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Abstract—44 members of the compound series Ph,_,MR, (M =Si, Ge, Sn, Pb; R =0-, m-, p-Tol; n=0-4) were
synthesized (15 new compounds). The crystal structures of Ph;Sn(o-Tol) and PhSn(o-Tol); were determined
and compared to 16 known structures. Subject to the distance d(M—C), an interplay between through-space
n—n repulsion and n—o attraction leads to either elongated or compressed tetrahedral geometry. #Si-, '’ Sn-
and ’Pb-NMR chemical shifts were determined in solution and in the solid state. ”Ge chemical shifts were
measured only in solution. An upfield or downfield sagging of the chemical shifts along each series is rationalized
in terms of a m—¢* charge transfer which is constrained by torsion of the aromatic groups. © 1998 Elsevier

Science Ltd. All rights reserved
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INTRODUCTION

As part of ongoing studies about tetraarylmethane
analogues [1-4], the series of compounds Ph,_,M(p-
Tol), M =Si, Ge, Sn, Pb; n=0-4) was synthesized
and investigated using X-ray diffraction and NMR
spectroscopy [1]. The structural finding of elongated
tetrahedra for M=Si and Ge and compressed
tetrahedra for M = Sn and Pb (see Ref. [5]) was ration-
alized by means of an interplay between n—¢ attrac-
tions and n—x repulsions of the aromatic groups [1, 6,
7]. The sagging effect (see Refs. [§—10]) observed in

* Author to whom correspondence should be addressed.
Tel.: +49-6131-395757; Fax: +49-6131-395380.

the solution state ®Si-, ''*Sn- and *’Pb-NMR chemi-
cal shifts was rationalized by means of a n—¢* charge
transfer from the aromatic groups into the LUMO
associated mostly with the hetero atom M [1].

In this paper the subject is extended synthetically
to the groups o- and m-tolyl [four series of compounds
Ph,_,MR,, (1-4)]. In addition to the 16 crystal struc-
tures known previously [1-4], the structures of
Ph;Sn(o-Tol) and PhSn(o-Tol); were determined. Het-
eronuclear NMR chemical shifts in solution and also
in the solid state were determined for all compounds
of series eq. (1), eq. (3) and eq. (4). In addition, ™ Ge-
NMR chemical shifts for the five compounds of series
eq. (2) in solution are given [11-16]. Semi-empirical
MO calculations have been done to support the con-
cept of a m—o* charge transfer. As will be seen from
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the results, these exhaustive calculations concluded to
be altogether unrewarding and fruitless.

Ph,_,SiR, R=0—Tol,m—Tol,p—Tol n=0-4.
)
Ph,_,GeR, R=p—Tol n=0-4. ?2)
Ph,_,SnR, R=0—Tol,m—Tol,p—Tol n=0-4.
3)
Ph,_,PbR, R=o0—Tol,m—Tol,p—Tol n=0-4.
“)

RESULTS AND DISCUSSION

Structural results

Figure 1 shows the molecular structures of Ph;Sn(o-
Tol) and of PhSn(o-Tol);. Relevant bond lengths and
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angles are listed in Table 1. Both molecules possess
crystallographically a S, symmetry, i.e. the ortho
methyl groups exhibit a statistical disorder. One of
the four possible ordered arrangements is given in Fig.
1, respectively.

As outlined for tetraaryls with phenyl and p-tolyl
substitution [1], the tetrahedra with M =C, Si, Ge are
elongated (two bond angles less and four bond angles
greater than 109.5°) whereas the tetrahedra with
M =Sn, Pb are compressed (two bond angles greater
and four bond angles less than 109.5°). This result is
valid also for the cases of o-tolyl and m-tolyl substi-
tution. Figure 2 gives a plot of d(M—C) vs the twofold
angle ®(C-M-C)—[2x] for all 18 cases Ph,_,MR,,
which have been investigated by X-ray crys-
tallography. At d(M—C)=2.06 A (cubic fit curve) an
overall repulsion between the aromatic groups trans-
forms into an overall attraction. For short M—C dis-
tances the through-space n—= repulsion predominates;
for long M—C distances the through-space n—o attrac-
tion prevails.

