Preliminary Communication

Synthesis of neoglycolipids containing a mucin-type core unit

Ryuichi Horie, Kazutoshi Hara and Kouichi Nakano

Biotechnology Research Laboratory, TOSOH Corporation, Hayakawa, Ayase, Kanagawa 252 (Japan) (Received January 21st, 1992; accepted March 23rd, 1992)

The cores of mucin-type carbohydrate chains have unique structures which have not been found in glycolipids. Typical structures of this type are T, Tn, and sialyl Tn antigens, which are considered to be tumor-associated antigens¹⁻⁴. In contrast with the generation of monoclonal antibodies to glycolipids, it is difficult to produce specific antibodies against the carbohydrate portions of glycoproteins. To obtain monoclonal antibodies against mucin-type carbohydrate chains we established a synthetic route to neoglycolipid⁵ antigens, such as 1 and 2, which were designed to carry a mucin-type core unit on a ceramide foundation.

Boron trifluoride etherate-promoted glycosylation⁶ of the 2-azido-2-deoxy-D-galactose derivative⁷ 4 with lactosamine donor 3 in 1,2-dichloroethane was performed (Scheme 1) in the presence of activated, powdered molecular sieves

0008-6215/92/\$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

Correspondence to: Mr. R. Horie, Biotechnology Research Laboratory, TOSOH Corporation, Hayakawa, Ayase, Kanagawa 252 (Japan).

Scheme 1.

AW-300 at -20° to give an 84% yield of 5, $\delta_{\rm H}^*$ 5.51 (d, 1 H, J 8.3 Hz, H-1b), 5.46 (s, 1 H, PhC*H*), 4.59 (d, 1 H, J 7.8 Hz, H-1c), and 4.30 (d, 1 H, J 7.8 Hz, H-1a); $m/z \,^{**}$ 1236.8 (M⁺). Removal of the benzylidene group⁸ of 5 with CF₃CO₂H-CH₂Cl₂ gave an 80% yield of 6, $\delta_{\rm H}$ 5.49 (d, 1 H, J 8.8 Hz, H-1b), 4.56 (d, 1 H, J 7.8 Hz, H-1c), and 4.32 (d, 1 H, J 7.3 Hz, H-1a); m/z 1148.8 (M⁺), which was converted into 7 in two steps (*i*, hydrazine hydrate–EtOH⁹; *ii*, Ac₂O–pyridine, 95% overall), $\delta_{\rm H}$ 5.45 (d, 1 H, J 9.5 Hz, N*H*), 4.55 (d, 1 H, J 7.9 Hz, H-1b), 4.54 (d, 1 H, J 7.9 Hz, H-1c), and 4.31 (d, 1 H, J 7.7 Hz, H-1a); m/z 1167 (M + Na)⁺. The TBDPS protective group was removed with Bu₄NF in the presence of acetic acid¹⁰ to give an anomeric mixture 8, $\delta_{\rm H}$ 4.65 (d, 1 H, J 6.8 Hz, H-1b), 4.07 (d, 1 H, J 8.6 Hz, H-1a β), and 4.54 (d, 1 H, J 8.3 Hz, H-1c); m/z 906.9 (M⁺), which on treatment with 1,8-diazabicyclo[5.4.0]undec-7-ene and CCl₃CN afforded a trisaccharide imidate 9 (54% overall yield from 7), $\delta_{\rm H}$ 8.76 (s, 1 H, C=NH), 6.44 (d, 1 H, J 3.4 Hz, H-1a α), 4.67 (d, 1 H, J 8.3 Hz, H-1b), and 4.52 (d, 1 H, J 7.8 Hz, H-1c). The glycosylation of protected ceramide 10 with 9 was promoted with

^{*} Values of $\delta_{\rm H}$ were measured for solutions in CDCl₃ unless noted otherwise.

