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Abstract: Synthesis of squalestatin S1 C4 carboxamide, 2, as well as rclated C-4 amides and C4
hydquymelhyl derivalives posscssing a C-3 hydroxymethyl group (15 and 19) together with their SQS
inhibitory activitics arc presented. Copyright © 1996 Elsevier Science Ltd

Squalestatins/zaragozic acids are a family of fungal metabolites which possess potent inhibitory activities
against squalene synthase (SQS), an enzyme committed to cholesterol biosynthesis, and squalestatin 1, S1,
possesses a profound cholesterol lowering ability in vivo."! Previously we reported that the C-4 monomethyl
ester’ of S1 as well as C-4 decarboxy derivatives? retain potent SQS inhibitory activities. We now report on the
synthesis of S1 C-4 carboxamide 2 and our efforts towards the C-4 hydroxymethylS1 3 to assess

o)
1,81,R =CO,H 7 = ﬁok/\:/\/\

2,R= CONHz

QAc
3,R = CH,0H A= W

whether a hydrogen bond donating group is tolerated at C-4. Similarly we have reported that the good potency

shown by C-3 hydroxymethylS1 is retained in its C-4 monomethyl ester,' related 4-modified analogues having a
C-3 hydroxymethyl group are also described.
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Synthesis of §1 C-4 carboxamide 2 and C-4 hydroxymethylS1 3 via direct modifications of a suitably
protected C-4 carboxyl group was attempted initially. Thus activation of the C-4 carboxy group in § (readily
available in 92% yield from 4) with the Vilsmeier salt followed by reduction with a DMF solution of NaBH,
gave a product that was not inconsistent with a C-4 hydroxymethyl product by 'H-NMR. However its
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deprotection with HCl-dioxan gave S1 C-7 acetate 7. Analysis of the “reduction” product by spectroscopic
techniques revealed its identity as the spiroacetal 6.” Indeed omitting NaBH, in the reaction of Vilsmeier salt
with 5 also gave 6 (37%). A plausible explanation for the formation of 6 was the intramolecular cyclisation of
the C-4 activated ester by the C-4 acetoxyl group. Similar treatment of the Vilsmeier-activated intermediate
derived from 4, or the related C-3 methyl ester, with gaseous ammonia also failed to give the corresponding C-4
amide and we believe steric crowding around the C-4 carbonyl group precluded nucleophilic attack by the
external nucleophile. In order to reduce such steric congestion an indirect approach was investigated vig 10.
Activation of the acid 10 with N-hydroxysuccinimide (NHS) and a water-soluble carbodimide (CMC) followed
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a. (1-BuO),CHNMg,, wolucne, A. b, 1 cq. aqucous NaOH, THF, r.t.  c¢. N-hydroxysuccinimide (NHS), 1-cyclohexyl-3-(2-
morpholinocthyl)-carbodiimide mctho-p-toluencsulphonaic (CMC), NaBH,, THF.  d. HCl-dioxan. e. DMF, (COCI),, CH,Cl,-
MeCN, 0 °C then NH,, -78 °C. [. CMC, NHS, THF, r.t., 23h. g. NH;, THF, -78 °C. h. 4-5 aum. O, 10% P1-C, H,0, pH8, 90-
100 °C, 13 d. i. 14 mol% RuCls, 2.5 eq. K3S:0%, 14 eq. 2,4 6-collidinc, H,O, r.l. 5 d. j. As in i. cxcept 16 mol% RuCl; and 6 d.

