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Abstract: A highly regioselective esterification of various D-glu-
copyranosides with triethylamine and acid anhydrides in excellent
yields is described here. Its application toward the synthesis of a ful-
ly protected disaccharide unit of hyaluronic acid is also highlighted.
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Regioselective protection of individual hydroxy groups is
of crucial importance in carbohydrate chemistry.1 For the
preparation of selectively protected glycosyl acceptors or
donors toward the synthesis of oligosaccharides or glyco-
conjugates, acetyl (Ac) and benzoyl (Bz) are generally
used as electron-withdrawing protecting groups to block
single hydroxyls. Some strategies have been reported for
regioselective introduction of acyl groups via direct treat-
ment with benzoyloxybenzotriazole2 (BzOBT, commer-
cially non-available), or selective activation of hydroxy
groups through stannylene acetals3 as well as enzymes.4

These methodologies mostly have their advantages and
disadvantages, which may give low selectivity and yields,
involving tedious purification of regioisomers. To tackle
this problem, we have employed a very simple combina-
tion of triethylamine with acid anhydrides as mild esteri-
fication reagents to study the regioselectivity of various
D-glucopyranosides.

Table 1 illustrates the results of regioselective acetylation
and benzoylation on a variety of D-glucopyranosyl diols.5

Initially, benzoylation of methyl 4,6-O-benzylidene-a-D-
glucopyranoside 1 with 1.4 equivalents of benzoic anhy-
dride and 9 equivalents of triethylamine in dichlo-
romethane at room temperature led to the corresponding
2-benzoate 26,2 in excellent yield (92%, entry 1) as a sole
product. Similar phenomenon was observed when Ac2O
was used as an acetylating agent, affording the desired 2-
acetate 37 in 80% yield (entry 2). It should be noted that a
random esterification occurs if pyridine is used in place of
triethylamine. In entries 3-8, the a-allyl glucopyranoside
4, p-methoxybenzylidene acetal 7, and p-bromoben-
zylidene acetal 10 were selected to examine the compati-
bility of substituted groups at the anomeric, O4, and O6
positions, and the corresponding 2-esters 5,8 6,9 8, 9, 11,
and 12 were obtained in good yields, respectively. Owing

to the inductive effect of the two oxygen atoms at the ano-
meric center, the C2-oxide formed in triethylamine solu-
tion reacts predominantly with various anhydrides to
furnish the esters in high selectivity. As expected from the
steric considerations, a clear-cut preference was observed
for 6-O-protection during acylation of the 4,6-diol 13, to
give the corresponding 6-benzoate 14 (entry 9) and 6-ac-
etate 15 (entry 10) in 83% and 79% yields, respectively.

Table 1 Regioselective Esterification of Various D-Glucopyrano-
sides with Triethylamine and Acid Anhydrides at Room Temperature

Entry Glucopyranoside Product Yield (%)

1
2

1 2: R = Bz
3: R = Ac

93
80

3
4

4 5: R = Bz
6: R = Ac

78
64

5
6

7 8: R = Bz
9: R = Ac

86
69a

7
8

10 11: R = Bz
12: R = Ac

88
65a

9
10

13 14: R = Bz
15: R = Ac

83
79

11
12

16 17: R = Bz
18: R = Ac

93
92

a Compounds 7 and 10 were recovered in 13% and 18% yields, 
respectively.
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Since D-glucosamine is a typical component of numerous
biomolecules, for example, glycosaminoglycans, blood
group antigens, N-glycoproteins and GPI anchors, it was
thought worthwhile to examine the regioselective dis-
crimination of the hydroxy groups at C1 and C3. In entry
11, 2-azido-2-deoxy-4,6-O-benzylidene-D-glucopyranose
16, generated from D-glucosamine hydrochloride in two
straightforward steps,10 was subjected to benzoylation un-
der these conditions. It was heartening to see the forma-
tion of the corresponding b-anomeric benzoate 17 as a
sole isomer (93%) in a highly regio- and stereoselective
manner. Its absolute configuration was unambiguously
determined through the X-ray single crystal analysis.11

Similarly, acetylation of 16 (entry 12) furnished the b-
anomeric acetate 18 in 92% yield. The high regio- and
stereoselectivity in this case is perhaps induced by a close
interplay of various factors. The higher reactivity of the
anomeric hydroxy group stems out from its higher acidity
in mild basic conditions, to gererate higher proportion of
anomeric alkoxide that reacts preferentially with bulky
acylating agents resulting in observed regioselctivity.
Along with this, the kinetic streoelectronic effect12 and
1,3-diaxial repulsion orient the oxide toward the equatori-
al position, giving the b-isomer, exclusively.

