#### References

- 1 M. Simonyi, Med. Res. Rev. 4, 359 (1984).
- 2 T. Alebić-Kolbah, S. Rendić, Z. Fuks, V. Šunjić and F. Kajfež. Acta Pharm. Jugosl. 29, 53 (1979).
- 3 S. Allenmark, Chem. Scr. 20, 5 (1982).
- 4 W.E. Müller and U. Wollert, Mol. Pharmacol. 11, 52 (1975).
- 5 T. Alebić-Kolbah, F. Kajfež, S. Rendić, V. Šunjić, A. Konowal and G. Snatzke, Biochem. Pharmacol. 28, 2457 (1979).
- 6 G. Gratton, S. Rendić, V. Šunjić and F. Kajfež, Acta Pharm. Jugosl. 29, 119 (1979).
- 7 A. Konowal, G. Snatzke, T. Alebić-Kolbah, F. Kajfež, S. Rendić and V. Šunjić, Biochem. Pharmacol. 28, 3109 (1979).
- 8 I. Fitos, M. Simonyi, Zs. Tegyey, L. Ötvös, J. Kajtár and M. Kajtár, J. Chromatogr. 259, 494 (1983).
- 9 I. Fitos, Zs. Tegyey, M. Simonyi, I. Sjöholm, T. Larsson and C. Lagercrantz, Biochem. Pharmacol. 35, 263 (1986).
- 10 V. Šunjić, F. Kajfež, I. Štromar, N. Blazević and D. Kolbah, J. Heterocycl. Chem. 10, 591 (1973).
- 11 S.C. Bell, T.S. Sulkowski, G. Gochman and S.C. Childress, J. Org. Chem. 27, 562 (1962).
- 12 C. Lagercrantz, T. Larsson and H. Karlsson, Anal. Biochem. 99, 352 (1979).
- 13 S. Wanwimolruk, D.J. Birkett and P.M. Brooks, Mol. Pharmacol. 24, 458 (1983).

[Ph 119]

Arch. Pharm. (Weinheim) 319, 749-755 (1986)

## Antiphlogistische 2.3-Dihydro-1H-pyrrolizine, 10. Mitt.+)

# 6.7-Diarylsubstituierte 1- und 3-Pyrrolizinone (1-DAPON und 3-DAPON)

Gerd Dannhardt\* und Ludwig Steindl

Naturwissenschaftliche Fakultät IV – Chemie und Pharmazie – der Universität Regensburg, Postfach 397, D 8400 Regensburg 1 Eingegangen am 10. Juli 1985

Bei der SeO<sub>2</sub>-Oxidation von 6.7-Diphenyl-2.3-dihydro-1*H*-pyrrolizin entstehen das 1-Pyrrolizinon 2 und das zugehörige Selenid 3. Die Struktur der 1-Oxoverbindung 2 wird anhand von Folgereaktionen, spektralen Daten und durch Gegenüberstellung mit dem 3-Pyrrolizinon 10, das auf unabhängigem Wege synthetisiert wurde, gesichert.

0365-6233/86/0808-0749 \$ 02.50/0

© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1986

# Antiinflammatory 2,3-Dihydro-1*H*-pyrrolizines, X: 6,7-Diaryl Substituted 1- and 3-Pyrrolizinones (1-DAPON and 3-DAPON)

Oxidation of 2,3-dihydro-6,7-diphenyl-1*H*-pyrrolizine with  $SeO_2$  leads to the pyrrolizinone 2 and the corresponding selenide 3. Spectral data as well as chemical reactions prove the structure of 2. An independent synthesis of the isomeric 3-pyrrolizinone 10 is described.

Durch Oxidation lassen sich 6.7-Diaryl-2.3-dihydro-1H-pyrrolizine funktionalisieren<sup>1)</sup> bzw. werden zu Pyrrolidon-Derivaten abgebaut<sup>2)</sup>.



