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Simulating the Impact During 
Human Jumping by Means 
of a 4-Degrees-of-Freedom Model 
With Time-Dependent Pro pert ies 

Martin Fritz 
lnstitut fur Arbeitsphysiologie 
an der Universitat Dortmund 

ABSTRACT. The authors simulated the vertical movements of a 
jumper and the force time courses by means of a 4-degrees-of- 
freedom model consisting of 4 masses, springs, and dampers. Of 
the motions simulated, only that of the mass imitating the trunk 
corresponded to the measured data. The best fit to the measured 
force curves were obtained in the simulation in which time-depen- 
dent model parameters were used. From the results, the authors 
concluded that at the beginning of the landing, a jumper behaves 
like a 2-mass model in which the leg segments (thighs, shanks, and 
feet) effectively combine into 1 mass. After approximately 60 ms, 
the connections between the leg segments become more compliant 
and the jumper behaves like a 4-mass model with a soft coupling 
between the leg segments. The process is equivalent to an increase 
of the degrees of freedom of the movements. At the end of the 
ground contact phase during hopping, the jumper has to contract 
the muscles in order to reach the envisaged jump height. In the 
model, that contraction could not be satisfactorily simulated. 

Key words: ground reaction force, muscle activity, phase plane, 
vertical movements 

he increased popularity of gymnastics has brought T with it an increase in the number of injuries of the 
lower limb and, in particular, the ankle (Snook, 1979, Teitz, 
1983). Ozguven and Berme (1988) calculated that the aver- 
age college gymnast dismounts in excess of 200 times a 
week from various exercises. Furthermore, it is important to 
note that high impact forces are being developed during the 
ground contact of the feet. Those two conditions could be 
responsible for the numerous injuries encountered. 

In previous research, the landing following a vertical 
jump has been divided into a passive phase and an active 
phase (Nigg, Denoth, & Neukomm, 1981; Nigg, Denoth, 
Neukomm. & Segesser, 1979). The passive phase begins 
after ground contact and lasts 30-40 ms. Because of the 
latency time, the leg muscles, which may already be stimu- 
lated and cannot change their activity within that short 

Klaus Peikenkamp 
lnstitut fur Bewegungswissenschaften 
Weslfalische Wilhelms-Universitat Munster 

phase, do not actively respond to the sudden increase in the 
ground reaction force. Dorsiflexion of the ankle joint trig- 
gers a stretch reflex, however, resulting in an increase in the 
electromyographic activity of the gastrocnemius muscle, 
which can be seen approximately 40 ms after the feet touch 
down (Dietz, Schmidtbleicher, & Noth, 1979; Gollhofer & 
Schmidtbleicher 1988). In the active phase, the jumper con- 
trols the muscles and thereby the movements of the body in 
an effort to establish an erect posture or to prepare and to 
carry out the next take-off during hopping. 

To analyze the influence of potential factors on the 
diminution of the ground reaction force peaks and the trans- 
mission of the forces from the feet to the trunk, one can sim- 
ulate the movements of the human body by using mechani- 
cal models. The models used in those simulations are built 
like simple vibratory systems that are adapted to the proper- 
ties of the human body. The model described in Fritz (198 I )  
consists of two masses, springs, and dampers. For a similar 
model, consisting of two masses, a massless landing surface, 
and two springs and dampers, Mizrahi and Susak (1982) 
assessed the model’s parameters by measuring ground reac- 
tion forces and accelerations of the greater trochanter. 
Ozguven and Berme (1988) measured ground reaction 
forces during landings from a jump height of 0.45 m onto an 
“infinitely” stiff surface. From the time course of the forces, 
they computed the natural frequencies of their 2-degrees-of- 
freedom (d& model and the damping ratios. The simulated 
forces sufficiently approximated the measured forces in the 
passive phase only, however. By means of a model consist- 
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Simulating Impact During Human Jumping 

ing 0 1  only one mass and spring, Farley and Morgenroth 
(1999) showed that during hopping in place at 2.2 Hz, leg 
stiffness increases with jumping height. 

