November 1983 Communications 923

Alternatively, compounds 4 can be obtained starting from 6-alkylamino-3-methyluracils (3). Vilsmeier formylation of 3 furnishes 6-alkylamino-5-formyl-3-methyluracils (5) (Table 2) which, by condensation with 6-chloro-3-methyluracil (6), are converted to compounds 4 (Method B, Table 1).

The microanalytical and spectral data are in agreement with the structure of compounds 4. The protons at C-5 exhibit significant signals at δ =9.5-9.9 ppm in the ¹H-N.M.R. spectra (Table 1).

A New and Facile Synthesis of Pyrido[2,3-d:6,5-d'|dipyrimidine Derivatives

Tomohisa NAGAMATSU, Yoshiharu SAKUMA, Fumio YONEDA* Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oehonmachi, Kumamoto 862, Japan

5-Deazaflavins¹, their analogues¹, and pyridodipyrimidines² are of interest as NAD[P]⁺ model compounds which mediate biomimetic oxidation. For further studies on NAD[P]⁺ model compounds, we have developed a facile synthesis of pyrido[2,3-d:6,5-d']dipyrimidine-2,4,6,8(3H,10H,7H,9H)-tetrone derivatives (4).

Alkoxy- and aminopyrimidines are known to yield the corresponding formyl derivatives when treated with the Vilsmeier reagent (dimethylformamide/phosphoryl chloride)³. In hydroxy-substituted pyrimidines, the formylation is usually accompanied by replacement of the hydroxy group with a chlorine atom⁴. However, in the reaction of barbituric acids (1) with equimolar amounts of the Vilsmeier reagent, 5-dimethylaminomethylene barbituric acids (2) are obtained. Heating of compounds 2 with 6-alkylamino-3-methyluracils (3) in dimethylformamide at reflux temperature results in the formation of pyrido[2,3-d:6,5-d']dipyrimidine-2,4,6,8(3H,10H,7H,9H)-tetrones (4) in good yields (Method A, Table 1).

5-Dimethylaminomethylenebarbituric Acid (2a):

To a mixture of phosphoryl chloride (2.3 g, 0.015 mol) and dimethylformamide (5 ml) at room temperature, barbituric acid (1a; 1.92 g, 0.015 mol) is added with stirring. After stirring for 3 h, the precipitated crystals are collected and recrystallized from 95% ethanol to give pale yellow needles; yield: 2.4 g (88%); m.p. 250-252°C.

 $C_7H_9N_3O_3$ calc. C 45.90 H 4.95 N 22.94 (183.2) found 45.98 4.81 22.69 1H -N.M.R. (CF₃COOH/TMS): δ =3.58 (s, 3 H); 3.71 (s, 3 H); 8.47 ppm (s, 1 H).

3-Methyl-5-dimethylaminomethylenebarbituric Acid (2b):

From 1-methylbarbituric acid, compound **2b** is obtained by the same procedure; yield: 2.1 g (71%); m.p. 208-209°C.

C₈H₁₁N₃O₃ calc. C 48.72 H 5.62 H 21.31 (197.2) found 48.59 5.81 21.28

¹H-N.M.R. (CF₃COOH/TMS): δ = 3.42 (s, 3 H); 3.51 (s, 3 H); 3.67 (s, 3 H); 8.44 ppm (s, 1 H).

Pyrido[2,3-d:6,5-d']dipyrimidine-2,4,6,8(3H,10H,7H,9H)-tetrones (4a-k); General Procedure for Method A:

Heating of 5-dimethylaminomethylenebarbituric acid (2; 1.3 mmol) and the appropriate 6-alkylamino-3-methyluracil 3 (1.3 mmol) in dimethylformamide (4 ml) under reflux at 170°C for 2 h, followed by cooling and diluting with 95% ethanol gives the corresponding pyridodipyrimidines (4a-k) (Table 1).