^{**} Values of m/z measured by FD-MS.

trimethylsilyl triflate in 1,2-dichloroethane at room temperature to give a mixture of 11α and 11β . The ceramide 10 was obtained in 4 steps from natural ceramide (type IV, purchased from Sigma Chemical Co., St. Louis, MO): *i*, tritylation; *ii*, benzoylation; *iii*, removal of the trityl group; and *iv*, reduction of the double bound by hydrogenation. As judged from the intensities of the NMR signals of H-1a (11 α : $\delta_{\rm H}$ 4.79, J 3.4 Hz; 11 β : 4.02, 7.8 Hz), the ratio of the α and β glycosides was 2:3. The anomers were not separated in this step. The azido groups of compounds 11α and 11 β were transformed into acetamido groups in two steps (i, NaBH₄-NiCl₂) in ethanol¹¹; *ii*, Ac₂O-pyridine) to give compounds 12 and 13. These were separated by silica gel-column chromatography to give 17% of 12 and 24% of 13 from 10. Compound 12 showed $\delta_{\rm H}$ 7.32 (d, 1 H, CerNH), 4.70 (d, 1 H, J 7.8 Hz, H-1b), 4.63 (d, 1 H, J 3.9 Hz, H-1a), and 4.54 (d, 1 H, J 7.8 Hz, H-1c); 13 gave $\delta_{\rm H}$ 6.88 (d, 1 H, J 8.1 Hz, CerNH), 4.82 (d, 1 H, J 8.3 Hz, H-1a), 4.51 (d, 1 H, J 7.8 Hz, H-1b), and 4.51 (d, 1 H, J 7.8 Hz, H-1c). Deprotection of both compounds 12 and 13 was carried out by treatment with NaOMe, to give compound 1 and the β isomer 14. The structures of 1 and 14 were assigned from the reaction sequence, and established by their NMR data (pyridine- d_6 -D₂O, 50°): 1, δ_H 5.47 (d, 1 H, J 8.3 Hz, H-1b), 5.36 (d, 1 H, J 3.9 Hz, H-1a), and 4.97 (d, 1 H, J 7.8 Hz, H-1c); 14, $\delta_{\rm H}$ 5.52 (d, 1 H, J 8.3 Hz, H-1b), 5.16 (d, 1 H, J 8.3 Hz, H-1a), and 4.98 (d, 1 H, J 7.8 Hz, H-1c).

For the synthesis of the trisaccharide glycolipid 2 (Scheme 2), the 4,6-unprotected 2-azido-2-deoxygalactose derivative 15, obtained from 4 in two steps (i, j)benzoyl chloride-pyridine; ii, CF₃CO₂H-CH₂Cl₂), was used as the acceptor. This glycosylation was promoted with boron trifluoride etherate in the presence of activated, powdered molecular sieves AW-300 in 1,2-dichloroethane at room temperature to give a 29% yield of 16, $\delta_{\rm H}$ 5.33 (d, 1 H, J 8.8 Hz, H-1b), 4.70 (dd, 1 H, J_{3,4} 2.9 Hz, H-3a), 4.54 (d, 1 H, J 7.8 Hz, H-1c), and 4.40 (d, 1 H, J 7.8 Hz, H-1a). The 4-O-glycosylated regioisomer was not found in this reaction mixture. The conversion of 16 into glycotriosyl donor 19 was carried out (56% overall yield) as described for the preparation of 9 from 6, via 17, $\delta_{\rm H}$ 5.22 (dd, 1 H, $J_{4.5}$ 0.5 Hz, H-4a), 5.13 (d, 1 H, J 10.3 Hz, NH), 4.66 (dd, 1 H, J_{3.4} 2.9 Hz, H-3a), 4.48 (d, 1 H, J 7.8 Hz, H-1a), 4.45 (d, 1 H, J 7.8 Hz, H-1c), and 4.27 (d, 1 H, J 7.8 Hz, H-1b); m/z 1144.7 (M⁺); and 18, $\delta_{\rm H}$ 4.85 (d, 1 H, J 6.8 Hz, H-1b), 4.72 (d, 1 H, J 8.6 Hz, H-1a), and 4.48 (d, 1 H, J 8.3 Hz, H-1c); m/z 906.9 (M⁺). Compound 19 showed $\delta_{\rm H}$ 9.30 (s, 0.5 H, C=NH), 8.78 (s, 0.5 H, C=NH), 6.40 (d, 0.5 H, J 3.4 Hz, H-1a α), and 5.65 (d, 0.5 H, J 7.8 Hz, H-1a β). The coupling of 19 and protected ceramide 10 was promoted with trimethylsilyl triflate in 1,2-dichloroethane at room temperature to give a mixture of 20α and 20β , which were not separated in this step. As judged from the intensities of the NMR signals of H-1a (20 α : $\delta_{\rm H}$ 4.93, J 3.9 Hz; **20** β : 4.17, 8.3 Hz), the ratio of the α and β glycosides was 4:3. The azido groups of compounds 20α and 20β were converted into acetamido groups, and the products 21 and 22 were separated by silica gel-column chromatography to give 11% of 21 and 9% of 22 from 10. The NMR data were: 21, $\delta_{\rm H}$ 6.80 (d, 1 H, J 9.8

Scheme 2.