In the above models, the two legs were represented by 
only one mass. Our aim in the present study was to accu- 
rately simulate the vertical movements of both the human 
trunk and the legs and the ground reaction forces during 
landing after a jump of 0.45 m height and during hopping. 
Hopping is a cyclic movement in which during the ground 
contact phase the deceleration of the downward movement 
of thc body continuously changes into the upward accelera- 
tion s o  that the body can take off for the next flight. We exe- 
cuted the simulations by using a model consisting of four 
masst!bs connected by springs and dampers, as described in 
detail by Fritz (1999). The simulated forces were adjusted 
to thc time courses of measured forces during both the pas- 
sive and active phases of the landing. For both activities, the 
forccv and the movements were measured by Fritz (1999). 

Method 
Model 

T h c b  model used in thus study consists of four discrete 
m a w s  (Figure 1). Left-right symmetry is assumed in the 
model, and the masses m i ,  m2, m3, and m4represent, respec- 
tively3 the feet, the shanks, the thighs, and the rest of the 
body. The masses are vertically connected by viscous 
dampers and linear springs. Thus, by compressing and 
extending those elements, the masses can shift toward and 
away from each other along their vertical axes. Motions in 
the horizontal direction as well as rotational motions are 
not possible. 

In the human body, the angle between two adjacent body 
segmonts-for example, the thigh and the shank (Figure 
2 t i s  reduced or enlarged by the contraction of the muscles 
and in response to external forces. Thereby, the antagonistic 
muscles are stretched so that they passively exert forces, 
which decelerates the movements. The springs and dampers 
of thc conceptual model illustrated in Figure 2 span llke 
chords between the leg segments. When the angles are 
changed during the movements, the springs and dampers are 
tensed or compressed. They resist the deformations by 
exerting forces similar to those exerted by stretched leg 
muscles. As in the conceptual model, we simulated the mus- 
cles that cross the ankle, the knee, and the hip by using 
spring and dampers in the model used for the computations. 

Mass ml is connected to the ground by spring C I  and 
damper d, (Figure 1). The spring and the damper imitate the 
plantar tissues of the feet, which are compressed by the 
ground reaction force. During the fight phase, in which the 
feet do not touch the ground, the values of the spring and 
damper are set to zero. 

On the basis of the equilibrium between the inertial 
forces, the forces of the springs and dampers, and the 
weight forces, one can derive an equation of motion for 
each mass. The four equations can be combined into the dif- 
ferentiiil matrix equation 

............. ............. ..... ..... m4 .... 

. o m . .  ............. 

c4  r"il ........... d4 
....m 3 ... 

FIGURE 1. Conceptual schematic of the mass-spring- 
damper model that imitates the jumper during the phase of 
ground contact (adapted from Fritz, 1999). Masses, mi, 
Springs, c,; and dampen, d;. i = 1 - 4 .  

FIGURE 2. Conceptual schematic of the spring and 
damper spanned like a chord between the thigh-shank 
angle (adapted from Fritz, 1999). 

MW +DW + Cw = f, (1) 

where M, D, and C are the matrices of the four masses, the 
damper, and the spring constants, and w and fare the arith- 
metical vectors of the vertical displacements of the masses 
and the weight forces, respectively. 
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Mechanical Conditions 

In the human system during jumping or hopping, the 
thighs, shanks, and feet undergo translational and rotation- 
al movements. The range of the different movements can be 
considerable. Nevertheless, one can simulate those move- 
ments with the described 4-df model under the following 
conditions: 

1. Only the vertical movements of the centers of gravity 
of the leg segments are simulated by the motions of the 
model masses. 

2. It is assumed in the model that the movements of the 
segment centers of gravity occur only along the line of 
action of the vertical ground reaction force. That assump- 
tion means that during a flexion of the legs, the joints move 
in the horizontal direction away from that line. 

Mathematical Solutions 

One can transform the differential matrix equation by 
substituting q, which is a combination of the displacement 
vector w and the velocity +, 

W 
9 = lwl, 

into the first-order matrix equation 

4 = Aq + h, (3) 

with A and h as the state matrix of the system and the 
extended vector of the weight forces, respectively. 