Intensiv dunkelrot gefärbte Reaktionslösungen resultieren bei der Umsetzung von 1 mit dem 4-fach molaren Überschuß SeO2. Nach Abtrennung metallischen Selens isolierten wir als Hauptprodukt das in rubinroten Nadeln kristallisierende 1-Pyrrolizinon 2. Das IR-Spektrum zeigt eine Carbonylabsorption bei 1745 cm<sup>-1</sup>, ein UV-Maximum hoher Extinktion bei 452 nm spricht für die Konjugation des Enonsystems mit dem Pyrrolteil des Moleküls. Die spektralen Daten belegen eine Pyrrolizinonstruktur, eine Unterscheidung vom isomeren 3-Pyrrolizinon 10 ist damit jedoch nur unter Vorbehalt möglich. Die Strukturzuordnung zugunsten von 2 beruht auf folgender Überlegung: Das <sup>1</sup>H-NMR-Spektrum zeigt neben den Resonanzsignalen der Phenylreste zwei Multipletts bei  $\delta = 5.94 - 6.12$  bzw. 6.92 - 7.06 ppm, die zwei (H-2/H-5) bzw. einem (H-3) Vinyl-Proton entsprechen. H-3 tritt als das im Enonteil  $\beta$ -ständige H-Atom bei tieferem Feld als H-2 in Resonanz<sup>3)</sup>, das Aufspaltungsmuster (H-3) folgt aus der vicinalen Kopplung mit H-2 bzw. Azaallylkopplung mit H-5. Für C-1/C-2-Protonen von 10 wäre dagegen ein AB-Spin-System mit einer Kopplungskonstanten von etwa 6Hz zu erwarten<sup>4)</sup>. Die Umwandlung Dihydropyrrolizin-Pyrrolizinon wird durch das <sup>13</sup>Coff-resonance Spektrum bestätigt: Es zeigt für C-2, C-3, C-5 je ein Dublett bei  $\delta = 115.25$ ,

118.51 und 111.62 ppm, das Carbonyl-C-Atom tritt als Singulett bei  $\delta = 165.20$  ppm in Resonanz. Zur Unterscheidung der Isomere 2/10 sind diese Daten wenig hilfreich, da ähnliche <sup>13</sup>C-Verschiebungen für 3-Pyrrolizinon publiziert sind<sup>4</sup>). Die Struktur von 2 wurde daher unabhängig durch die nachfolgend beschriebene Synthese von 10 gesichert.

Zweites Produkt neben 2 ist das Selenid 3, das im 70 eV-EIMS durch einen intensiven Molpeak bei m/z 620 und nachfolgenden <sup>80</sup>Se-Verlust charakterisiert wird. Das UV-Maximum bei 470 nm (CHCl<sub>3</sub>) ist im Vergleich zu 2 deutlich bathochrom verschoben, die IR-Carbonylabsorption erfolgt bei annähernd gleicher Wellenzahl (1740 cm<sup>-1</sup>). Das <sup>1</sup>H-NMR-Spektrum zeigt ein A<sub>2</sub>B<sub>2</sub>-System der Protonen an C-5, C-5'/C-3, C-3' bei  $\delta$  = 5.92 und 6.95 ppm. Der Wert der Kopplungskonstanten J<sub>AB</sub> = 2.7 Hz belegt die Azaallylkopplung H-3/H-5<sup>4</sup>) und schließt nach den bei 2 diskutierten NMR-Daten eine Überbrückung zwischen C-5/C5' aus. Vergleichbare Se-organische Verbindungen sind als Nebenprodukte der SeO<sub>2</sub>-Oxidationen u.a. von Olefinen und Ketonen beschrieben<sup>5</sup>). Die Bildung des Pyrrolizinons 2 formulieren wir über die Hydroxylierung an C-3 und nachfolgende H<sub>2</sub>O-Abspaltung<sup>6</sup>) zum 1*H*-Pyrrolizin, aus dem analog dem *Sharpless*-Mechanismus<sup>7</sup> durch eine En-Reaktion mit nachfolgender 2.3-sigmatroper Umlagerung das 1-Pyrrolizin 2 entsteht.

