complete precipitation the reaction mixture was cooled overnight to -30° C and afterwards filtered. The resultant grey residue was washed with portions of diethyl ether (10 mL, 2×), dried in vacuo, and recrystallized from CH₂Cl₂/Et₂O to give 140 mg (0.19 mmol, 64%) of **16b**·**PF**₆ as air-stable, colourless crystals suitable for Xray structure analysis. ¹H NMR and ¹³C NMR: due to dynamic processes, no sharp signals could be detected. ³¹P NMR (CD₂Cl₂): $\delta = -144.2$ (sept, ¹J_{PF} = 710 Hz, PF₆⁻), 11.5 (s, PPh₂) ppm. For crystallographic data see Table 9; for further analytical data see Tables 11, 13, and 15.

Synthesis of 17: A solution of the *tripod* ligand 5a (270 mg, 0.5 mmol) in toluene (15 mL) was added to a solution of [*trans*-(PPh₃)₂Ni(Mes)Br] (390 mg, 0.5 mmol) in toluene (15 mL). After stirring the orange-coloured reaction mixture at 25°C for 10 h, the solvent was removed in vacuo. The crude product was suspended in petroleum ether (20 mL). After filtration of the suspension, the residue was washed carefully with portions of petroleum ether

Table 15. A	nalytical	data of	metal	complexes	7-19
-------------	-----------	---------	-------	-----------	------