One can solve the first-order matrix equation by using 
numerical integration. The numerical integration has the 
advantage over other solutions that the coefficients of the 
state matrix A need not be constant during the simulated 
movements. In the present study, we integrated the equation 
by means of a fourth-order Runge-Kutta equation (see 
mathematics textbooks). 

Model Parumeters 

By using anthropometric data from Dempster (1955), we 
computed the quantities of the model masses for a jumper 
with a mass of 74 kg. For the simulation of the landing after 
a jump, we assessed a first set of the spring values on the 
basis of the following information: 

1. When landing after a jump of 0.45 m height, the first 
peak of the ground reaction force can amount to about seven 
times the body weight (Ozguven & Berme, 1988). If only 
the feet (= 3% of the total body mass) are decelerated, the 
deceleration will be greater than 200 g. A value of that mag- 
nitude has not been previously reported in the literature. As 
a result, in the model the feet and the shanks are connected 
by a stiff spring c2 so that they behave like nearly one mass. 
The deceleration of the combined mass is reduced to the 
more realistic value of 50 g. For example, the tibia experi- 
ences maximal accelerations of 10.6 g during running 
(Lafortune, 1991). 

2. The mass of the feet and shanks together corresponded 
to the lower mass in the model of Ozguven and Berme 
(1988), which amounted to 16% of total body weight. There- 
fore, we set spring CI to same value as Ozgiiven and Berme 
had set the spring connecting the lower mass with the ground. 

3. The value of spring c4 resulted from the observation 
that the trunk (m4) reaches its maximal displacement shortly 
after the ground reaction force reaches its second peak value. 
The time between the first ground contact and the maximal 
displacement equals a quarter of the vibration period. 

4 .  During the landing, the movements of the thighs are 
similar to those of the trunk. As a result, spring c?, which is 
loaded by masses m3 and m4 has to be stiffer than spring c4, 
which is loaded by mass m4. 

Starting with that a priori parameter set, the values of the 
springs and dampers were varied until the difference 
between the simulated time courses of the displacements and 
the ground reaction force and measured curves was mini- 
mized. A sufficient result was obtained when the simulated 
and the measured curves were similar in shape. In a second 
set of constants, spring cj was much stiffer, so the feet, the 
shanks, and the thighs built nearly one mass. With the sec- 
ond set especially, the passive peak force should be fitted by 
the simulated force. From the two parameter sets, we derived 
a further set in order to simulate the time courses of hopping. 

Simulations were also carried out with time-dependent 
spring and damper values. With those values, one should be 
able to simulate the changes of the leg muscles activities. 
During the first 25 ms, the values were kept constant. In the 
following 40 ms, the values were allowed to vary with the 
time. Then 65 ms after ground contact, the values were kept 
constant again. The time intervals were chosen according to 
the latency time (passive phase) and the electromechanical 
delay of the muscles. The variation of the values were 
described by simple nonlinear equations. For mass m; ( i  = 
14) ,  the values of the four springs are given by the follow- 
ing three equations: 

Cjhard = const. for t < 0.025 s. (4) 

( 5 )  
cisof, = const. for r 2 0.065 s. (6) 

x [0.065 - ( r  / x)’ for t < 0.065 s. 

The index hard means that masses m2 and m3 are connected 
by a stiff spring, which results in a hard landing with high 
ground reaction forces and only small flexions in knee and 
hip joints, as described in the next section. The index soft 
indicates a more compliant spring between the two masses. 
The time dependence of the four damper values also corre- 
sponds to the three equations. 

Results 
Using the model parameter values listed in Table 1,  we 

simulated the vertical displacements of the four masses and 
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Simulating Impact During Human Jumping 

0.0 g q 7  -o.l 

-0.2 - 
-0.3 - 

\ /  @ 

the ground reaction force for the landing after a jump from 
a height of 0.45 m. On the left side of Figure 3 are shown 
the time courses resulting from the simulation in which we 
used in the model a soft spring between masses m2 and rnz 
(see also the third column of Table 1). At initial ground con- 
tact, ihe accelerations of the masses amount to -9.81 d s 2  
and the velocities to -2.9 m/s. After 40 ms, masses rnl and 
m2 reach their maximal displacements. Masses m3 and m4 

follow. with a time delay of 80 ms. After 600 ms, the dis- 
placements of the four masses reach a steady-state value, 
which results from the compression of the springs by the 
weight forces. The ground reaction force reaches its highest 
value (4.2 x body weight [BW]) after 40 ms and then 
decreases to a minimal value that is less than the weight of 
the imitated body. Simultaneously with the achievement of 
steady-state displacements, the ground reaction force equals 
the htdy weight. 

