CHEMISTRY LETTERS, pp. 177-180, 1987.

© 1987 The Chemical Society of Japan

Asymmetric Allylic Alkylation of 1,3-Disubstituted 2-Propenyl Acetates Catalyzed by a Chiral Ferrocenylphosphine-Palladium Complex

Tamio HAYASHI, * Akihiro YAMAMOTO, and Yoshihiko ITO* Department of Synthetic Chemistry, Kyoto University, Kyoto 606

Reaction of racemic 2-propenyl acetates substituted with two different aryl groups at 1 and 3 positions with sodium acetylacetonate in the presence of a palladium catalyst containing an optically active ferrocenylphosphine ligand gave regioisomeric allylic alkylation products of high optical purity (up to 95% ee).

We have previously reported¹⁾ that the optically active ferrocenylphosphine containing a dihydroxyalkyl group on the side chain, (\underline{R})-<u>N</u>-methyl-<u>N</u>-bis(hydroxymethyl)methyl-1-[(\underline{S})-1',2-bis(diphenylphosphino)ferrocenyl]ethylamine (1), is an effective ligand for the palladium-catalyzed asymmetric allylic alkylation of racemic 2-propenyl acetates such as 1,3-diphenyl-3-acetoxy-1-propene which have the same substituent groups at 1 and 3 positions. The reaction proceeds via the π -allylpalladium intermediate containing a meso type π -allyl group and the asymmetric induction arises from preferential attack by a soft carbon nucleophile on either of the diastereotopic π -allyl carbon atoms (Scheme 1). Here we report the

results obtained for the asymmetric allylic alkylation of racemic 2-propenyl acetates substituted with two different groups at 1 and 3 positions which should include chiral π -allylpalladium complex in the catalytic cycle.

Racemic (\underline{E})-1-(3-methoxyphenyl)-3-phenyl-3-acetoxy-1-propene (**2a**) was allowed to react with sodium acetylacetonate in THF at 40 °C for 45 h in the presence of 1 mol% of the palladium catalyst prepared in situ by mixing di- μ -chlorobis(π -allyl)dipalladium with the chiral ferrocenylphosphine 1.^{1,2}) Aqueous workup followed by preparative TLC on silica gel (hexane/ethyl acetate = 5/1) gave 92% yield of allylic alkylation products consisting of [(\underline{E})-styryl]-(3-methoxyphenyl)methylacetylacetone (**3a**) and its regioisomer **4a** in a ratio of 44/56. Deacetylation of the products with sodium methoxide in refluxing methanol gave methylketones **5a** and

Chemistry Letters, 1987

6a, the enantiomeric purities of which were estimated to be 95% ee and 81% ee, respectively, by ¹H NMR in the presence of a chiral shift reagent $Eu(hfc)_3^{3}$ (entry 1 in Table 1). Thus, both of the regioisomeric alkylation products 3a and 4a have been found to have the enantiomeric purities of over 80% ee. The absolute configuration of 4a was determined to be (<u>S</u>) by converting it into (<u>S</u>)-ketoester 7.⁴) It is assumed that the configuration of the regioisomer 3a was also (<u>S</u>) since the stereochemistry of the catalytic alkylation has been established to be retention of configuration^{5,6}) (vide infra).

The stereochemical results can be visualized by Scheme 2. Oxidative addition

Entry	Acetate 2 ^{b)}	Reaction time/h	Yield ^{C)} /% of 3 and 4	Ratio ^{d)} of 3/4	_{% ee} e) of 3	_{% ee} e) of 4
1	PhCHCH=CH(3-MeOC ₆ H ₄)	45	92	44/56	95 (<u>s</u>)	80 (<u>s</u>)
2 ^{f)}	PhCHCH=CHPh OAc	13	97		90 (<u>s</u>)	
3	3-MeOC ₆ H ₄ CHCH=CH(3-MeOC ₆ OAc	₅ H ₄) 39	80		86	
4	1-NpCHCH=CHPh OAc (2b)	16	72	46/54	94	75
5	4-ClC ₆ H ₄ CHCH=CHPh OAc (2c)	14	73	46/54	87	70
6	4-MeC ₆ H ₄ CHCH=CHPh OAc (2d)	3	76	45/55	86	72
7	2-MeC ₆ H ₄ CHCH=CHPh OAc (2e)	21	66	31/69	80	24

Table 1. Asymmetric Allylic Alkylation of 1,3-Disubstituted 2-Propenyl Acetates with Sodium Acetylacetonate Catalyzed by a Chiral Ferrocenylphosphine-Palladium Complex^a)

a) To a mixture of the chiral phosphine 1 (0.0055 mmol), di- μ -chlorobis(π -allyl)dipalladium (0.0025 mmol), and the acetate 2 (0.5 mmol) in THF (2 ml) was added a suspension of sodium enolate prepared from sodium hydride (0.63 mmol) and acetylacetone (0.75 mmol) in THF (2 ml) at room temperature. The mixture was stirred at 40 °C. After hydrolysis and the usual work-up, the product was isolated by preparative TLC on silica gel (hexane/ethyl acetate = 5/1). b) All racemic <u>E</u> isomers. c) Isolated yield. d) Determined by ¹H NMR. e) Determined by ¹H NMR of 5 and 6 using Eu(hfc)₃. f) This result has been published (Ref. 1).