Ph (y, -x, -z)

o-Tol (x,y,2)

j .
- compressed

Ph (-x, -y, z)

N

tetrahedron

Ph (-y, x,-2)

Fig. 1. Ortep drawings of Ph;Sn(o-Tol) (top) and of PhSn(o-Tol); (continued). Only one of the four possible ordered

arrangements is given, respectively. Thermal ellipsoids are at the 20% probability level; hydrogen atoms are omitted for

better clarity. The molecules are compressed along the outlined pseudo S, axes. The group identifications include the
symmetry operators of the space group P42,c.



Tetraaryl-methane analogues

Ph (y, -x, -z)

o-Tol (x,y, z)

o-Tol (-y, x, -z)
Fig. 1. Continued.
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o-Tol (-x, -y, z)

-
.
.
.

compressed

tetrahedron

Table 1. Bond lengths (A) and bond angles (°) of Ph;Sn(o-Tol) and PhSn(o-Tol); and of Ph,Sn and Sn(o-Tol),* for comparison
(all compounds crystallize in the space group P42,c)

Compound Distance Sn—C(1) Two-fold angle Four-fold angle
C(1)-Sn—C(1a) C(1)-Sn—C(1b)
®(C-Sn—-C), . ®(C-Sn-C),,,

Ph,Sn 2.139(4) 111.2(2) 108.6(1)

Ph;Sn(o-Tol) 2.09(4) 111(2) 109(1)

PhSn(o-Tol), 2.157(8) 112.8(4) 107.8(4)

Sn(o-Tol), 2.152(5) 112.6(3) 107.9(1)

*See Ref. [17].

NMR chemical shifts

Table 2 gives the heteronuclear NMR chemical
shifts for the homoleptic and heteroleptic tetraaryls
Ph,_,MR, in CDClI; solution. The series eq. (2) is the
first systematic investigation of ?Ge-NMR chemical
shifts, which has been described (Figure 3) [11-16].

Table 3 gives the solid state”Si, "' Sn and *’Pb chemi-
cal shifts of the compounds of the series egs. (1, 3—
4). Figure 4 shows exemplarily for M=Sn the six
sequences of 5("'?Sn) in the solution (top) and in the
solid (bottom) state. The values are connected by
cubic fit curves.

With regard to the aliphatic compounds Me,M,
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Fig. 2. Plot of the bond distances d(M—C) (z&) vs the two-fold bond angle ®(C-M-C)-2 x (°) for 18 compounds Ph,_,MR,
M =C, Si, Ge, Sn, Pb; R=0-, m-, p-Tol; n=0-4) in relation to the distortion of the tetrahedra arognd M. Data from Ref.
[1-4] and references cited therein. Cubic fit curve (change of distortion at 2.06 A).

Table 2. Solution-state ?Si-, 7 Ge-, ''?Sn- and ®’Pb- NMR chemical shifts
(ppm?) for the series Ph,_,MR, eqs. (1-4)

M R Ph,M Ph,MR  Ph,MR, PhMR, MR,
Si  oTol —1398 —1439  —1390 —1342 —12.52
m-Tol —1425  —1424  —1423 —1434
p-Tol —1429  —1436  —1442  —14.55
Ge pTol —3290 —3249  —3171  —30.77 —31.24
Sn o-Tol —12801 —1267 —1247  —121.7 —1245
m-Tol —1302  —130.1  —1300 —12938
p-Tol —129.1  —127.7  —126.1  —124.6
Pb  oTol —179.0 —1704  —1612  —1529  —166.7
m-Tol —181.5  —1809  —1803  —179.5
p-Tol —179.5  —1763  —1740 —1713

*Solvent CDCl;; relative to the
respectively, ambient temperature.

the chemical shifts 6(*Si/*Ge/"'’Sn/*’Pb) of the
homoleptic members PhyM and MTol, are all upfield
and this shielding had been explained by a =(aro-
matic)—»o*(M) charge transfer' [1]. Between the