When we simulated the landing with the second parame- 
ter set. the differences between the displacement curves of 
massus ml, m?, and m3 were found to be small (see parame- 
ter values in the fourth column of Table 1 and the right side 

y- 
\ ---- 

/’ w 

TABLE 1 
Model Parameters for the Landing 

and for Hopping 

Mass m Landing 
Index i (kg) Soft Hard Hopping 

Spring c (N/m) 

1 2.1 105,000 105,000 105.000 
2 6.7 300,000 250,000 260,000 
3 14.3 22,000 420,000 32,000 
4 51.0 12.000 3.000 20,000 

Damper d (Ns/m) 

1 250 250 I15 
2 150 1 50 I 50 
3 1,000 3 80 340 
4 1,400 600 440 

Nore. This model is adapted from Fritz, 1999. 

0.0 

-0.1 

-0.2 

-0.3 

5 

4 

3 

2 

1 

0 

0.0 0.5 1 .o 
Time [ s ] 

0 .o 0.5 1 .o 

I Time [ s J 
FIGURE 3. Time courses of the displacements and the ground reaction force during landing after a jump, sim- 
ulated with the time-invariant model parameters. Left. Soft spring between masses m2 and m ~ ;  cj = 22,000 N/m. 
Right. Hard spring between masses mz and m3; c3 = 420,000 N/m. BW = body weight. (a) represents mass ml; 
(b) represents mass m2; (c) represents mass m7; and (d) represents mass m4. 
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of Figure 3). Mass m4 produces a displacement pattern sim- 
ilar to that of a 1-dfmodel containing a single mass, spring, 
and damper. The ground reaction force increases to a max- 
imal value of 5.5 BW within 30 ms. In contrast to the 
plateau in the force curve of the previous simulation, a sec- 
ond peak (2 BW) is present. In addition, there is no time 
when the ground reaction force has a value lower than the 
body weight. 

The time courses plotted in Figure 4 resulted from the 
simulation with the time-dependent parameters. On the 
basis of the time relation given by Equations 4.5, and 6, we 
allowed the parameters to change from the values in the 
fourth column of Table 1 to the values in the third column 
during the (simulated) landing event. The resulting dis- 
placements were similar to those illustrated in Figure 3 (left 
side), except that the ground reaction force rises to the first 
peak of 5.6 BW after 30 ms. A second peak value of 2.6 BW 
occurs at 110 ms, and the force decreases to the minimal 
value of 0.5 BW at 330 ms. After 750 ms, the ground reac- 
tion force equals body weight. The phase-plane relations 
between the velocities and the displacements of each mass 
are illustrated on the right side of Figure 4. After the initial 
ground contact, mass ml starts to decelerate its downward 

motion. The velocity of mass m4 decreases to -3.0 d s .  It is 
clear from this figure that the velocities of the four masses 
are zero not only at the end of the landing but also when the 
masses pass their greatest displacements. During that 
upward motion, the velocities of the masses reach about 
0.9 m / s .  

In our simulation of a hopping activity, the four masses 
move nearly synchronously (Figure 5 ;  see parameters listed 
in the last column of Table 1). The displacements increase 
from mass m1 to m4. The initial ground contact lasts 255 ms. 
Then, the masses carry out a second flight phase of 345 ms 
during which they reach only one third of the preceding 
jump height. During the first ground contact, the reaction 
force reaches its first peak (3.7 BW) within 18 ms. When 
the masses reach their maximal displacements, the force 
increases to a second peak value of 4.2 BW. The impulse 
transmitted to the masses by that force-time course is small, 
however; therefore, in the second and the further flight 
phases, the masses do not reach the jump height of the for- 
mer phase again. 