of $(\underline{S})-2a$ to a chiral phosphine-palladium(0) species with inversion of configuration at the allylic carbon⁷ will form π -allylpalladium complex **8** which has $(1\underline{S}, 2\underline{R}, 3\underline{R})-1$ -phenyl-3-(3-methoxyphenyl)- π -allyl group, and the diastereomeric π allylpalladium complex **9**, which has the π -allyl group of opposite configuration $(1\underline{R}, 2\underline{S}, 3\underline{S})$, will be formed from (\underline{R})-2a. The nucleophilic attack on C-1 carbon of π -allylpalladium complexes **8** and **9** will produce (\underline{R})-4a and (\underline{S})-4a, respectively, and that on C-3 carbon of **8** and **9** will produce (\underline{S})-3a and (\underline{R})-3a, respectively, since the soft carbon nucleophiles including acetylacetonate anion have been demonstrated to attack the π -allyl carbon from the side opposite to palladium.⁶,⁸) The results obtained above that the reaction of racemic 2a gave (\underline{S})-3a of 95% ee and (\underline{S})-4a of 80% ee in a ratio of 44/56 indicate that the products consist of (\underline{S})-3a (43%), (\underline{R})-3a (1%), (\underline{S})-4a (50%), and (\underline{R})-4a (6%). The ratios of the nucleophilic attack on the π -allyl carbons are calculated to be C-1/C-3 = 6/43 for **8** and 50/1 for **9**. The chiral ferrocenylphosphine **1** is an effective ligand for the reaction of allyl acetates which proceeds via π -allylpalladium intermediate bearing meso π -allyl fragment,¹⁾ and it has been observed that the ratios of the nucleophilic attack on the diastereotopic π -allyl carbons of palladium intermediates complexed with 1 are 95/5 for 1,3-diphenyl- π -allyl and 93/7 for 1,3-di(3methoxyphenyl)- π -allyl (entries 2 and 3). The ratio of the nucleophilic attack is changed to 43/6 in 8 and 50/1 in 9 by steric factors of phenyl and 3-methoxyphenyl groups.⁹⁾ The π -allyl carbon substituted with phenyl is more subject to the nucleophilic attack than that with 3-methoxyphenyl.

The asymmetric reaction of allyl acetates substituted with phenyl and several other aryl groups, 1-naphthyl (2b), 4-chlorophenyl (2c), 4-methylphenyl (2d), and 2-methylphenyl (2e), was also carried out under the similar conditions. The results summarized in Table 1 show that both of the regioisomeric alkylation products in entries 4-6 were obtained with high enantiomeric purity (>70% ee) and the minor regioisomers 3 always had higher % ee values than the major ones as can be expected from the reaction mechanism. It should be noted that the regio-selectivity of nucleophilic attack was not strongly dependent on the electronic nature of the aryl group, the ratio of 3/4 being between 44/56 and 46/54 in the reaction of acetates containing 3-methoxyphenyl (2a), 4-chlorophenyl (2c), and 4-methylphenyl (2d) (entries 1, 5, and 6). The regioselectivity seems to be controlled mainly by the steric bulkiness of the aryl substituents in all cases encountered.

References

- 1) T. Hayashi, A. Yamamoto, T. Hagihara, and Y. Ito, Tetrahedron Lett., <u>27</u>, 191 (1986).
- 2) T. Hayashi and M. Kumada, Acc. Chem. Res., 15, 395 (1982).
- 3) G. R. Sullivan, Top. Stereochem., <u>10</u>, 287 (1978); R. E. Fraser, "Asymmetric Synthesis," ed by J. D. Morrison, Academic Press, Inc. New York (1983), Vol. 1, Chap. 9.
- 4) The configuration <u>S</u> was determined by comparison of its ¹H NMR spectra in the presence of Eu(hfc)₃ with those of the authentic sample (+)-(<u>S</u>)-7 ([α]¹⁵_D +160° (<u>c</u> 1.5, CCl₄), 84% ee) which was obtained by oxidation (KMnO₄/NaIO₄) followed by methylation (CH₂N₂) of (+)-(<u>R</u>)-1,3-diphenyl-1-hexen-5-one ([α]²⁰_D +30.2° (<u>c</u> 1.3, CCl₄), 88% ee) (Ref. 1).
- 5) T. Hayashi, A. Yamamoto, and T. Hagihara, J. Org. Chem., <u>51</u>, 723 (1986), and references cited therein.
- 6) B. M. Trost, L. Weber, P. E. Strege, T. J. Fullerton, and T. J. Dietsche, J. Am. Chem. Soc., <u>100</u>, 3416 (1978); B. M. Trost, Acc. Chem. Res., <u>13</u>, 385 (1980); J.-E. Backvall, R. E. Nordberg, and D. Wilhelm, J. Am. Chem. Soc., <u>107</u>, 6892 (1985), and references cited therein.
- 7) T. Hayashi, T. Hagihara, M. Konishi, and M. Kumada, J. Am. Chem. Soc., <u>105</u>, 7767 (1983).
- 8) T. Hayashi, M. Konishi, and M. Kumada, J. Chem. Soc., Chem. Commun., 1984, 107.
- 9) A similar effect has been observed in the kinetic resolution of racemic allyl acetates by asymmetric allylic alkylation. T. Hayashi, A. Yamamoto, and Y. Ito, J. Chem. Soc., Chem. Commun., <u>1986</u>, 1090.

(Received October 18, 1986)