----- ---- ---- ----

---- -----

Note

Synthesis of α -(2 \rightarrow 9)-disialic acid*

CHIKAKO SHIMIZU AND KAZUO ACHIWA' Shizuoka College of Pharmacy, 2-2-1 Oshika, Shizuoka 422 (Japan) (Received March 10th. 1987; accepted for publication in revised form. April 24th. 1987)

Oligosialyl structures have been found to occur in glycoproteins, glycolipids, and bacterial polysaccharides². The α -(2 \rightarrow 8) and α -(2 \rightarrow 9) linkages between sialic acids are present in the sialic acid polysaccharide antigens of pathogenic bacteria³. Recently, the α -(2 \rightarrow 9)-linked polysialyl phosphoglycerolipid structure (1) was proposed for the meningococcal serogroup C polysaccharide⁴.

We now describe a regioselective synthesis of α -(2 \rightarrow 9)-disialic acid (3) as a key intermediate for the synthesis of oligosially phosphoglycerolipids (1). A similar compound (2) was synthesized by Ogawa and Sugimoto⁵.

The allyl compound (4)[‡] was stereoselectively prepared from the chloride⁶ (9) in the presence of silver salicylate and 2-propenol. Deacetylation of 4 with 0.1M sodium methoxide in methanol afforded the 4,7,8,9-tetrahydroxy derivative (5)[‡] [81.4%; m.p. 133–.135°, $[\alpha]_{\overline{D}}^{24}$ –3.26° (*c* 1.02, EtOH)]. Treatment of 5 with acetone plus IR-120 (H⁺) ion-exchange resin gave the 8,9-isopropylidene derivative (6)[‡] [81.8%; m.p. 173–175°, $[\alpha]_{\overline{D}}^{22}$ –9.40° (*c* 1.00, CHCl₃)].

Regioselective benzylation of **6** was achieved with benzyl bromide, silver oxide, and tetrabutylammonium iodide in 1,2-dichloroethane, to yield the 7-O-benzyl derivative (**7**)[‡] [58.4%; m.p. 122–125°, $[\alpha]_D^{2^3} + 12.5^\circ$ (*c* 1.00, CHCl₃)]. The isopropylidene group of **7** was removed by heating in 80% AcOH to give a glycosyl acceptor, the 4,8,9-trihydroxy derivative (**8**)[‡] [93.8%; amorphous, $[\alpha]_D^{2^2} + 9.28^\circ$ (*c* 1.02, CHCl₃)].

Glycosation of **8** with the chloride **9** in the presence of Hg(CN)₂-HgBr₂-molecular sieves 4A afforded the $(2\rightarrow 9)$ -disialyl derivatives $(10\alpha:10\beta = 2:1)$, which were separated by p.l.c.; total yield 82.9%; $10\alpha^{\ddagger}: m.p. 96-99^{\circ}, [\alpha]_{D}^{2^{2}} - 6.1^{\circ}$ $(c 1.0, CHCl_{3}); \delta_{H}$ (CDCl₃): 2.62 (dd, 1 H, J 4.4, 12.9 Hz, H-3e); $10\beta^{\ddagger}: m.p. 92-95^{\circ}, [\alpha]_{D}^{2^{2}} - 3.5^{\circ}$ (c 0.8, CHCl₃); δ_{H} (CDCl₃): 2.50 (dd, 1 H, J 6.1, 13.9 Hz, H-3e).

^{*}Neuraminic Acid and Related Compounds, Part II. For Part I, see ref. 1.

[†]To whom correspondence should be addressed.

[‡]Satisfactory analytical and spectral data were obtained for these compounds.

O-Deallylation of the disialyl compound 10α was performed as follows. The allyl group of 10 was isomerized with $[(COD)Ir-(PMePh_2)_2]^+PF_4^-$ catalyst into the 1-propenyl compound, which was then saponified with THF-H₂O-I₂, to give the 2-hydroxy compound 11^{\ddagger} [39%; m.p. 131-133°, $[\alpha]_D^{19} - 14.1^{\circ}$ (c 0.28, CHCl₃)].

The use of Pd(OH)₂ in the hydrogenolysis of **11** afforded the 7-hydroxy derivative (**12**)[‡] [86%; m.p. 146–148°, $[\alpha]_D^{19} -31.7^\circ$ (*c* 0.2, CHCl₃)]. O-Deacetylation of **12**, followed by saponification of the methyl ester groups, yielded the potassium salt of (2 \rightarrow 9)-disialic acid (**3**)[‡] [94%; m.p. 162–165°, $[\alpha]_D^{19} -14^\circ$ (*c* 0.14, H₂O)].

Use of the 7-O-benzyl-8-hydroxy derivative (7), instead of the 7,8-di-O-acetyl derivative⁵, gave the $(2\rightarrow 9)$ -linked compounds in surprisingly high yield.

REFERENCES

1 C. SHIMIZU, K. IKEDA, AND K. ACHIWA, Chem. Pharm. Bull., (1987) in press.

2 A. P. CORFIELD AND R. SCHAUER, in R. SCHAUER (Ed.), Sialic Acids, Springer-Verlag, Wien, 1982, pp. 5-50.

- 3 A. K. BHATTACHARJEE, H. J. JENNINGS, C. P. KENNY, A. MARTIN, AND I. C. P. SMITH, J. Biol. Chem., 250 (1975) 1926–1932; H. JENNINGS AND A. K. BHATTACHARJEE, Carbohydr. Res., 55 (1977) 105–112; W. EGAN, T.-Y. LUI, D. DOROW, J. S. COHEN, J. D. ROBBINS, E. C. GOTSCHLICH, AND J. B. ROBBINS, Biochemistry, 16 (1977) 3687–3692.
- 4 E. C. GOTSCHLICH, B. A. FRASFR, O. NISHIMURA, J. B. ROBBINS, AND T.-Y. LUI, J. Biol. Chem., 256 (1981) 8915-8921.
- 5 T. OGAWA AND M. SUGIMOTO, Carbohydr. Res., 128 (1984) CI-C4.
- 6 R. KUHN, P. LUTZ, AND D. L. MACDONALD, Chem. Ber., 99 (1966) 611-617.