Finally, in Figure 6 we show the displacement and the 
force curves resulting from a hopping simulation in which 
we used the time-dependent parameters. Those parameters 

Time [ s ] Velocity [ m/s ] 
0.0 0.5 1 .o -3 -2 -1 0 1 

I I I I I I 1 I 

0.0 0.5 1 .o 
Time [ s ] 

FIGURE 4. Time courses of the displacements and the ground reaction force during the landing after a jump and 
phase plane between the displacements and the velocities, as simulated with the time-dependent model parame- 
ters (line assignments as in Figure 3). 
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Simulating Impact During Human Jumping 

Time [ s ] 
0.0 0.5 1 .o 

0.0 0.5 1 .o 
Time [ s ] 

FIGURE 5. Time courses of the displacements and ground 
reaction force during hopping, as simulated with the time 
invariant model parameters (line assignments as in Figure 3). 

were again derived from Equations 4, 5, and 6. During the 
first 25 ms, the value of spring c3 is 3.3 times the value list- 
ed in the last column of Table 1, and the corresponding ratio 
of spring c4 is 4. The values of the dampers dl and d4 are 
also elevated during the 25-ms period. When we used those 
modified values, the first force peak was 4.5 BW, which 
results in a stronger deceleration of the masses and thus a 
reduced downward displacement compared with the simu- 
lation shown in Figure 5 .  The stronger deceleration also 
results in reduced upward displacements during the flight 
phase. In the phase plane, the increase of the velocities of 
the masses during ground contact and the decrease during 
the flight phase can be seen. After passing the top of the 
flight path, the four masses have nearly the same velocities. 

Discussion 
In Figures 3-6, we have plotted the simulated displace- 

ment-lime curves of the four masses. Regarding the se- 
quence of the maxima and minima, there was sufficient cor- 
respondence between those curves and the measured 
movement, which resulted in similarly shaped curves. As an 
example of measured movements in Figure 7, the curves of 
Fritz ( 1999) are shown. The simulated curves show the dis- 

placements of the center of gravity of the masses in relation 
to initial values, which were set to zero for the four masses. 
During measurements, the movements of markers fixed at 
the leg joints and the trunk are normally recorded (as was 
done by Fritz, 1999). The marker movements are described 
as the displacements of the markers relative to a reference 
point, for example, a point on the ground. As a result, it is 
difficult to compare model data with the data of human sub- 
jects. The closest relationship between those data would be 
between the displacements of mass m4 and the movements 
of the iliac crest, because a marker at the iliac crest nearly 
represents the center of gravity of the body. 

During the simulated landing, there are great differences 
between the motions of masses rnl and rn? and those of mass 
m4 (Figures 3 and 4). As a characteristic feature of the 
motions, the peaks of the displacements of the two lower 
masses (rnl and m2) are smaller than the corresponding peak 
of mass m4, with a ratio of about 0.04 m to 0.20 m. The time 
delay between those peaks is 100 ms. The relationships 
between the displacements and the velocities are drawn in 
the phase-plane diagram in Figure 4, and they are consistent 
with the results of Minetti, Ardigb, Susta, and Catelli 
(1998). From the diagram one can see that the velocities 
increase to zero when the masses rise to their peak dis- 
placements. Because the displacements of the lower masses 
are smaller than that of mass m4, the lower masses have to 
decelerate over a shorter distance, and the magnitude of the 
deceleration is forced to be larger. During hopping, the dif- 
ferences between the peak displacements are relatively 
large (Figures 5 and 6). However, the masses reach their 
maximal displacements at nearly the same time. The four 
masses move with the same rhythm. As a result, less ener- 
gy is dissipated, and the masses are able to take off for the 
next flight phase. 

