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THE USE OF THE "TRIDENT" MODEL IN THE ANALYSIS OF PLASTIC ZONES 

NEAR CRACK TIPS AND CORNER POINTS 

A. A. Kaminskii, L. A. Kipnis, V. A. Kolmakova,  and G. A. Khazin UDC 539.375 

The paper deals with calculation of  a plastic zone near a crack tip in a homogeneous elastoplastic solid 
and near a corner point of the boundary of this solid. The calculations are conducted for a solid subject 

to plane strain and within the framework of models with plastic strips. It is shown that in comparison 
with the widely used model with two straight slip-lines, the process of plastic deformation is described by 

the "trident" model more accurately. The results of calculations of the plastic zone by the "trident" model 
that correspond to different stages of  the development of plastic deformation are given for a crack of 
normal separation in a quasibrittle material. 

Problems arising in studying the fracture of elastoplastic [2-6, 10, 11], viscoelastic [12], and inhomogeneous [13, 

15] materials call for the development of  more perfect models of  cracks representing the actual pattern of the fracture process. 

A great number of  papers devoted to the calculation of plastic zones near crack tips under plane deformation have 

been published in recent years. In these studies, the plastic zones are modeled by two narrow rectilinear plastic strips coming 

from the crack tip and representing slip lines [6, 8, 10]. On a slip line, only the tangential displacement may have a 

discontinuity, while the tangential stress is equal to the shear yield point Xs- 

The basis for such a simulation is the results of the experimental investigation [5]. According to this study, at the 

initial stage of plastic deformation, two plastic strips appear near a tip of a crack of  normal separation. The strips are tilted 

to the line of  crack continuation at an angle of  approximately 72 ~ [10]. In [10], it is shown that the results of calculation of 

the initial plastic zone near a tip of a crack of  normal separation within the framework of the mentioned model comply, in 

some sense, with those of  numerical calculation of a "fuzzy" plastic zone having the shape of plastic "ears" [ 14]. Therefore, 

the plastic zone corresponding to this model can be considered as some approximation of a "fuzzy" plastic zone. 

However, as follows from the investigations of the plastic zone near the crack tips using an electron microscope and 

the x-ray diffraction method [2, 3], at all stages of  the fracture process, there exists a frontal prefracture zone including the 

initial one along with strongly developed "butterfly"-shaped side plastic zones. The linear dimension of this zone at the 

continuation of the crack is much less than the maximum linear dimensions of the side elastic zones. With an increase in the 

load, the plastic prefracture zone turns to a destruction zone distinguished by the maximum level of  plastic strains and the 

presence of pores and microcracks. As the load increases, the plastic zones grow and the angle of inclination of side plastic 

zones changes and achieves 50 ~ at subsequent stages of the fracture process. 

The existence of the third plastic zone (along with the two side ones) that develops from a crack tip can be proved 

not only in an experimental but also in a theoretical way. To this end, it is sufficient to examine the behavior of the stresses 

near a crack tip in the symmetric problem [ 10] of  the theory of elasticity for a plane whose point is the origin of a semiinfinite 

crack and two finite slip lines. This study was carried out in [1]. Its results show that after the occurrence of side plastic slip 

lines coming from the tip of a crack of  normal separation, the crack tip remains a concentrator of stresses with a power 

singularity, though weaker than the crack tip in an elastic body. The degree of singularity of the stresses depends on the angle 

of inclination of the slip line to the line of  the crack continuation. If the angle is equal to 72 ~ , then the degree of singularity 
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is approximately equal to 0.20049. The presence of the mentioned stress concentration implies that once two side plastic 

zones coming from a crack tip appear, the third plastic zone may be expected to develop from it. 

The symmetric problem of the theory of elasticity is solved in [ 1 ] for a plane whose point is the origin of a semiinfinite 

crack, two slip lines of finite length, and the Dugdale line of considerably smaller length, on which only normal shear rupture 

is possible, and the direct stress is equal to the tension yield point c s. The examination of the stress behavior near a crack tip 

in the given problem shows that once the third plastic line coming from a tip of a normal-separation crack appears, the crack 

tip is not a stress concentrator any more. Therefore. except for the three plastic zones developing from the crack tip, new 
plastic zones may not be expected. 

