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Abstract:  Formal asymmetric syntheses of (—)-aphanorphine and (+)-eptazocine are
reported via the two key intermediates 3a and 3b obtained in 94-97% ee, from the readily
available chirons (R)-5 and (R)-9. Which resulting from enzyme-catalysed asymmetrisation
of prochiral &,x-disubstituted-1,3-propanediols and -malonates respectively. © 1997
Elsevier Science Ltd. All rights reserved.

Stereogenic quaternary carbon centres are found in many naturally occuring compounds and
benzylic centres in particular in various analgesics such as (—)-aphanorphine 1 and (—)-eptazocine
2.2 Convenient methods for their enantioselective construction have been investigated.>* In previous
papers, we have described the asymmetric construction of quaternary carbons from chiral malonates >
an(:i their subsequent transformation into both enantiomers of (—)-aphanorphine 1 and (+)-eptazocine
2.
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Pharmacological active alkaloids such as eptazocine and aphanorphine have been prepared from the
dihydronaphthalene 3, an efficient common precursor, which could be readily accessed from chiral
monoacetates 4 and 5.!
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Herein we wish to describe two routes to (—)-aphanorphine 1 and (+)-eptazocine 2.

The chiral monoacetate (R)-4 was readily prepared by transesterification of diol 6 in presence of
isopropenyl acetate with lipase Pseudomonas cepacia immobilised on Hyflo Super Cell (PSL/HSC, for
details see ref. 1) with 85.5% yield and 71% ee. The transformation was accomplished by protection
(TBDMSCI, DMAP, CH»Cl;, 74%) and subsequent hydrolysis (K2CO3, MeOH, rt, 3 h, 90%) into 7a
(70% ee).
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A second and more efficient approach was also investigated. As we described earlier the enantiose-
lective enzymatic hydrolysis of prochiral malonates 8 (PLE, H>O, 88%) gave the half-ester (R)-9 with
94% ee (97% ee after crystallisation).® Subsequent chemoselective reduction of the acid, protection
of the6resulting alcohol and reduction of the ester function afforded the alcohol 7b with 83% overall
yield.
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Thus, for our strategy, the protected alcohol 7b was subjected to Swern oxidation (94%) and
subsequent Emmons reaction under Masamune’s conditions [(EtO);P(O)CH,CO;,Et, DBU, LiCl,
90%).% The resulting conjugated ester was reduced without affecting the ester group by the use of
nickel boride generated in situ (NaBH4.NiCl,.6H20)” to afford the ester (R)-(+)-10 with 98% yield.!?
Reduction (DIBALH) of (R)-(+)-10, then Swern oxidation’ followed by a one pot acidic Friedel-Craft
cyclisation and dehydration (cat. 6N HCl, CHCl;, on silica gel) furnished the dihydronaphthalene
3b!! in 70% overall yield from 10 [[a]p2® —7.1 (c=1, CHCl3)].
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With dihydronaphthalene (—)-3b in hand, hydrogenolysis (Hz, PA(OH),/C, 3 h, 98%) gave complete
reduction to the alcohol (R)-11.12 Oxidation to the aldehyde (+)-12 was accomplished with high yield
(PDC/DMF, 92%). A Wittig reaction (Ph3PCH3Br, nBuLi, THF, 80%) converted (+)-12 into the olefin
(5)-(+)-13, ([x]p2° +20.5 (c=1, CHCl3), 97% ee): lit.3¢ [x]p2° —21.1 (c=3.8, CHCl3), for its antipode
(R). The enantiomeric excess was determined by GC using a chiral column (Cydex B, 82°C, 0.7 bar).
Spectroscopic data for olefin 13 were found to be in agreement with those reported.3¢ The (R)-(—)-13,
prepared from another synthetic route, has already been shown to be an intermediate in the synthesis
of (—)-eptazocine 2.3d¢ Moreover oxidation of alcohol 11 (CrOs, H,S04)13 gave the keto acid 1414
with 70% yield, ([a]p2® —17 (c=0.7, CHCl3), ee 97%). The transformation constitutes a formal
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synthesis of (—)-aphanorphine as reported.3® On the other hand the alcohol (R)-3a, key intermediate
in the synthesis of (-—)-aphanorphine,3b could also be obtained from the prochiral diol 15.
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As we previously reported,l this prochiral diol 1513 gave in high ee (94%) the monoacetate (R)-5,

and its transformation into (R)-3a was accomplished in two steps: protection of the alcohol § (TsCl,
NEt3, DMAP cat., CH2Cla, 94%) followed by complete reduction (LiAlH4, THF, reflux, 1h, 70%)“5
into the expected (R)-3. [a]p20 +26.4 (c=1, CHCl3),!7 94% ee determined by GC (Cydex B, 140°, 1
bar); lit.3¢ [a]p?0 —27.4 (c=2.1, CHC3) for its antipode (S).

In summary, a method for the synthesis of chiral benzylic quaternary centres has been developed

in which the chirons were readily available by enzyme-catalysed asymmetrisation (ee 94-97%). The
synthesis of chiral nonracemic alcohols (R)-3a and (R)-11, key intermediates in the syntheses of (—)-
aphanorphine and (+)-eptazocine, has demonstrated the utility of this methodology. Further synthetic
applications of this approach to other alkaloids e.g. pentazocine and normetazocine are currently under
investigation.

—
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55.2 (q), 39.5 (s), 33.4 (), 29.7 (1), 26.6 (1), 19.6 (q). Anal. calcd for C;3H;80,: C, 75.68; H,
8.80. Found: C, 75.67; H, 8.83.

13. Bowden, K.; Heilbron, I.M.; Jones, E.R.H.; Weedon, B.C.L. J. Chem. Soc. 1946, 39.

14. Data of 14: [x]p?° ~17 (c=0.7, CHCIl3); IR (CHCl3) 3500, 3300, 1745, 1710, 1680, 1605, 1290
em™ Y, TH NMR (CDCl3) & 10.50 (br.s, H), 8.10~8.00 (m, 1H), 6.95-6.80 (m, 2H), 3.88 (s, 3H),
3.00-2.40 (m, 3H), 2.24-1.95 (m, 1H), 1.70 (s, 3H); 1C NMR (CDCl3) § 196.8 (s), 180.8 (s), [6
arom.C, 163.9 (s), 146.8 (s), 130.1 (d), 125.3 (s), 113.1 (d), 112.7 (d)], 55.5 (q), 45.9 (s), 34.9 (1),
33.7 (1), 25.7 (q).

15. Very recently, the corresponding malonate was used to prepare the chiral acid ester according to
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16. Better yield was obtained with LiAlH4 in THF at reflux rather than in ether (see ref. 1). Other
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