By comparing the measured and simulated ground reac- 
tion force curves, we found a relation between the sequence 
of the force maxima and minima in the passive and the 
active phases (Figure 8). Considering the entire landing 
phase, the time course of the simulated ground reaction 
force (Figure 3, left side) sufficiently corresponded with 
measured courses given by Fritz (1981); Minetti et al. 
(1998); Natrup, Peikenkamp, and Nicol(l993); and Nigg et 
al. (1979). In the force-time curve of Fritz (1999; Figure 7, 
left side), the body weight is not reached at the end of the 
trial. That finding may have resulted from the subjects’ 
incomplete performance of the jumping task. However, the 
comparison between that force curve and the simulated 
curve resulted in a correlation of r = .75 (p c ,001). In each 
of the experimental studies, the force-time courses were 
characterized by a peak after about 30 ms, a second peak or 
plateau, and a minimal force during the deceleration of the 
upward movement. In contrast, the first peak of the simulat- 
ed force when using the soft spring was much lower than the 
average peak measured by Ozgiiven and Berme (1988) for 
the same drop height (ratio 4.2 to 5.9 BW). In the model 
with the second set of parameters, including the stiff spring 
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Time [ s ] Velocity [ m/s ] 
0.0 0.3 0.6 -3 -2 -1 0 1 2 

I I I 
I 

U 

J I I I I L 

0.0 0.3 0.6 
Time [ s ] 

FIGURE 6. Time couses of the displacements and the ground reaction force during hopping and phase plane 
between the displacements and the velocities, as simulated with the time-dependent model parameters (line 
assignments as in Figure 3). BW = body weight. 

cj, the first force peak reaches 5.5 BW and instead of a 
plateau a second peak occurs (Figure 3, right side). In addi- 
tion, the force does drop to a minim2 value lower than body 
weight. Those changes of the parameter values resulted in a 
correlation of r = .74 @ c .OOl>. When one compares the 
two force curves in Figure 3, it becomes clear that during the 
first 200 ms the ground reaction force simulated with the 
stiff spring c3 shows a similar shape as the measured curves 
and that during the rest of the landing phase our use of the 
softer spring improved the similarity between the simulated 
curve and the curves measured during human performance. 

The comparison of the two force curves (Figure 3) and 
the human data leads to the following observations: 

At the beginning of the landing, a jumper behaves like a 
two-mass vibratory model. The relatively big mass creat- 
ed by combining the thighs, the shanks, and the feet has 
a larger deceleration magnitude than the mass of the 
upper body. That results in a higher peak force than is 
seen when (simulated) leg segments are connected by 
softer springs. In the model, we simulated that behavior 
by means of the stiff springs between masses ml and 1112 
and between m2 and rn3. 

292 

The stiff connections between the thighs, the shanks, and 
the feet reduce the magnitude of deceleration of those 
segments. Thus, the resultant deceleration will be lower 
than 50 g. 
After approximately 60 ms, the connection between the 
leg segments appears to become more compliant. Now, 
the jumper behaves like a four-mass model. That behav- 
ior corresponds to the simulation with the soft springs. 

When we applied those observations, the jumper seemed 
to change from a two-mass to a four-mass system as the 
landing progressed. That finding corresponds to an increase 
in the degrees of freedom of the movement. During the pas- 
sive phase of the landing, the stiffness of the legs is produced 
by pre-activated muscles. The high ground reaction force 
leads to dorsiflexion of the ankle and flexion of the knee and 
hip. At the beginning of the active phase, the muscles can 
influence the flexion in each joint of the legs. In that way, the 
jumper can extend the duration of the landing, can reduce 
the ground reaction force, and can control his or her posture. 

In an effort to simulate variation in muscle forces by the 
model, we carried out the third simulation of the landing 
phase by using time-dependent values of the springs and 
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Simulating Impact During Human Jumping 

0.0 0.5 1 .o 0.0 0.5 1 .o 
Time [ s ]  Time [ s ] 

5 -I 5 1 

0.0 0.5 1 .o 0.0 0.5 1 .o 
Time [ s ] Time { s ] 

FIGURE 7. Time courses of the vertical displacements of four body markers and the ground reaction force mea- 
sured by Fritz (1999) during the landing (left) and during hopping (right). (a) iliac crest, (b) hip, (c) knee, and 
(d) ankle. BW = body weight. 