Hz, CerN*H*), 4.55 (d, 1 H, *J* 3.4 Hz, H-1a), 4.48 (d, 1 H, *J* 6.8 Hz, H-1b), and 4.47 (d, 1 H, *J* 7.3 Hz, H-1c); **22**, $\delta_{\rm H}$ 7.10 (d, 1 H, *J* 8.1 Hz, CerN*H*), 4.71 (d, 1 H, *J* 8.3 Hz, H-1a), 4.57 (d, 1 H, *J* 7.3 Hz, H-1b), and 4.49 (d, 1 H, *J* 7.8 Hz, H-1c). Deprotection of both **21** and **22** was achieved by treatment with NaOMe, to give compound **2** and the β isomer **23**. The structures of **2** and **23** were supported by their NMR data (2:1 CDCl₃–CD₃OD): **2**, $\delta_{\rm H}$ 4.52 (d, 1 H, *J* 3.4 Hz, H-1a), 4.19 (d, 1 H, *J* 7.8 Hz, H-1b), and 4.11 (d, 1 H, *J* 7.8 Hz, H-1c); **23**, $\delta_{\rm H}$ 4.20 (d, 1 H, *J* 7.3 Hz, H-1b), 4.09 (d, 1 H, *J* 7.3 Hz, H-1c), and 4.07 (d, 1 H, *J* 7.3 Hz, H-1a).

In conclusion, we have established a facile route to the synthesis of mucin-type neoglycolipids 1 and 2 by using the imidates 9 and 19 as key intermediates.

REFERENCES

- 1 G.F. Springer, P.R. Desai, and I. Banatwala, Naturwissenschaften, 61 (1974) 457-458.
- 2 A.F.R. Rahman and B.M. Longenecker, J. Immunol., 129 (1982) 2021–2024; B.M. Longenecker, A.F.R. Rahman, J.B. Leigh, R.A. Purser, A.H. Greenberg, D.J. Willans, O. Keller, P.K. Petrik, T.Y. Thay, M.R. Suresh, and A.A. Noujaim, Int. J. Cancer, 33 (1984) 123–129.
- 3 S. Hirohashi, H. Clausen, T. Yamada, Y. Shimosato, and S. Hakomori, *Proc. Natl. Acad. Sci. U.S.A.*, 82 (1985) 7039–7043; D.J. Roxby, A.A. Morley, and M. Burpee, *Br. J. Haematol.*, 67 (1987) 153–156.

- 4 M. Nuti, Y.A. Teramoto, R. Mariani-Costantini, P.H. Hand, D. Colcher, and J. Schlom, Int. J. Cancer, 29 (1982) 539-545; A. Kurosaka, S. Fukui, H. Kitagawa, H. Nakada, Y. Numata, I. Funakoshi, T. Kawasaki, and I. Yamashina, FEBS Lett., 215 (1987) 137-139; T. Kjeldsen, H. Clausen, S. Hirohashi, T. Ogawa, H. Iijima, and S. Hakomori, Cancer Res., 48 (1988) 2214-2220.
- 5 P.W. Tang, H.C. Gool, M. Hardy, Y.C. Lee, and T. Feizi, *Biochem. Biophys. Res. Comm.*, 132 (1985) 474-480.
- 6 G. Grundler and R.R. Schmidt, Carbohydr. Res., 135 (1985) 203-218.
- 7 Y. Nakahara, H. Iijima, S. Sibayama, and T. Ogawa, Tetrahedron Lett., 31 (1990) 6897-6900.
- 8 R.M. Ratcliffe, D.A. Baker, and R.U. Lemieux, Carbohydr. Res., 93 (1981) 35-41.
- 9 R.U. Lemieux, T. Takeda, and B.Y. Chung, ACS Symp. Ser., 39 (1976) 90-115.
- 10 W. Kinzy and R.R. Schmidt, Liebigs Ann. Chem., (1985) 1537-1545.
- 11 H. Paulsen and J.-P. Hölck, Carbohydr. Res., 109 (1982) 89-107; H. Paulsen and V. Sinnwell, Chem. Ber., 111 (1978) 879-889.