Das 1-Pyrrolizinon 2 ist noch ausreichend reaktiv für S<sub>E</sub>-Reaktionen im Pyrrolteil. Nach *Vilsmeier*-Formylierung wird der Aldehyd 4 erhalten, dessen Struktur durch die C=O-Valenzschwingungsbanden bei 1745 und 1685 cm<sup>-1</sup>, sowie das AB-System der C-2/C-3-Protonen im <sup>1</sup>H-Spektrum bei  $\delta = 6.52/7.29$  ppm (J<sub>AB</sub> = 5.6 Hz) und das Resonanzsignal des Formylprotons bei  $\delta = 10.60$  ppm belegt wird. Die im Vergleich zu 2 erweiterte Konjugationsmöglichkeit kommt in einer geringfügigen Rotverschiebung des langwelligen UV-Maximums nach 461 nm zum Ausdruck. Im EI-MS findet sich ein intensives Molekülion, das nach Eliminierung eines Formylradikals CO abspaltet (m/z 242, 50 %, s. Exp. Teil).



Nach Literaturangaben<sup>8,9)</sup> erfolgt die katalytische Hydrierung von 1- und 3-Pyrrolizinonen mit Pd/C bzw. PtO<sub>2</sub> an der zur Carbonylfunktion  $\alpha$ -ständigen C=C-Doppelbindung, das aromatische Pyrrolsystem wird dabei nicht erfaßt. Abweichend davon nimmt nach unseren Untersuchungen 2 rasch 2 mol H<sub>2</sub> auf, das gebildete Tetrahydropyrrolizinon 5 kann isoliert und durch seine spektralen Daten charakterisiert werden. 5 läßt sich durch nochmalige Hydrierung in das 1-Pyrrolizidinon 6 überführen: diese Reduktion läuft jedoch erheblich langsamer und mit Ausbeuten von nur ca. 30 % ab.

Die Strukturzuordnung für **5** – die Summenformel  $C_{19}H_{17}NO$  läßt insgesamt 4 konstitutionsisomere Tetrahydropyrrolizinone (Abb. 2) zu – folgt aus den spektralen Daten: Das <sup>1</sup>H-NMR-Spektrum zeigt neben den Signalen der phenylischen Substituenten im Aliphatenbereich ein kompliziertes Aufspaltungsbild, das nach Signalflächenintegration 7 Protonen entspricht. Damit lassen sich die Strukturen **5b** bzw. **5c** ausschließen, weil hier nur 5 bzw. 6 aliphatische H-Atome vorliegen. Eine eindeutige Differenzierungsmöglichkeit erbringt das <sup>13</sup>C-Spektrum: Neben dem Signal für den Carbonylkohlenstoff bei  $\delta = 174.52$  ppm sichert ein Singulett bei  $\delta = 153.92$  ppm, das, wie der Vergleich mit **2** deutlich macht, dem sp<sup>2</sup>-hybridisierten Brückenkopfatom C-7a zuzuordnen ist, die Struktur **5**. Sowohl C-1 als auch C-7a sind gegenüber **2** um ca. 9 ppm paramagnetisch verschoben, was wir mit der verstärkten Konjugation im Enonteil – nach Aufhebung des aromatischen Pyrrolsystems– erklären. Die Zuordnung der sp<sup>3</sup>-C-Zentren beruht auf ihrer Lage zum Heteroatom und dem Aufspaltungsmuster, C-6 tritt als Dublett bei  $\delta = 66.69$  ppm in Resonanz (s. Exp. Teil).

Das 70 eV-EIMS des Pyrrolidinons 6 zeigt einen intensiven Molpeak bei m/z = 277, basepeak ist das Stilbenfragment bei m/z 180, das unter der für diese Verbindungen charakteristischen Eliminierung eines Methylradikals<sup>10</sup>) weiter zerfällt. Kennzeichnend für die Reduktion der  $\alpha,\beta$ -Doppelbindung ist die ausgeprägte Blauverschiebung des langwelligen UV-Maximums beim Übergang  $5 \rightarrow 6$  um 29 nm sowie die höhere Absorptionsfrequenz der IR-Carbonylvalenzschwingung für 6 (1690 cm<sup>-1</sup>). Das <sup>1</sup>H-NMR-Spektrum von 6 weist 9 aliphatische Protonen aus, deren Resonanzsignale sich zu zwei Multipletts bei  $\delta = 1.20-2.31$  und 3.01-4.06 ppm überlagern.

