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Abstmcf: Synthesis of squalcstatin Sl C-4 carboxamide, 2, as well its rclatcd C-4 amides and C-4 
hydroxymethyl derivatives possessing a C-3 hydroxymcthyl group (15 and 19) togclher with their SQS 
inhibitory activities arc prcscntcd.Copyright 0 1996 Elsevier Science Ltd 

Squalestatins/zaragozic acids are a family of fungal metabolites which possess potent inhibitory activities 
against squalene synthase (SQS), an enzyme committed to cholesterol biosynthesis, and squalestatin 1, Sl, 
possesses a profound cholesterol lowering ability in viva.’ Previously we reported that the C-4 monomethyl 

ester’ of Sl as well as C-4 decarboxy derivatives2 retain potent SQS inhibitory activities. We now report on the 
synthesis of Sl C-4 carboxamide 2 and our efforts towards the C-4 hydroxymethylS1 3 to assess 
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whether a hydrogen bond donating group is tolerated at C-4. Similruly we have reported that the good potency 
shown by C-3 hydroxymethylS1 is retained in its C-4 monomethyl ester,’ related 4-modified analogues having a 

C-3 hydroxymethyl group are also described. 
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Synthesis of Sl C-4 carboxamide 2 and C-4 hydroxymethylS1 3 viu direct modifications of a suitably 
protected C-4 carboxyl group was attempted initially. Thus activation of the C-4 carboxy group in 5 (readily 

available in 92% yield from 4) with the Vilsmeier salt followed by reduction with a DMF solution of NaBH4 
gave a product that was not inconsistent with a C-4 hydroxymethyl product by ‘H-NMR. However its 
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deprotection with HCl-dioxan gave Sl C-7 acetate 7. Analysis of the “reduction” product by spectroscopic 
techniques revealed its identity as the spiroacetal 6.’ Indeed omitting NaBH4 in the reaction of Vilsmeier salt 
with 5 also gave 6 (37%). A plausible explanation for the fomlation of 6 was the intramolecular cyclisation of 
the C-4 activated ester by the C-4 acetoxyl group. Similar treatment of the Vilsmeier-activated intermediate 
derived from 4, or the related C-3 methyl ester, with gaseous ammonia also failed to give the corresponding C-4 
amide and we believe steric crowding around the C-4 carbonyl group precluded nucleophilic attack by the 
external nucleophile. In order to reduce such steric congestion an indirect approach was investigated via 10. 
Activation of the acid 10 with N-hydroxysuccinimide (NHS) and a water-soluble carbodimide (CMC) followed 
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a. (t-BuO)ZCHNMC~, tolucnc, A. b. 1 cq. aqueous NaOH, THF, r.1. c. N-hydroxysuccinimide (NHS), I-cyclohexyl-3-(2- 

morpholinocthyl)-carbodiimidc mctho-p-tolucncsulph~)n~lc (CMC), NaBH4, THF. d. HCI-dioxan. e. DMF, (COCI)I, CH2C12- 

MeCN, 0 “C lhcn NH3, -78 “C. 1’. CMC, NHS, THF, T.L., 23h. g. NH,, THF, -78 “C. h. 4-S atm. 02, 10% PI-C. H20, pH8, W 

100 “C, 13 d. i. 14 mol% RuCIj, 2.5 cq. K2S20Y, I4 eq. 2,4,6-collidinc, H20, r.1. S d. j. As in i. cxccpt 16 mol% RuCI, and 6 d. 

by reduction with NaBH4 gave the C-3 hydroxymethyl derivative 11 (60%). Selective deprotection by 
controlled exposure of 11 to HCI-dioxan gave the C-4 acid 12 whose regiochemistry was confirmed by its 
conversion to the lactone 14 (vide infra). Vilsmeier activation of 12 followed by treatment with liquid ammonia 

in THF at -78 ‘C thereby gave the C-4 carboxamide 13 (57%).4 It is of particular interest to note that treatment 
of 12 with NHS and CMC gave the trans-fused lactone 14’ (49%). We believe that amide 13 was formed via 
the intermediacy of 14 in which the reduced congestion about the lactone carbonyl group coupled with its 
altered orientation relative to the C-4 carboxyl in 4 made it more susceptible to attack by an external 

nuclcophile. Indeed treatment of the truns-fused lactone 14 with ammonia in THF at -78 “C gave the C-4 
carboxamide 13 in quantitative yield. 13 was deprotected to provide the acid 1S3 (60%). 
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Re-oxidation of the C-3 hydroxymethyl group was initially investigated with the readily available C-3 
hydroxymethylS1 potassium salt 16.’ Prolonged treatment of 16 with oxygen6 in the presence of 10% Pt-C 
afforded Sl. A similar result was obtained with RuCl3 in the presence of potassium persulphate buffered with 
2,4,6-collidine’ and this latter method was successfully applied to the oxidation of the potassium salt of 15 to 
provide Sl C-4 carboxamide 23 (67%). These direct oxidation methodologies complement the two step 
procedures used by Carreira’ and Nicolaou9 in their total synthesis of squalestatins/zaragozic acids. 
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Synthesis of C-3,C-4 bis(hydroxymethyl)Sl 19 was achieved via controlled treatment of 10 with HCI- 

dioxan to give the diacid 17. Reaction of the latter with excess Vilsmeier reagent followed by NaBI&, under 

carefully controlled conditions,” gave the 3,4-bis(hydroxymethyl) product 18 (28%). Deprotection under 

standard conditions gave 19’ (37%). However attempts to oxidise 18 or its derivatives to 3 using the above 

conditions were unsuccessful. 

Effects of the potassium salts of 2, 15 and 1Y on the conversion of [‘HI-famesyl pyrophosphate to [‘HI- 

squalene by rat microsomal SQS’ were evaluated. C-4 carboxamide 2 was 15 fold less active (GO 175 nM) 

than Sl 1 (ICSO 12 nM) and in contrast to the good activity shown by C-3 hydroxylmethylS1 16 (IC~O 15 nM) 

and its C-4 methyl ester 20’ (ICS~) 79 nM), the related C-4 carboxamide 15 and C-4 hydroxylmethyl analogue 19 

were without significant activities (I& >l(X)o and 742 nM respectively). These data suggested that a hydrogen 

bond donating group is not well tolerated at C-4. 
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