Compd.	Formula	M [g/mol]	FAB-MS [m/z (%)]	C _{calcd.} /C _{found}	H _{calcd.} /H _{found}	N _{calcd.} /N _{found}	Pcalcd./Pfound	Cl _{calcd.} /Cl _{found}
7a	$C_{33}H_{34}Cl_2N_2NiOP_2$	666.18	664 (4), 629 (100), 594 (18), 459 (36) 409 (24) 364 (31) 351 (28)	59.50/59.14	5.14/5.34	4.21/4.07	9.30/8.94	10.64/10.73
7b	$C_{35}H_{38}Cl_2N_2NiOP_2$	694.24	692 (4), 657 (100), 622 (10), 487 (19), 473 (16)	60.55/60.28	5.52/5.58	4.04/3.90	8.92/8.86	10.21/10.19
7c	$C_{39}H_{46}Cl_2N_2NiOP_2$	750.35	713 (50), 677 (100), 502 (59), 409 (85), 351 (42)	62.43/62.39	6.18/6.50	3.73/3.56	8.26/n. d.	9.45/n. d.
7d	C ₃₄ H ₃₅ Cl ₂ NNiOP ₂	665.19	663 (4), 628 (100), 593 (18), 515 (35), 458 (34), 408 (15)	61.39/60.95	5.30/5.32	2.11/2.15	9.31/n. d.	10.66/n. d.
8	$C_{33}H_{34}Br_2N_2NiOP_2$	755.09	672 (69), 629 (54), 594 (17), 459 (25), 409 (15), 364 (18), 351 (15)	52.49/51.33	4.54/4.56	3.71/3.44	8.20/n. d.	21.16 ^[a] /n. d.
9a	$\mathrm{C}_{33}\mathrm{H}_{34}\mathrm{Cl}_{2}\mathrm{N}_{2}\mathrm{OP}_{2}\mathrm{Pd}$	713.92	677 (100), 642 (17), 459 (77), 457 (50), 351 (59)	55.52/54.58	4.80/4.93	3.92/3.79	8.68/8.53	9.93/10.00
9b	C35H38Cl2N2OP2Pd	741.97	705 (100), 670 (14), 487 (17)	56.66/56.32	5.16/5.13	3.78/3.64	8.35/8.44	9.56/9.52
10	$C_{33}H_{34}Cl_2N_2OP_2Pt$	802.58	801 (6), 766 (100), 731 (11), 634 (11), 459 (12)	49.39/49.50	4.27/4.55	3.49/3.35	7.72/7.35	8.83/9.20
11a	C ₂₄ H ₂₇ Br ₂ N ₄ NiOP	636.97	555 (28), 476 (100), 341 (10), 291 (28), 246 (64), 185 (38)	45.25/45.16	4.27/4.33	8.80/8.68	4.86/4.89	25.09 ^[a] /24.85 ^[b]
11b	C ₂₄ H ₂₇ Cl ₂ N ₄ NiOP	548.07	511 (88), 476 (76), 341 (26), 291 (49), 246 (100), 185 (47)	52.59/52.63	4.97/4.96	10.22/10.19	5.65/5.67	12.94/13.05
11c	C ₂₅ H ₂₉ Br ₂ N ₄ NiOP	651.00	569 (36), 490 (10), 431 (10), 355 (13), 327 (22), 305 (28), 281 (31), 246 (100)	46.12/45.56	4.49/4.55	8.61/8.44	4.76/4.72	24.55 ^[a] /25.70 ^[b]
12	C24H27Cl2N4OPPd	595.80	559 (100), 524 (28), 339 (81)	48.38/47.99	4.57/4.61	9.40/9.17	5.20/n. d.	11.90/n. d.
13	$\mathrm{C}_{30}\mathrm{H}_{39}\mathrm{Cl}_{2}\mathrm{N}_{4}\mathrm{NiOP}$	632.23	595 (100), 559 (58), 502 (40), 488 (26), 435 (23), 383 (46)	56.99/56.88	6.22/6.27	8.86/8.94	4.90/4.89	11.22/11.21
14	C14H18Br2N6Ni	488.84	407 (100), 328 (29)	34.40/34.36	3.71/3.73	17.19/16.97		32.69 ^[a] /32.43 ^[b]
16a·PF ₆	C ₃₆ H ₃₉ F ₆ N ₂ NiOP ₃	781.32	635 (100), 594 (14), 409 (15), 364 (10)	52.24 ^[c] /52.39	4.83 ^[c] /4.88	3.32 ^[c] /3.18	11.00 ^[c] /n. d.	_
16b·PF ₆	$C_{28}H_{34}F_6N_4OP_2Pd$	724.96	578 (100), 422 (35), 353 (30)	46.39/46.08	4.73/4.48	7.73/7.73	8.54/n. d.	_
17	$C_{42}H_{45}BrN_2NiOP_2$	794.37	792 (1), 673 (14), 594 (100), 409 (35), 364 (44)	63.50/63.32	5.71/5.73	3.53/3.52	7.80/7.67	10.06 ^[a] /n. d.
18	$\mathrm{C}_{34}\mathrm{H}_{37}\mathrm{ClN}_{2}\mathrm{OP}_{2}\mathrm{Pd}$	693.50	692 (3), 677 (93), 657 (41), 642 (15), 565 (10), 457 (100), 351 (39)	58.89/58.60	5.38/5.60	4.04/3.99	8.93/8.54	5.11/5.10
19·PF ₆	$\mathrm{C}_{51}\mathrm{H}_{53}\mathrm{F}_6\mathrm{N}_4\mathrm{NiOP}_3$	1003.60	857 (32), 595 (98), 476 (100), 381 (42)	59.69 ^[d] /58.53	5.24 ^[d] /5.25	5.42 ^[d] /5.51	8.99 ^[d] /n. d.	-

^[a] Br_{calcd}. ^[b] Br_{found}. ^[c] Calculated for 16a·PF₆·0.75CH₂Cl₂. ^[d] Calculated for 19·PF₆·0.35CH₂Cl₂.

(10 mL, 3×) to remove PPh₃, and dried in vacuo to give 285 mg (0.36 mmol, 72%) of **17** as a yellow, microcrystalline solid. ³¹P NMR (CD₂Cl₂): $\delta = -8.0$ (d, ²*J*_{PP} = 41 Hz, *P*Ph₂ *trans* to Mes⁻), 23.2 (d, ²*J*_{PP} = 41 Hz, *P*Ph₂ *trans* to Br⁻) ppm. For further analytical data see Tables 11, 13, and 15.