Hyaluronic acid (HA), an ubiquitous glycosaminoglycan
found in almost all tissues, possesses unique viscoelastic
and rheological properties.13 It plays significant roles in a
diverse set of biological processes including cell adhe-
sion, hemopoiesi and angiogenesis.12 HA is a negatively
charged linear polysaccharide consisting of b-1,4-linked
repeating disaccharide units of b-1,3-linked D-glucuronic
acid and N-acetyl-D-glucosamine. The literature has doc-
umented some strategies to prepare HA-related mole-
cules. Enzymatic synthesis from UDP-2-acetamido-2-
deoxy-a-D-glucopyranose and UDP-a-D-glucuronic acid

catalyzed by HA synthase could lead to a polymer
(n = 1,500).14 Chemical methods having either a D-
glucosamine15 or a D-glucuronic acid15d,16 residue at the
reducing end have been investigated.

From the basic structure of the disaccharide repeating-unit
in HA, a free hydroxy group at the C3 position of D-glu-
cosamine residue is required for further glycosylation.
With the key synthon 17 in hands, our approach to the
synthesis of HA-disaccharide is outlined in Scheme 1. It
starts from the glycosyl bromide 19, which can be conve-
niently prepared from commercially available D-glucurol-
actone in three steps.17 Silver trifluoromethanesulfonate-
activated coupling of the donor 19 with the alcohol 17 in
the presence of 2,6-di-t-butyl-4-methylpyridine (DBMP)
yielded the single orthoester 20 (80%) without isolation of
any desired product. On the other hand, hydrolysis of
compound 19 with silver carbonate in acetone and water
(97%) followed by treatment with trichloroacetnitrile em-
ploying 1,8-diazabicyclo[4.3.0]undecane (DBU) as a base
provided the corresponding trichloroacetimidate 21
(73%), which was subjected to couple with the glycosyl
acceptor 17 to give the desired disaccharide 2218 in 81%
yield. The b-configuration of the newly formed glycosidic
bond is determined according to the trans-diaxial cou-
pling constant (J1,2 = 8.0 Hz) of anomeric proton in the
D-glucuronate unit. Reaction of compound 22 with thio-
acetic acid afforded the expected N-acetyl derivative 2318

(75%), a fully protected HA-disaccharide unit.

In conclusion, we have successfully developed a highly
regioselective acetylation and benzoylation of the D-glu-
copyranosyl 2,3-diols at O2, D-glucopyranosyl 4,6-diols
at O6, and D-glucosamine-derived 1,3-diol at O1, using a
very simple and mild reagent combination. The prepara-
tion of a fully protected HA-disaccharide via assembly of
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the key building block 17 with the trichloroacetimidate 21
followed by transformation of N3 into NAc group is also
carried out efficiently. Applications of the disaccharides
22 toward the synthesis of HA-related oligosaccharides
are currently under investigation.
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calcd for C33H36N3O15: 714.2146. Found: 714.2111. Anal. 
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25 –66.2 (c 0.9, 
CHCl3). Mp 188–189 °C. IR (CHCl3): n = 3417 (w), 2955 
(m), 1756 (s), 1751 (s), 1735 (s), 1654 (m), 1249 (s), 1084 
(s), 753 (m)cm–1. 1H NMR (400 MHz, CDCl3): d = 8.06 (d, 
J = 7.5 Hz, 2 H, ArH), 7.60 (t, J = 7.5 Hz 1 H, ArH), 7.48–
7.44 (m, 4 H, ArH), 7.41–7.37 (m, 3 H, ArH), 6.29 (d, 
J = 7.9 Hz, 1 H, H-1), 5.87 (d, J = 7.9 Hz, 1 H, NH), 5.52 (s, 
1 H, benzylidene), 5.23–5.15 (m, 2 H, H-3¢, H-4¢), 5.00 (t, 
J = 7.7 Hz, 1 H, H-2¢), 4.90 (d, J = 7.7 Hz, 1 H, H-1¢), 4.45 
(t, J = 8.7 Hz, 1 H, H-3), 4.36 (dd, J = 8.9, 3.3 Hz, 1 H, H-
6), 3.95–3.89 (m, 2 H, H-2, H-4), 3.82–3.72 (m, 3 H, H-5, H-
5¢, H-6), 3.62 (s, 3 H, OMe), 1.99 (s, 3 H, OAc), 1.98 (s, 3 H, 
OAc), 1.96 (s, 3 H, OAc), 1.94 (s, 3 H, OAc). 13C NMR (100 
MHz, CDCl3): d = 170.42 (C), 170.05 (C), 169.43 (C), 
169.39 (C), 167.08 (C), 164.81 (C), 136.97 (C), 133.82 
(CH), 130.09 (CH), 129.12 (CH), 128.65 (CH), 128.60 
(CH), 128.29 (CH), 126.07 (CH), 101.51 (CH), 99.67 (CH), 
92.38 (CH), 79.76 (CH), 77.32 (CH), 72.09 (CH), 71.56 
(CH), 69.24 (CH), 68.57 (CH2), 66.63 (CH), 55.43 (CH), 
52.68 (CH3), 23.29 (CH3), 20.53 (CH3), 20.43 (CH3). HRMS 
(FAB, MH+) calcd for C35H40NO16: 730.2347. Found: 
730.2360. Anal. Calcd for C35H39NO16: C, 57.61; H, 5.39; N, 
1.92. Found: C, 57.58; H, 5.33; N, 1.85.
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