1- und 3-Pyrrolizinone lassen sich durch Acylierung von Pyrrolen, intramolekulare Aldolkondensation und Wasserabspaltung synthetisieren<sup>8</sup>). Ausgangsmaterial für 6.7-Diphenyl-3-pyrrolizinon (10) ist 3.4-Diphenylpyrrol (7), das nach *Friedman*<sup>11</sup>) über die Kondensation von Benzil mit Dimethyl-N-acetyl-iminodiacetat<sup>12</sup>) dargestellt wurde. Die Umsetzung von 7 mit POCl<sub>3</sub>/DMF führt glatt zum 2-Formylpyrrol 8, das durch die CO-Valenzschwingungsbande bei 1640 cm<sup>-1</sup> im IR-Spektrum und die NMR-Absorption des Aldehydprotons bei  $\delta = 9.89$  ppm charakterisiert ist. Die N-Acetylierung von 8 gelingt mit Ac<sub>2</sub>O/Triethylamin<sup>13</sup>) bei 130° zu 9, das unter diesen Bedingungen sofort zum 3-Pyrrolizinon 10 cyclisiert.

Ein Vergleich der spektralen Daten von 10 mit denen des 1-Pyrrolizinons 2 beweist das Vorliegen strukturisomerer Verbindungen. Das <sup>1</sup>H-NMR-Spektrum zeigt die konstitutionellen Unterschiede deutlich auf: vom AB-System der Protonen H-1/H-2 absorbiert der A-Teil (H-2) bei  $\delta = 5.75$  ppm, der B-Teil (H-1) ist von den Resonanzsignalen des H-Atoms an C-5 und der Phenylreste überlagert. Die Kopplungskonstante J<sub>H-1/H-2</sub> = 6.0 Hz bestätigt die bei 2 angeführten Überlegungen und steht in Einklang mit



Literaturangaben<sup>4)</sup>. Das Proton an C-5 ist durch den Anisotropieeffekt der CO-Gruppe gegenüber **2** um ca. 1 ppm paramagnetisch verschoben.

10

Bemerkenswert ist, daß 2 und 10 identisches ms Verhalten zeigen: in beiden Fällen fragmentiert das stabile Molekülion unter Eliminierung eines H-Radikals und CO-Verlust zum Ion bei m/z 243. Die für  $\alpha,\beta$ -ungesättigte Fünfringlactame ungewöhnlich hohe Frequenz der IR-Carbonylabsorption bei 1735 cm<sup>-</sup> bei 10 wird durch die geringe Konjugation der CO-Gruppe mit dem nichtbindenden Elektronenpaar am N-Atom bedingt, das überwiegend in das Resonanzsystem des aromatischen Pyrrolrings einbezogen ist<sup>14)</sup>. Die UV-Absorption im VIS-Bereich erfolgt bei annähernd gleicher Wellenlänge wie bei 2 ( $\lambda$ max=446 (10), 452 (2) nm). Die Struktur des 1-Pyrrolizinons 2 ist durch die unabhängige Synthese der 3-Oxoverbindung 10 und Gegenüberstellung der spektralen Daten eindeutig gesichert.

Das 1-Pyrrolizinon 2 besitzt keine Aktivität im P 388 Leukämie-Test des NIH und ist unwirksam beim carrageenininduzierten Ödem der Rattenpfote.

#### **Experimenteller Teil**

Allg. Angaben s.<sup>15)</sup>

#### 6.7-Diphenyl-pyrrolizin-1-on (2) und Di-(6.7-diphenyl-pyrrolizin-1-on-2-yl)-selenid (3)

1.55g (6 mmol) 1 werden in 60 ml absol. Xylol unter Erwärmen gelöst; nach Zugabe des 4-fach molaren Überschusses SeO<sub>2</sub> wird der Ansatz unter starkem Rühren 24h zum Rückfluß erhitzt. Man läßt auf Raumtemp. abkühlen, filtriert Selen ab und entfernt Xylol i. Vak.. Der Rückstand wird unter Erwärmen in 100 ml absol. EtOH aufgenommen, die Lösg. mit Aktivkohle versetzt und 15 min

Ph 120.3

unter Rückfluß erhitzt. Der nach Filtration und Einengen verbleibende dunkelrote Feststoff wird sc(SiO<sub>2</sub>/Toluol) gereinigt.