by reduction with NaBH, gave the C-3 hydroxymethyl derivative 11 (60%). Selective deprotection by
controlled exposure of 11 to HCl-dioxan gave the C-4 acid 12 whose regiochemistry was confirmed by its
conversion to the lactone 14 (vide infra). Vilsmeier activation of 12 followed by treatment with liquid ammonia
in THF at -78 °C thereby gave the C-4 carboxamide 13 (57%)." It is of particular interest to note that treatment
of 12 with NHS and CMC gave the trans-fused lactone 14° (49%). We believe that amide 13 was formed via
the intermediacy of 14 in which the reduced congestion about the lactone carbonyl group coupled with its
altered orientation relative to the C-4 carboxyl in 4 made it more susceptible to attack by an external
nucleophile. Indeed treatment of the zrans-fused lactone 14 with ammonia in THF at -78 °C gave the C-4
carboxamide 13 in quantitative yield. 13 was deprotected to provide the acid 15° (60%).
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Re-oxidation of the C-3 hydroxymethy! group was initially investigated with the readily available C-3
hydroxymethylS1 potassium salt 16.' Prolonged treatment of 16 with oxygen® in the presence of 10% Pt-C
afforded S1. A similar result was obtained with RuCl; in the presence of potassium persulphate buffered with
2,4,6-collidine” and this latter method was successfully applied to the oxidation of the potassium salt of 15 to
provide §1 C-4 carboxamide 2° (67%). These direct oxidation methodologies complement the two step
procedures used by Carreira® and Nicolaou” in their total synthesis of squalestatins/zaragozic acids.
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a. HCl-dioxan. b. (i) (COCl),, DMF, CH,Cl; ; (ii) THF, McCN, 0 to -30 °C, 1h; (iii) NaBH,, DMF, -78 to -20 °C, 2h.

Synthesis of C-3,C-4 bis(hydroxymethyl)S1 19 was achieved via controlled treatment of 10 with HCI-
dioxan to give the diacid 17. Reaction of the latter with excess Vilsmeier reagent followed by NaBH,, under
carefully controlled conditions,'® gave the 3,4-bis(hydroxymethyl) product 18 (28%). Deprotection under
standard conditions gave 19° (37%). However attempts to oxidise 18 or its derivatives to 3 using the above
conditions were unsuccessful.

Effects of the potassium salts of 2, 15 and 19 on the conversion of {*H]-farnesyl pyrophosphate to [*H]-
squalene by rat microsomal SQS' were evaluated. C-4 carboxamide 2 was 15 fold less active (ICso 175 nM)
than S1 1 (ICsp 12 nM) and in contrast 1o the good activity shown by C-3 hydroxylmethylS1 16 (ICso 15 nM)
and its C-4 methyl ester 20' (ICs, 79 nM), the related C-4 carboxamide 15 and C-4 hydroxylmethy! analogue 19
were without significant activities (ICso >1000 and 742 nM respectively). These data suggested that a hydrogen

bond donating group is not well tolerated at C-4.
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3. Spectroscopic data for key compounds arc shown below:
2: 3(ds-DMSO) includes 0.75 - 0.85 (m, 9H, 3 Mc), 0.98 (d, 3H, McCHCH=CHCO,, J = 7 Hz), 1.02 - 1.15 (m,
2H), 1.21 - 1.38 (m, 3H), 1.79 - 1.88 (m, 2H), 2.08 (s, 3H, McCOy), 2.62 (dd, 1H, proion of PhACH,, I = 14 & 6
Hz),3.82 (d, 1H, H-7,J =2 Hz), 491 (s, 2H, C=CH,), 4.98 (s, 1H, H-3), 5.0 (d, 1H, CHOACc, J = 5 Hz), 5.73
(d, TH, CH=CHCO,, J = 15 Hz), 5.90 (broad s, 1H, 7-OH), 6.37 (d, 1H, H-6, ) = 2 Hz), 6.72 (dd, 1H,
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CH=CHCO,, J = 15 & 8 Hz), 6.93 and 7.06 (2 broad s, 2H, CONH5), 7.10 - 7.2 & 7.25 - 7.36 (2m, 5H, Ph).
MS: For C3sHgNOy3, 661 (M - H).