- 51i: 

0.0 0.5 1 .o 
Time [ s ] 

FIGURE 8. Time courses of the vertical ground reaction 
forcr during the landing. Solid line represents the curve 
meaxured by Fritz (1999) (see also Figure 7, left side); 
dashed line represents a soft landing (see also Figure 3, left 
side); and dotted line represents a hard landing (see also 
Figure 3, right side). BW = body weight. 

~ 
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dampers. The resulting ground reaction force included two 
peaks and a minimal value before it reached the steady state 
(Figure 4). The correlation between the simulated force 
curve and the measured data of Fritz (1999; Figure 7) was 
r = .73 (p < .001). The ratios between the passive maxima 
and minima and between the active maxima and minima of 
the simulated and the measured forces were 12496, 38096, 
262%. and 13 1 %, respectively. The ratios show chat during 
the entire landing phase, the simulated forces were higher 
than the forces measured by Fritz (1999). The greatest dif- 
ferences were found between the passive minima and the 
following active maxima. The main advantage of using a 
time-dependent set of parameters is that one obtains a high- 
er accuracy in simulating the change from the passive to the 
active phase (compare Figure 3, left side, with Figure 4) as 
well as the change from the active maximum to the active 
minimum (compare Figure 3, right side, with Figure 4). 
One cannot obtain further improvement in simulating the 
change from the passive to the active phase and thus the 
activation of the leg muscles and the change of their forces 
by using the simple Equations 4, 5 ,  and 6. Finally, the first 
small peak occurring in the initial part of the measured 
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M. Fritz & K. Peikenkamp 

l‘orce-time courses of Nigg et al. (1981; Nigg et al., 1979) 
and Fritz (1981, 1999) was not imitated by the model. That 
peak is believed to result from the rotation of the feet in the 
sagittal plane during the period from touch down to heel 
strike. In contrast to that rotation, mass ml in our model can 
move only in the vertical direction. 

The shape of the force curve in Figure 5 corresponds to 
the time courses measured during hopping (Fritz, 1981, 
1999). The differences were given by the simulated force 
values and by the ground contact time, which was too short. 
Concerning the force values, we achieved better results by 
using the simulation with the time-dependent model para- 
meters. The contact time was shorter again. Like the body 
segments, the model’s masses are decelerating during the 
first half of the contact phase. Then, the masses have to 
accelerate in order to attain the given jump height. Howev- 
er, the duration of the acceleration phase is too short and 
thus the velocities of the masses do not reach the required 
value. Compared with the muscles, the time-invariant 
springs cannot prolong that phase and thereby they build up 
additional energy, which is dissipated during the decelera- 
tion of the initial upward movement. Thus it became clear 
that one cannot simulate activities such as the extension of 
the legs during hopping with models consisting solely of 
time-invatiant elements. 

Conclusions 
Our comparison of the simulated mass motions and the 

ground reaction forces with measured data given in the lit- 
erature lead to the following statements about the activity of 
the leg muscles: 

By the varying their activity, the muscles have to fit the 
stiffness of the legs to the momentary motion phase or to the 
aim of the motion. During the active phase of landing, the 
loosening of the stiff connection between the thighs and the 
shanks results in an increase in the degrees of freedom of the 
movements, which allows the jumper to influence his move- 
ments. During hopping, the increase of the muscle activities 
enables the the jumper to take off to the next flight. 

In the model, the forces of inertia and the spring and 
damper forces have the same line of action. During bounc- 
ing of the legs, the distances between the joints and the 
action line of the forces of inertia increase and thus the 
torques in the joints also increase. To maintain the equilib- 
rium of‘ the torques, one must contract the muscles. 

By the contracting of the muscles, mechanical energy is 
added to the movements of the human body so that during 
the following flight phase the given jump height can be 
achieved, 

The results of the simulations provided useful hints about 
aspects of loads in sports activities including repeated land- 
ing movements, as occur in volleyball. To reduce the passive 
pcak, a reduced pre-activation of the quadriceps femoris is 
necessary, which would correspond to a decrease of c3 in the 
model. At the same time, knees and ankles should be com- 
pletely extended so that the landing velocity can be deceler- 

ated over a long distance. That means that an athlete should 
be made aware of the need to control his landing. 
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