1. Fraktion (Rf=0.56):0.74g **2** (46%), rubinrote, feine Nadeln, Schmp. 148° (EtOH). C<sub>19</sub>H<sub>13</sub>NO(271.1). MS(HR): Ber.: 271.099714 Gef.: 271.099078 (-0.6mM, 2.3ppm). IR: 1745 cm<sup>-1</sup> (C=O). UV:  $\lambda$ max(loge) = 452(3.28), 286(sh), 250(4.11), 204nm(4.39). <sup>1</sup>H-NMR:  $\delta$ (ppm) = 5.94-6.12(m,2H,C-2,C-5), 6.92-7.06(m,1H,C-3), 7.12-7.52(m,10H arom.) <sup>13</sup>C-NMR(22.63 MHz):  $\delta$ (ppm) = 111.62, 115.25, 118.51 (d, C-2, C-3, C-5), 127.12, 127.95, 128.26, 128.41, 128.62, 129.40, 129.86, 130.65, 131.42, 136.97 (C arom.), 144.64(s,C-7a), 165.22(s,C=O). MS:m/z = 271(100% M<sup>+</sup>.), 270(82% M-H, \*269.00), 243(45% M-CO), 242(80% 243-H, \*241.00), 241(80%), 216(45%).

2. Fraktion (Rf=0.23):0.33 g 3 (9%, ziegelrote, rhombische Kristalle, Schmp. 198–200° (EtOH).  $C_{38}H_{24}N_2O_2Se(620.60)$ . IR: 1740 cm<sup>-1</sup> (C=O). UV(CHCl<sub>3</sub>):  $\lambda$ max(loge) = 470.05(4.06), 256 nm(4.53). <sup>1</sup>H-NMR:  $\delta$ (ppm) = 5.92, 6.95(A<sub>2</sub>B<sub>2</sub>,4H,J<sub>AB</sub> = 2.7Hz, C-3, C-3', C-5, C-5') 7.10–7.41(m, 2OH arom.). MS: m/z = 620(70% M<sup>+-</sup>), 540(100% M-<sup>80</sup>Se, \*470.32), 270(40% 540-C<sub>19</sub>H<sub>12</sub>NO), 242(42% 270-CO), 241(50%).

### 6.7-Diphenyl-pyrrolizin-1-on-5-carbaldehyd (4)

0.27g(1mmol) 2 werden nach der AAV<sup>15</sup> formyliert. Nach SC(SiO<sub>2</sub>/CH<sub>2</sub>Cl<sub>2</sub>,Rf = 0.14) und Umkristallisation aus EtOH erhält man 4 als hellrote, metallisch glänzende Plättchen, Schmp. 183–185°, Ausb. 0.12 g (42%). C<sub>20</sub>H<sub>13</sub>NO<sub>2</sub>(299.3). Ber.: C 80.2 H 4.38 N 4.7 Gef.: C 80.2 H 4.37 N 4.7. IR: 1745(C=O), 1685 cm<sup>-1</sup>(C=O). UV(CHCl<sub>3</sub>): $\lambda$ max(loge) = 461(3.50), 332(4.03), 274 nm(4.27). <sup>1</sup>H-NMR: $\delta$ (ppm) = 6.52, 7.29(AB,2H,J<sub>AB</sub>= 5.6Hz,C-2,C-3), 7.58–7.82(m,10H arom.), 10.60(s,1H,CHO). MS:m/z = 299(100% M<sup>+</sup>), 271(35% M-CO), 270(75% M-CHO), 243(20%), 242(50% 270-CO), 241(35%).