'A seeming exception is Ph,C with §(*C)= +65.0 ppm
(Me,C+28.0 ppm). The central carbon atom has four short
distances (cf. Figure 2) to the deshielding side-on position of
the aromatic ring current [1].

external standards Me,Si/Ge/Sn/Pb,

homoleptic end members Ph,Sn and SnR,, a sagging
pattern [8—10] holds. The sagging effect is different
for the solution and for the solid state. Furthermore,
the effect changes from the (o-Tol) to the (m-Tol)
to the (p-Tol) series. A possible explanation may be
that n—o* charge transfer depends on the torsion of
the aromatic groups about the M-C,, axis. In
solution the torsion angles easily arrange themselves,
such as, to optimize the energetic interactions among
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Me4Ge k 0.0 ppm
Ge(p-Tol)4 / \ -31.24 ppm

Ph3Ge(p-Tol) -32.49 ppm

Ph4Ge

-32.90 ppm

PPM
0
Fig. 3.7 Ge-NMR spectra for the series of compounds Ph,_,..
Ge(p-Tol), in CDCl, solution. Chemical shifts are given with
reference to Me,Ge.

the four aromatic groups whereas in the solid state
the torsion angles are constrained by the crystal
packing [7]. In solution, the sterically undemanding
groups m-tolyl and p-tolyl lead to an upfield sagging
(excess of charge, with regard to a linear course).
On the other hand, the sterically crowded o-tolyl
group leads to a distinct downfield sagging (shortage
of charge).

In accordance with the similar molecular forms of
the compounds with M = Sn and Pb (see Section struc-
tural results), the three solution state §(**"Pb) sagging
curves are nearly identical to those of 6("'*Sn) (Table
2 and Fig. 4). Also the three solid state §(*’Pb) sag-
ging curves show a close correspondence to those of
5('""?Sn). Similar torsions of the aromatic groups and
similar crystal structures can be assumed.

In solution the §(*Ge) and 5(*Si) sagging curves
show similar trends to those described for 5(''’Sn) and
(7Pb). The shortage of charge (downfield shift) is
enhanced for the case of the sterically very demanding
o-tolyl group at Si. However the known solid state
structures of the Si series are different and this fact
manifests itself in sagging curves definitely different
from those of Fig. 4.

Semi-empirical MO calculations

To support the concept of a n—¢* charge transfer,
semi-empirical MO calculations at the PM3 level
(MOPAC 6.0 program package, parameter set: [18,
19] (all 44 compounds Ph,_,MR,, molecular geo-
metries optimized starting from the known crystal
structures) and at the Extended Hiickel level [20]
(PhSn(o-Tol),, fixed geometry of the structure deter-
mination) were performed. The results are similar for
all compounds. On the basis of the main coefficients,
the energetic sequences of the MQO’s are in the order
eq. (5). With regard to this order, a definite higher
transition probability is needed for the assumed n—¢*
charge transfer (high energy gap) than for a n—n*
charge transfer (low energy gap) [21] (A quantitative
correspondence between the PM3 energy differences
and the energies of the experimental UV bands
between 240 and 270 nm does not exist.)

(several t— HOMO's)— (several mx« — LUMO’s)
—(four g+ —LUMO’s). (5)

Table 3. Solid-state *Si-, "'*Sn-, and *’Pb-NMR chemical shifts (ppm?) for
the series Ph,,MR, eqs. (1, 3-4)

M R Ph,M  Ph,MR  Ph,MR, PhMR, MR,
Si  oTol —14.07  —14.08 —17.01° —1479  —13.37
m-Tol —1281 —13.26 —12.65  —12.03
p-Tol —14.60 —13.75 —1348  —1331
Sn o-Tol —121.1  —123.1 —122.1 —123.6  —1274
m-Tol —120.2 —115.2 —111.4  —1075
p-Tol —~119.9 —117.7 —1188  —11838
Pb  o-Tol —146.7 —146.9 —151.1 —1502  —159.5
m-Tol 1478 —146.4 —1280  —1193
p-Tol —145.9 —142.0 —150.0  —148.8

#Conditions as given in Section 3.