Synthesis of 18: A solution of the *tripod* ligand **5a** (270 mg, 0.5 mmol) in CH₂Cl₂ (15 mL) was added to a solution of [(η⁴-cod)PdMeCl] (135 mg, 0.5 mmol) in CH₂Cl₂ (15 mL). After stirring the colourless reaction mixture at 25°C for 10 h, the solvent was removed in vacuo. The crude product was suspended in petroleum ether (20 mL). After filtration of the suspension, the resultant grey residue was washed with portions of petroleum ether (15 mL, 3×) and dried in vacuo. Recrystallization from CH₂Cl₂/Et₂O afforded 295 mg (0.43 mmol, 85%) of **18** as colourless crystals suitable for X-ray structure analysis. ³¹P NMR (CD₂Cl₂): $\delta = -6.3$ (d, ²*J*_{PP} = 48 Hz, *P*Ph₂ *trans* to Me⁻), 25.7 (d, ²*J*_{PP} = 48 Hz, *P*Ph₂ *trans* to Cl⁻) ppm. For crystallographic data see Table 9; for further analytical data see Tables 11, 13, and 15.

Synthesis of 19·PF₆: A solution of the *tripod* ligand **6a** (210 mg, 0.5 mmol) in toluene (15 mL) was added to a solution of [*trans*-(PPh₃)₂Ni(Mes)Br] (390 mg, 0.5 mmol) in toluene (15 mL). After stirring the orange-coloured reaction mixture at 25°C for 10 h, the solvent was removed in vacuo and the solid residue was dissolved in THF (30 mL). Solid TIPF₆ (175 mg, 0.5 mmol) was added and

a precipitate of TIBr appeared immediately. The reaction mixture was stirred at 25°C for 3 h and then filtered through 2 cm of Kieselguhr to remove the TIPF₆. The solvent was removed in vacuo and the crude product was suspended in petroleum ether (20 mL). After filtration of the suspension, the residue was washed carefully with portions of petroleum ether (15 mL, $3\times$) to remove PPh₃, and dried in vacuo. Recrystallization from CH2Cl2/Et2O afforded 250 mg (0.25 mmol, 50%) of 19·PF₆ as yellow crystals suitable for X-ray structure analysis. ¹H NMR and ¹³C NMR: due to dynamic processes, no sharp signals could be detected. ³¹P NMR (CD₂Cl₂): $\delta =$ -144.0 (sept, ${}^{1}J_{\rm PF} = 712$ Hz, PF_{6}^{-}), -5.8 (d, ${}^{2}J_{\rm PP} = 272$ Hz, PPh_3), 7.9 (d, ${}^{2}J_{PP} = 280$ Hz, PPh_3), 19.4 (d, ${}^{2}J_{PP} = 280$ Hz, PPh_2), 21.7 (d, ${}^{2}J_{PP} = 272$ Hz, PPh₂) ppm. For this compound a ${}^{31}P$ NMR pattern of two doublets corresponding to the two P donors is expected. Instead, two such patterns are observed ($\delta = -5.8/21.7$ and 7.9/19.4 ppm). The large coupling constants are in accord with a trans position of the two P donors in each case. There are obviously two isomers, and only the structure of the one characterized by Xray crystallography is known. Attempts to isolate the other isomer have, so far, failed. For crystallographic data see Table 9; for further analytical data see Tables 11, 13, and 15.

Acknowledgments

We are indebted to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support. One of us

R. Faissner, G. Huttner, E. Kaifer, P. Kircher, P. Rutsch, L. Zsolnai

(R. F.) is indebted to the local Graduiertenkolleg "Selektivität in der organischen und metallorganischen Synthese und Katalyse" for a scholarship. The technical support of T. Jannack (mass spectrometry) and the Microanalytical Laboratory of the Institute of Organic Chemistry is gratefully acknowledged.