6: '"H-NMR(400MHz): CDCl3) includes 0.9 (d, 3H, McCHCH=CHCO,, ] = 7 Hz), 1.46 & 1.50 (25, 18H, 2
t-Bu), 2.09 & 2.19 (2s, 6H, 2 MeCO,), 2.70 (dd, 1H, onc proton of PhCH,, J = 14 & 5§ Hz), 3.85 (ABq, 2H,
(0);C=CHa, ] = 5 Hz), 4.92 (s, 1H, H-3), 4.98 & 5.0 (2s, 2H, C=CH,), 5.12 (d, 1H, CHOAc, J = 5.5 Hz), 5.29
(d, 1H, H-7, 1 = 2.5 Hz), 5.74 (d, 1H, CH=CHCQ,, J = 15.5 Hz), 6.05 (d, 1H, H-6, J = 2.5 Hz), 6.92 (dd, 1H,
CH=CHCO,, 1 = 15.5 & 8 Hz), 7.12 - 7.31 (m, 5H, Ph). *C-NMR(100MHz): 3(CDCl3) 11.0 (MeCH,), 13.8
(McCHCH,Ph), 18.8 (McCHEL), 20.1 (CH=CHCHMg), 20.08 & 21.0 (2 McCO2), 25,1 (CH,C=CHj), 27.6 &
27.7 (2 MesC), 29.7 (CH Mc), 31.7 (CHEW), 33.8 (CH,CH,C=CHy,), 34.4 (CHC=CHCO,), 36.8 (CHCH,Ph),
39.9 (CH,Ph), 43.2 (McCHCH,CHEY), 63.2 (CH,=C(0),), 72.8 (C-3), 75.2 (C-6), 78.0 (C4), 79.3 (CHOAC),
79.8 (C-7), 85.5 & 86.0 (2 Mc3CO,C), 87.5 (C-5), 105.3 (C-1), 112.1 (C=CH,), 117.8 (CH=CHCO,), 125.9
(para-C of Ph), 128.3 (2 ortho-C of Ph), 129.2 (2 meta-C of Ph), 140.4 (quaternary C of Ph), 145.2 (C=CH,),
157.1 (CHz=C(0)2), 157.7 (CH=CHCO,), 162.8 (C-3 CO,1Bu), 164.3 (CH=CHCO,), 165.8 (C-4 CO»), 169.0
& 170.0 (2 CH3;CO,). Voax (KBr) 1830, 1772, 1737, 1703 cm™. Accurate mass (+ve electrospray; MH" for
CsHeaOys) found: 869.4358; calculated: 869.4323. Heteronuclear multiple bonds correlation (HMBC) studies
showed a one bond C-H coupling of 165 Hz between the CH; protons at & 3.85 and carbon at & 63.2 consistent
with a sp® exo-methyicne group. Optimised at 6 Hz, these studics showed small correlations of the exo-methylenc
protons to the C-4 carbon (8 78) and the C=0 of the 1,3-dioxolan-4-onc unit (3 165.8). Together with
corrclations of the C-3 proton (8 4.92) to the latter carbon and the C-3 ester C=0 (8 162.8), these data confirmed
the identity of 6. A similarly low 8 values for the exo-mcthylene group of 5,5-dimethyl-2-methylene-1,3-dioxolan-
4-one unit has been reported by Friary, R. J. Heterocycl. Chem. 1978, 15, 63-64.

15: § (de-DMSO) includes 0.74-0.87 (m, 9H, 3 Mc), 0.98 (d, 3H, McCHCH=CHCO,, ] = 6 Hz), 2.09 (s, 3H,
MeC0Oy), 2.62 (dd, 1H, onc proton of CHyPh, J = 13 & 6 Hz), 3.35-3.5 (m, 2H, CH,OH), 3.84 (dd, 1H,H-7, ] =
S & 2 Hz), 4.46 (m, 1H, H-3),4.71 (1, 1H, CH,0H, J = 5 Hz), 4.89 (s, 2H, C=CH,), 4.97 (d, 1H, CHOAc, } =4
Hz), 5.76 (d, 1H, CH=CHCO,, J = 15 Hz), 5.81 (d, H, 7-OH, J = 5 Hz), 6.32 (d, 1H, H-6, ] = 2 Hz), 6.72 (dd,
1H, CH=CHCO,, J = 15 & 8 Hz), 5.89 & 7.1 (2 broad s, 2H, CONHy), 7.12 - 7.32 (m, 5H, Ph), 12.83 (broad s,
1H, COH). Voma(CHBr3) 3477 (OH), 1725 (ester & carboxylic acid C=0), 1702 (amide C=0), 1649 (amide 11
band) cm'l. MS (DC], NH3) For C35H49N0|2. 693 (MN H4+), 676 (MH+)