® Additional trace signal at —14.7 ppm.
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Fig. 4. Course of "'?Sn-NMR chemical shifts vs n for the series of compounds Ph,_,SnR, (R=o0-, m-, p-Tol; n=0-4) in
CDCl; solution (top) and in the solid state (bottom). Cubic fit curves.

In detail, all PM3 calculations result in the energetic
a*-LUMO sequences eq. (6). With regard to the
NMR behavior of eqs. (1-4), no definite order or
correlation exist with E(6*~LUMO) or with its differ-
ence to the —HOMO, apart from the fact that the
MO sequences are most disturbed if the group (o-Tol)
is involved.

E(Si)> E(Pb) > E(Sn) > E(Ge). (6)

In fact, it can be concluded that semi-empirical cal-
culations have to lower a sophistication, to be of any
purpose in discussing the postulated n—¢* charge
transfer.
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EXPERIMENTAL
Synthesis

The 14 homoleptic compounds and the 12 het-
eroleptic p-tolyl compounds were prepared by litera-
ture methods [1-4]. For previous work on the o-tolyl
substituted silicon compounds, see Ref. [22-25]. The
mixed ortho- and meta-substituted tin and lead com-
pounds Ph,_,M(o-, m-Tol), (n=1-3; M=Sn, Pb)
were synthesized via a Grignard reaction with the
corresponding halides Ph,_,MX, (X=Cl, Br, I).
Compounds of the series Ph,_,SiM(m-Tol), (n=1-3)
were obtained by reaction of Ph,_,SiCl, with Li(m-
Tol). A representative detailed procedure follows for
the compound PhGe(p-Tol);, which had been
described in Ref. [1] as contaminated with Ge,(p-
Tol),. To 15.6mmol of (p-Tol)Li in 50ml ether is
slowly added, at ambient temperature 1.02 g (4 mmol)
of freshly distilled PhGeCls;, dissolved in 50 ml ether.
After 1h under reflux, the ether is distilled off and
substituted continuously by toluene. After further stir-
ring for 4 h under reflux and for 20 h at ambient tem-
perature, the solution is hydrolyzed by slow addition
of 1 M HCI. The organic layer is dried with Na,SO,,
the solvent distilled off and methanol added. The
crude product is separated by filtration, washed with
cold methanol and recrystallized from methanol/
toluene (3:1). Table 4 summarizes the results obtained
in this study.

Melting points were determined in glass capillaries
in a Kofler melting block. Elemental analyses (C and
H) were obtained from the Institut fiir Organische
Chemie, Universitit Mainz, with a Perkin-Elmer
CHN-Analyser 240.

Crystal structure determinations

Colorless single crystals of Ph;Sn(o-Tol) and
PhSn(o-Tol); were obtained by slow evaporation of a
CDCl; solution. As previously [1-4], the crystals of
the heteroleptic compounds were all of a poor quality.
An inspection by means of Weissenberg exposures
was essential. Both eventually chosen crystals had a
low diffraction power. A summary of crystal data,
intensity data collections and refinements, is given in
Table 5. The crystals were fixed with glue and sealed
in thin-walled glass capillaries. The experimental den-
sities were determined by flotation in an aqueous poly-
tungstate solution. Integrated intensities were
collected on an Enraf-Nonius CAD4 diffractometer.

Both compounds crystallize in the same tetragonal
space group P42,c as their homoleptic end members
(see the first footnote of Table 5). Trials of refinement
in a monoclinic setting resulted in distinctly worse
geometries and esd’s. The space group symmetry
requires a S, symmetry for both molecules, i.e. the
ortho-methyl groups are statistically disordered (site
occupations 0.25 and 0.75, respectively). On account
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of the small number of reflections of significant inten-
sity, only the Sn atom was given anisotropic thermal
parameters, the C atoms were handled isotropically.
The hydrogen atoms were calculated as riding on their
carbon atoms. For calculations and drawings local
versions of SHELX-76 and ORTEP were used. Tables
listing details of crystal data and structure deter-
minations, full sets of parameters (Sn, C and H), all
bond lengths and angles and torsion angles and lab-
elled plots have been deposited at the Cambridge
Crystallographic Data Centre as supplementary
material.