- Phosphorus donors: ^[1a] H. Heidel, G. Huttner, G. Helmchen, Z. Naturforsch., Teil B 1993, 48, 1681. ^[1b] T. Seitz, A. Muth, G. Huttner, Chem. Ber. 1994, 127, 1837. ^[1c] T. Seitz, A. Muth, G. Huttner, Z. Naturforsch., Teil B 1995, 50, 1045. ^[1d] H. Heidel, G. Huttner, L. Zsolnai, Z. Naturforsch., Teil B 1995, 50, 729.
- Oxygen donors: ^[2a] J. Dale, S. B. Fredriksen, Acta Chem. Scand. 1992, 46, 271. ^[2b] T.-Y. Hsieh, M.-C. Cheng, S.-M. Peng, S.-T. Liu, J. Chem. Soc., Dalton Trans. 1994, 3499. ^[2c] A. Muth, G. Reinhard, G. Huttner, T. Seitz, T. Klein, L. Zsolnai, Z. Naturforsch., Teil B 1994, 49, 889.
- ^[3] Sulfur donors: ^[3a] S.-T. Liu, H.-E. Wang, M.-C. Cheng, S.-M. Peng, J. Organomet. Chem. **1989**, 376, 333. ^[3b] S.-T. Liu, C.-H. Yieh, H.-J. Lu, Phosphorus, Sulfur Silicon **1989**, 44, 261. ^[3c] S.-T. Liu, C.-L. Tsao, M. C. Cheng, S. M. Peng, Polyhedron **1990**, 21, 2579. ^[3d] S.-T. Liu, K.-J. Liu, Inorg. Chem. **1990**, 29, 4576. ^[3e] S.-C. Tsai, H.-E. Wang, C.-T. Huang, L.-M. Yiin, S.-T. Liu, Chem. Ber. **1995**, 128, 151. ^[3f] G. Reinhard, R. Soltek, G. Huttner, A. Barth, O. Walter, L. Zsolnai, Chem. Ber. **1996**, 129, 97. ^[3g] R. Soltek, G. Huttner, Eur. J. Inorg. Chem. **1998**, 1417. ^[3h] R. Soltek, G. Huttner, L. Zsolnai, A. Driess, Inorg. Chim. Acta **1998**, 269, 143. ^[3i] P. Schober, R. Soltek, G. Huttner, L. Zsolnai, K. Heinze, Eur. J. Inorg. Chem. **1998**, 1407.
- [4] Cp donors: ^[4a] B. Antelmann, U. Winterhalter, G. Huttner, B. C. Janssen, J. Vogelgesang, J. Organomet. Chem. 1997, 545-546, 407. ^[4b] B. Antelmann, G. Huttner, U. Winterhalter, J. Organomet. Chem. 1998, 553, 433. ^[4c] J. Vogelgesang, G. Huttner, E. Kaifer, P. Kircher, P. Rutsch, S. Cunskis, Eur. J. Inorg. Chem. 1999, 2187. ^[4d] J. Vogelgesang, A. Frick, G. Huttner, P. Kircher, Eur. J. Inorg. Chem. 2001, 949.
- ^[5] Nitrogen donors: ^[5a] S.-T. Liu, C.-Y. Liu, J. Org. Chem. 1992, 57, 6079. ^[5b] H.-E. Wang, C.-Y. Liu, M.-C. Cheng, S.-M. Peng, S.-T. Liu, *Phosphorus, Sulfur Silicon* 1992, 69, 201. ^[5c] S.-T. Liu, C.-H. Yieh, H.-P. Dai, *Proc. Natl. Sci. Counc.* 1995, 19, 1. ^[5d] A. Jacobi, G. Huttner, U. Winterhalter, *Chem. Ber./Recueil* 1997, 130, 1279. ^[5e] A. Jacobi, G. Huttner, U. Winterhalter, S. Cunskis, *Eur. J. Inorg. Chem.* 1998, 675. ^[5t] R. Faissner, G. Huttner, E. Kaifer, P. Rutsch, *Eur. J. Inorg. Chem.* 2003, 1681–1693.