#### 6.7-Diphenyl-2.3.5.6-tetrahydro-pyrrolizin-1-on (5)

1.08 g (4 mmol) 2 in 50 ml absol. EE werden an 100 mg Pd/C(10 %) bei Raumtemp. hydriert. Nach 1.5 h wird die Hydrierung unterbrochen. 5 wird nach SC(SiO<sub>2</sub>/1.CH<sub>2</sub>Cl<sub>2</sub>,2.ET<sub>2</sub>O) als farbloses Öl erhalten, das beim Stehen kristallisiert. Ausb. 0.69 g(63%), farblose Nadeln, Schmp. 152°(EtOH/ Et<sub>2</sub>O). C<sub>19</sub>H<sub>17</sub>NO(275.1). MS(HR): Ber.: 275.13101 Gef.: 275.13086(-0.15mM,0.5ppm). C<sub>18</sub>H<sub>16</sub>N Ber.: 246.12827 Gef.: 246.12818(-0.09 mM,0.4ppm). C<sub>17</sub>H<sub>12</sub>NO Ber.: 246.09188 Gef.: 246.09246(0.58 mM,2.3ppm). IR 1680 cm<sup>-1</sup> (C=O). UV: $\lambda$ max(loge) = 287(4.03), 265(4.02), 224(4.29), 204nm(4.40). <sup>1</sup>H-NMR: $\delta$ (ppm) = 1.15-1.50(m,1H,C-6), 2.00-2.45(m,3H,C-5,H-3), 3.20-3.78(m,2H,H-2,H-3'), 4.47-4.75(m,1H,H-2'), 7.10-7.50(m,10H arom.). <sup>13</sup>C-NMR(22.63 MHz): $\delta$ (ppm) = 28.86, 29.91(C-3,C-5), 42.48(t,C-6), 66.69(d,C-6), 127.14, 127.43, 127.85, 128.23, 128.40, 128.55, 128.72, 128.96, 129.46, 129.63, 131.98, 132.53, 133.32(12C arom. und C-7), 153.92 (s,C-7a), 174.53(s,C=O). MS:m/z = 275(100% M<sup>+</sup>·), 274(35% M-H), 247(60% M-CO), 246(95%,d,M-CHO \*220.05,M-C<sub>2</sub>H<sub>5</sub>), 220(27% 247-HCN).

#### 6.7-Diphenyl-pyrrolizidin-1-on (6)

0.55 g(2 mmol) 5 in 30 ml EtOH/EE(1/1) werden mit 75 mg Pd/C(10%) bei Raumtemp. 48 h hydriert.Nach Filtration wird das Lösungsmittelgemisch abdest., das verbleibende Öl kristallisiert auf Zusatz von EtO<sub>2</sub>. Durch SC(SiO<sub>2</sub>/EtO<sub>2</sub>) wird **6**(Rf=0.3) von **5**(Rf=0.5) abgetrennt, weiße Kristalle, Schmp. 132°(EtOH/EtO<sub>2</sub>), Ausb. 0.16 g(30\%). C<sub>19</sub>H<sub>19</sub>NO(277.3) Ber.: C 82.3 H 6.90 N 5.0 Gef.: C82.2 H 6.94 N 5.0. IR:1690 cm<sup>-1</sup>(C=O). UV: $\lambda$ max(loge) = 258(3.02), 204 nm(4.39). <sup>1</sup>H-NMR:  $\delta$ (ppm) = 1.20–2.31(m,4H,C-2,C-6,C-7), 3.01-4.61(m,5H,C-3,C-5,C-7a), 6.71–7.49(m,10H arom.). MS:m/z = 277(75\% M<sup>+.</sup>), 276(20\% M-H), 181(45\%), 180(100\% Ph-CH=CH-Ph), 179(72\%), 178(52\%), 165(35\% 180-CH<sub>3</sub>), 115(23\%), 91(30\% C<sub>7</sub>H<sub>7</sub>).

#### 3.4-Diphenylpyrrol-2-carbaldehyd (8)

2.19 g (10 mmol) 3.4-Diphenylpyrrol (7) werden nach der AAV für die *Vilsmeyer*-Formylierung<sup>15)</sup> umgesetzt. Nach 1 h bei 70° wird das ausgefallene Addukt in 100 ml CH<sub>2</sub>CH<sub>2</sub> aufgenommen und 15 min mit 10proz. NaHCO<sub>3</sub>-Lösung gerührt. Nach Abtrennung der H<sub>2</sub>O-Phase wäscht man mit Wasser neutral und trocknet über Na<sub>2</sub>SO<sub>4</sub>. Das Lösungsmittel wird i. Vak. abgezogen, der resultierende hellgelbe Feststoff aus EtOH/Et<sub>2</sub>O umkristallisiert, Ausb. 2.0 g (83%), Schmp. 168–170°. C<sub>17</sub>H<sub>13</sub>NO(247.3). IR: 3270 (NH), 1640 (C=O), 1600 cm<sup>-1</sup> (C=C). UV: $\lambda$ max(loge) = 342 (4.15), 236 (4.16), 206 nm (4.35). <sup>1</sup>H-NMR: $\delta$ (ppm) = 7.40–7.78 (m,11H arom. und NH), 9.89 (s, 1H, CHO).