Solution state NMR

#Si-, "”Sn- and *"Pb-NMR spectra were recorded
on a Bruker WP 80/DS instrument (digital resolution
0.5Hz) at 15.92MHz (*Si), 29.88 MHz ("'°Sn) and
16.74 MHz (®’Pb). Solution state ” Ge-NMR spectra
were recorded on a Jeol INM-GX 270 spectrometer
(frequency 9.3 MHz, sweep width 2000 Hz, acqui-
sition time 2s, scans 1500). The chemical shifts are
relative to the external standards Me,Si, Me,Ge,
Me,Sn and Me,Pb. Solutions of 100400 mg of com-
pound/3 mL of CDCI; were used.

Solid state NM R

#Si-, ""?Sn- and ®’Pb-NMR spectra were measured
on a Bruker MSL-300S spectrometer operating at
59.641,111.922 and 62.55 MHz, respectively. Samples
of 300 mg of the organosilicon and lead compounds
were packed into 7mm zirconia rotors and spun at
the magic-angle, at speeds of 2.5kHz. The organotin
compounds (ca. 100 mg) were measured in 4 mm zir-
conia rotors at SkHz. Spectra were obtained with
broad-band double air-bearing cross-polarization
Bruker WB-BL probes, at ambient temperature
(295K) from single contact cross-polarization (CP)
experiments.

Solid state ¥ Si-NMR: spectral width, 20 kHz; pulse
width, 5.5 us (90°) 'H pulse; contact time, 1 ms; recycle
time, 20s; chemical shifts with respect to kaolinite
(6*Si)= —91.5 ppm (Q* connected Si) [26, 27]; set up
of the CP conditions and use as an external standard.
Solid state ''*Sn-NMR: spectral width, 33 kHz; pulse
width, 4.0us (90°) 'H pulse; contact time, 10ms;
recycle time, 10 s; chemical shifts with respect to Sn(c-
Hex), (6("°Sn)= —97.4ppm [28]; set up of the CP
conditions and use as an external standard. Acqui-
sition of 128 scans was sufficient to obtain spectra
with a satisfactory signal to noise ratio. Solid state
27Pb-NMR: spectral width, 62.5kHz; pulse width,
3.5-4.0 us (90°) 'H pulse; contact time, 5-20 ms; recy-
cle time, 30s; chemical shifts with respect to Pb(p-
Tol), (6(®"Pb)= —148.8 ppm [29, 30]; set up of the
CP conditions and use as an external standard).
Acquisition of 64-128 scans was sufficient to obtain
spectra with a satisfactory signal to noise ratio.
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Table 5. Summary of crystal data, intensity data collection (Mo radiation, ambient
temperature) and refinement for Ph;Sn(o-Tol) and PhSn(o-Tol);

Ph;Sn(o-Tol)

PhSn(o-Tol),

Cryst. syst., space group
Unit cell dimen.: a, ¢ (A)*
V (A%), Z, F(000)

tetragonal, P42 c
12.002(3), 7.204(4)
1038(2), 2, 444

tetragonal, P42 c
12.032(1), 7.853(2)
1136(1), 2, 476

Deuieas Depu (gem™?) 1.411, 1.407 1.372,1.372
sin 60,,,,/0.71069 (A") 0.595 0.704

Refl.: meas., indep. (int.R) 3696, 767(0.102) 3664, 1340(0.026)
Refl.: used, limit 273, I>1a(]) 682, I>1 a(l)
Variab., ratio refl./var. 36, 7.6 35,19.5
Final R 0.0915 0.0542

“Ph,Sn: a=12.058(1), c=6.581(1) A, ¥'=957 A% Sn(o-Tol),: a=12.021(1), c =8.054(1)

A, V'=1164 A® (see Ref. [17]).
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