- [6] A. Jacobi, G. Huttner, U. Winterhalter, J. Organomet. Chem. 1998, 571, 231.
- [7] J. Karas, G. Huttner, K. Heinze, P. Rutsch, L. Zsolnai, Eur. J. Inorg. Chem. 1999, 405.
- ^[8] ^[8a] T. Seitz, G. Huttner, M. Büchner, Z. Naturforsch., Teil B 1994, 49, 1813. ^[8b] T. Seitz, A. Muth, G. Huttner, T. Klein, O. Walter, M. Fritz, L. Zsolnai, J. Organomet. Chem. 1994, 469, 155.
- [9] V. Schulz, A. Frick, G. Huttner, Eur. J. Inorg. Chem. 2002, 3111.
- ^[10] A. Frick, V. Schulz, G. Huttner, *Eur. J. Inorg. Chem.* 2002, 3129.
- ^[11] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. **1984**, 1349.
- [12] [12a] G. R. van Hecke, W. DeW. Horrocks Jr., *Inorg. Chem.* **1966**, 5, 1968. ^[12b] L. H. Pignolet, W. DeW. Horrocks Jr., R. H. Holm, *J. Am. Chem. Soc.* **1970**, *92*, 1855. ^[12c] G. N. La Mar, E. O. Sherman, *J. Am. Chem. Soc.* **1970**, *92*, 2691.
- ^[13] ^[13a] G. Binsch, H. Kessler, Angew. Chem. 1980, 92, 445; Angew. Chem. Int. Ed. Engl. 1980, 19, 411. ^[13b] K. Il'yasov, O. Nedopekin, WIN-DYNAMICS 1.0 Release 951220, NMR Dynamic Spectra Simulation and Iteration, Bruker-Franzen Analytik GmbH, Bremen, Germany (http://www.bruker.de).
- ^[14] Organikum, Deutscher Verlag der Wissenschaften, Berlin, 1990.
- ^[15] P. Fresenius, K. Görlitzer, in: *Organisch-chemische Nomenklatur*, Wissenschaftliche Verlagsgesellschaft, Stuttgart, **1998**.
- ^[16] DENZO-SMN, Data Processing Software, Nonius **1998** (http://www.nonius.com).
- [17] [17a] G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, University of Göttingen, 1997. [17b]
 G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, 1997 (http://shelx.uni-ac.gwdg.de/shelx/index.html). [17c] International Tables for X-ray Crystallography, Kynoch Press, Birmingham, U.K., 1974, vol. 4.
- ^[18] L. Zsolnai, G. Huttner, *XPMA*, University of Heidelberg, **1994** (http://www.rzuser.uni-heidelberg.de/~il1/laszlo/xpm.html).
- [19] R. Soltek, G. Huttner, WinRay-32, University of Heidelberg, 1998 (http://www.uni-heidelberg.de/institute/fak12/AC/huttner/ html/winray.html).
- [^{20]} [^{20a]} R. E. Ireland, D. M. Walba, Org. Synth. Coll. Vol. 1988, 6, 567.
 [^{20b]} K. Issleib, H. O. Fröhlich, Z. Naturforsch., Teil B 1959, 14, 349.
- ^[21] J. B. Lambert, J. H. So, J. Org. Chem. 1991, 56, 5960.
- [22] R. M. Ceder, J. Cubillo, G. Muller, M. Rocamora, J. Organomet. Chem. 1992, 429, 391.
- ^[23] R. E. Rülke, J. E. Ernsting, A. L. Spek, C. J. Elsevier, P. W. N. M. van Leeuwen, K. Vrieze, *Inorg. Chem.* **1993**, *32*, 5769. Received September 23, 2002