#### 6.7-Diphenyl-pyrrolizin-3-on (10)

0.495 g (2 mmol) **8** werden mit 1.02 g (10 mmol) Ac<sub>2</sub>O und 1.01 g (10 mmol) Et<sub>3</sub>N im Bombenrohr (l = 15 cm, d = 1 cm) 15 min auf 130° erhitzt. Das Reaktionsgemisch nimmt hierbei eine intensiv rote Färbung an. Man läßt abkühlen, engt ein und isoliert **10** sc mit Toluol an SiO<sub>2</sub> (Rf = 0.4). Aus EtOH, dunkelrote, rhombische Kristalle, Schmp. 132–134°, Ausb. 0.39 g (72%). C<sub>19</sub>H<sub>13</sub>NO (271.09) MS (HR): C<sub>19</sub>H<sub>13</sub>NO Ber. 271.099708 Gef. 271.0997902 (0.09 mM, 0.4 ppm); IR 1735 (C=O), 1605 cm<sup>-1</sup> (C=C). UV (CHCl<sub>3</sub>):  $\lambda$ max (logε) = 446 (3.06), 354 (4.06), 255 nm (4.29). <sup>1</sup>H-NMR:  $\delta$ (ppm) = 5.75 (d, 1H, J<sub>AB</sub> = 6.0 Hz, C-2), 7.02–7.59 (m, 12H, C-1, C-5, H arom.); MS: m/z = 271 (100 % M<sup>+</sup>), 270 (30 %, M-H, \*269.00). 243 (31 %, M-CO), 242 (35\*%, 243-H, \*241.00), 241 (22 %), 215(15 %).

#### Literatur

- +) 9. Mitt.: G. Dannhardt und L. Steindl, Arch. Pharm. (Weinheim) 319, 500 (1986).
- 6. Mitt.: G. Dannhardt und L. Steindl, Arch. Pharm. (Weinheim) 318, 661 (1985).
  7. Mitt.: G. Dannhardt und L. Steindl, Arch. Pharm. (Weinheim) 318, 663 (1985).
- 2 4. Mitt.: G. Dannhardt und L. Steindl, Arch. Pharm. (Weinheim) 319, 231 (1986).
- 3 H. Günther, NMR-Spektroskopie, S. 80, Georg Thieme Verlag, Stuttgart 1973.
- 4 H. McNab, J. Org. Chem. 46, 2809 (1981).
- 5 K.B. Sharpless und K.M. Gordon, J. Am. Chem. Soc. 98, 300 (1976).
- 6 L.F. Fieser und G. Ourisson, J. Am. Chem. Soc. 75, 4404 (1953).
- 7 K.B. Sharpless und R.F. Laner, J. Am. Chem. Soc. 94, 7154 (1972); D. Arigoni, A. Vasella, K.B. Sharpless und H.P. Jensen, J. Am. Chem. Soc. 95, 7917 (1973).
- 8 V. Carelli, M. Cardellini und F. Morlacchi, Ann. Chim. (Rome) 51, 595 (1961).
- 9 W. Flitsch und U. Neumann, Chem. Ber. 104, 2170 (1971).
- 10 R.A.W. Johnstone und B.J. Millard, Z. Naturforsch. Teil A, 21, 604 (1966).
- 11 M. Friedman, J. Org. Chem. 30, 859 (1965).
- 12 M. Jonkees, Rec. Trav. Chim. Pays Bas 27, 287 (1908).
- 13 P. Linda und G. Marino, Ric. Sci. 37, 424 (1967).
- 14 W.C. Agosta, J. Am. Chem. Soc. 82, 2258 (1960).
- 15 1. Mitt.: G. Dannhardt und R. Obergrusberger Arch. Pharm. (Weinheim) 312, 896 (1979).

[Ph 120]