924 Communications SYNTHESIS

Table 1. Pyrido[2,3-d:6,5-d']dipyrimidine-2,4,6,8(3H,10H,7H,9H)-tetrones (4a-k) prepared

Produ	ct		Yield [%] by		m.p.	Molecular Formulab	1 H-N.M.R. (CF ₃ COOH/TMS) δ (C-5— $\underline{\text{H}}$) [ppm]
No.	\mathbb{R}^1	\mathbb{R}^2	Method A	Method B	[°C]*		
4a	Н	CH ₃	84	-	> 300°	$C_{11}H_9N_5O_4$ (275.2)	9.58
4b	Н	C_2H_5	72		>300°	$C_{12}H_{11}N_5O_4$ (289.3)	9.60
4c	Н	n - C_4H_9	64	-	>300°	$C_{14}H_{15}N_5O_4$ (317.3)	9.60
4d	Н	$n-C_8H_{17}$	65		294-295°	$C_{18}H_{23}N_5O_4$ (373.4)	9.50
4e	Н	$n-C_{12}H_{25}$	60	-	285-287°	$C_{22}H_{31}N_5O_4$ (429.5)	9.68
4f	Н	$C_6H_5(CH_2)_2$	72		252-254°	$C_{18}H_{15}N_5O_4$ (365.3)	9.90
4g	CH_3	CH_3	87	81	>300°	$C_{12}H_{11}N_5O_4$ (289.3)	9.76
4h	CH_3	n - C_3H_7	76	77	> 300°	$C_{14}H_{15}N_5O_4$ (317.3)	9.72
4i	CH_3	n - C_4H_9	71	68	> 300°	$C_{15}H_{17}N_5O_4$ (331.3)	9.72
4j	CH_3	$n-C_8H_{17}$	67	64	219-220°	$C_{19}H_{25}N_5O_4$ (387.4)	9.74
4k	CH_3	$n-C_{12}H_{25}$	64		205-206°	$C_{23}H_{33}N_5O_4$ (443.5)	9.72

a m.p. not corrected. All compounds were recrystallized from dimethylformamide or glacial acetic acid.

Table 2. 6-Alkylamino-5-formyl-3-methyluracils (5a-d) prepared

Prod	uct	Yield	m.p.	Molecular	¹ H-N.M.R.
No.	R ²	[%]	[°C]ª	formula ^b	(CF ₃ COOH/TMS) δ (C-5— H) [ppm]
5a	CH ₃	85	>300°	C ₇ H ₉ N ₃ O ₃ (183.2)	9.76
5b	<i>n</i> -C ₃ H ₇	75	194-195°	C ₉ H ₁₃ N ₃ O ₃ (211.2)	9.76
5c	n-C ₄ H ₉	65	189-191°	$C_{10}H_{15}N_3O_3$ (237.3)	9.77
5d	<i>n</i> -C ₈ H ₁₇	57	163-164°	$C_{14}H_{23}N_3O_3$ (281.4)	9.79

^a m.p. not corrected. All compounds were recrystallized from 95%

6-Alkylamino-5-formyl-3-methyluracils (5a-d); General Procedure:

To a mixture of phosphoryl chloride (3.1 g, 0.02 mol) and dimethylformamide (4 ml) at room temperature, the 6-alkylamino-3-methyluracil **3a**, **c**-**e** (6 mmol) is added. The mixture is then heated with stirring at 90°C for 6 h followed by cooling and addition of ice/water to give the corresponding 6-alkylamino-5-formyl-3-methyluracils (5a-d) (Table 2).

Pyrido[2,3-d:6,5-d']dipyrimidine-2,4,6,8(3H,10H,7H,9H)-tetrones (4g-i); General Procedure for Method B:

Heating of 6-alkylamino-5-formyl-3-methyluracils **5a-d** (2 mmol) and 6-chloro-3-methyluracil (**6**; 2 mmol) in dimethylformamide (5 ml) under reflux at 200-220°C (oil bath temperature) for 7 h, followed by concentration yields, after dilution with 95% ethanol, the corresponding pyridodipyrimidines (**4g-j**) which are identical with the compounds prepared by Method A (Table 1).

Received: May 16, 1983

^b Satisfactory microanalyses obtained: C ± 0.31 , H ± 0.23 , H ± 0.29 .

^b Satisfactory microanalyses obtained: C ± 0.19 , H ± 0.21 , N ± 0.23 .

^{*} Address for correspondence.

¹ F. Yoneda, K. Nakagawa, A. Koshiro, T. Fujita, Y. Harima, *Chem. Pharm. Bull.* 30, 172 (1982) and references cited therein.

² F. Yoneda, J. Yamato, M. Ono, J. Am. Chem. Soc. 103, 5943 (1981).

³ C. Grundmann, R. Richter, J. Org. Chem. 32, 2308 (1967).

⁴ F. Yoneda, Y. Sakuma, S. Mizumoto, R. Ito, J. Chem. Soc. Perkin Trans. 1 1976, 1805.