19: 8(ds-McOH) 0.8 - 0.95 (m, 9H, 3 M), 1.06 (d, 3H, McCHCH=CHCO;, J = Hz), 1.1 - 1.25 (m, 2H), 1.3 -
1.45 (m, 3H), 1.88 - 2.03 (m, 2H), 2.12 (s, 3H, McCQ,), 2.19 - 2.52 (m, 4H), 2.56 (dd, 1H, proton of PhCHy, J
= 14 & 6 Hz), 3.75 (dd, 1H, onc proton of CH;OH at 3,1 = 12 & § Hz), 3.81 & 4.03 (2d, 2H, CH,OH at 4, ] =
12 Hz for both), 3.96 (dd, 1H, onc proton of CH,OH a1 3, J = 12 & 2.5 Hz), 4.04 (s, 1H, H-7), 4.46 (m, 1H, H-
3),4.96 & 5.01 (2s, 2H, C=CH,), 5.08 (d, 1H, CHOAc, J = 4 Hz), 5.82 (d, 1H, CH=CHCO,, J = 16 Hz), 5.98
(d, 1H, H-6, ] = 2 Hz), 6.87 (dd, 1H, CH=CHCO,, J = 16 & 8 Hz), 7.16 - 7.20 & 7.22 - 7.30 (2m, 5H, Ph). MS
(-ve FAB): For C3sHsyO13, 661 (M - H).

The corresponding N, N-dimethylcarboxamide was also isolated as a by-product (16%) which was presumably
formed by reaction with dimethylamine derived from DMF.

14: 5(CDCly) includes 0.8-0.9 (m, 9H, 3 Mc), 1.06 (d, 3H, McCHCH=CHCO,, ] = 7 Hz), 1.57 (s, H, t-Bu),
2.1 (s, 3H, McCO,), 2.68 (dd, 1H, one proton of PhCH,, J = 14 & 5.5 Hz), 3.38 (d, 1H, 7-OH, ] = 3 Hz), 3.56
(s, 1H, 4-OH), 4.08 (1, 1H, H-7, ) = 2 Hz), 4.89 (d, 1H, H-6, ] = 2 Hz), 4.3 - 4.6 (m, 3H, CHCH:0), 4.96 &
5.00(2s, 2H, C=CH,), 5.08 (d, 1H, CHOAc, ] =5 Hz), 5.8 (d, 1H, CH=CHCO,, ] = 16.5 Hz), 6.95 (dd, IH,
CH=CHCO,, ] =16.5 & 9.5 Hz), 7.1 - 7.3 (m, 5H, Ph). Inversc long range heteronuclear multiple bond
correlation studics showed a corrclation between 165.59 (lactone C=0 at C-4) and 4.35-4.43 (CHCH,0CO)
confirming the lactone bond linkage to the C-3. Strong nOc from 4.89 (H-6) — 4.55 (H-3) confinned the natural
stercochemistries at these posilions. v, (CHBr3): 3540 (OH), 1808 (lactone C=0), 1731 (ester C=0) cm’. MS
(DCI, NHa): For C3Hs:NOy2, 732 (MNH,"), 676 (MH," - tBu), 674 (M - 1Bu). A similar trans-fused lactone was
reported by the group at Merck: Kuo, C. H.; Plevyak, S. P.; Bifw, T.; Parsons, W. H.; Berger, G. D.
Tetrahedron Lett. 1993, 34, 6863-6866.
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