These experimental and theoretical results suggest that, as compared to a model with two slip lines, the "'trident" 

model more accurately describes the process of plastic deformation near a crack tip. According to this model, the set of three 

narrow rectilinear plastic strips (two slip lines and the Dugdale line) coming from a crack tip models a plastic zone near the 

crack tip, If, at the initial stage, the plastic strains near the crack tip are localized in thin layers of the material - -  three plastic 

strips coming from the tip - -  then, at the subsequent stages of plastic-strain development, the plastic zone corresponding to 

the "trident" model should be considered as some approximation of the actual "fuzzy" plastic zone observed in the 

above-mentioned experiments [2, 3] for a crack of normal separation. 

For hardenable materials, it is desirable to introduce the parameter cy B (the ultimate strength of a material) instead 

o f t  s, since, as follows from [2, 3], the strains in the prefracture zone achieve an extremely high level (up to 50%) at the stages 

of continuation and growth of the crack, and, hence, the stresses in this zone considerably exceed the yield point of the material. 

The initial plastic zone near the tip of a crack of normal separation is calculated in [1 ] within the framework of the 

"'trident" model. However, for a detailed study of the development of  plastic strains near the tip of a normal-separation crack, 

it is necessary to have the values of the length I of the slip lines, the length d of the Dugdale line, and the opening 8 of the 

crack at its tip, which correspond to subsequent stages of this process. 

The mentioned quantities l, d, and 8 are evaluated below for different values of the angle ~ between the slip line and 

the line of continuation of a crack of normal separation in a quasibrittle material. 

According to [ 1 ], we obtain the following formulas for determination of the lengths of plastic strips: 
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Here, K I is the factor of  intensity of  the stresses at the tip of  the crack and ~. is the solution (unique on the interval ]-1; 0D of  the 

equation 

[ sin 2 (~ ,+  1 ) ~ + ( ~ . +  1 ) sin 2 ~ ] 

x [ s i n 2 ( ~ . +  1 ) ( ~ - ~ ) - ( ~ . +  1 ) s in2  a l  + 2  [ cos2  ( ~ +  l ) a - c o s 2  g 1 

x [ s in2(~ .+  1 ) ( n - o t ) - ( ~ . +  1 ) 2 s i n 2 a ]  = 0 .  

Assume that the material  sat isf ies  the Tresca condition of plasticity. In this case, o s = 2 *s" The values of  

L, D *, A = ~i / [ ( 1 - v 2 ) K / E - 1 Xs 1 ], where E is Young ' s  modulus and v is Poisson ' s  ratio, are presented below for some 

values of  cz (ct ~ is the value of cz in degrees):  

O~ o 48 51 54 60 66 69 72 

L 0.0452 0.0472 0.0507 0.0548 0.0573 0.0578 0.0583 

D * 0.0006 0.0008 0.0009 0.0012 0.0016 0.0017 0.0019 

A* 0.1527 0.1719 0.1913 0.2302 0.2690 0.2884 0.3078 

Some errata are contained in [1]. The exponent in the expression for R in (3.6) should be equal to 1/2 (in [1] it is 

equal to 1/220), and the quantity C 2 in the following formula should be equal to 4.92523 (in [1], it is equal to 0.08452). 

If a model with two slip lines is used to calculate the initial plastic zone near  the tip of  a crack of  normal separation, 

then, according to [ 10], the opening o f  the crack at its tip is equal to 0.2222 ( 1 - v 2 ) Kt E - 1 ,rs 1. When the "trident" model  

is used, the result corresponding to ~ ~ = 72 ~ in the above table shows that the opening of the crack at its tip is equal  to 

0.3078 ( 1 - v 2 ) KI E - I Xs t. Thus, in the presence of  the third plastic strip at the tip of  a crack of normal separation, the 

opening of the crack at this tip will be greater  than in the case of  existence of only two plastic strips coming from it. Moreover ,  

the calculation results presented above  show that the greater the angle between the side plastic strips, the greater the lengths 

of  these strips and the third one. 

The initial plastic zone near a corner  point of  the boundary of a body under the condition of a symmetr ic  problem 

was calculated in [4] within the f r a m e w o r k  of  a model with two slip lines. A formula  for determination of the length of  the 
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slip lines was derived, and the direction of their development was established. It was shown that the slip line forms an angle 

y with the stress-free boundary of the body. This angle increases with increase in the angle 2[3 between the lines of the 

boundary. Some values of y are as follows: 

[3 ~ 95 105 115 125 135 145 155 165 175 

y~  47 52 58 64 70 77 83 92 10l 

It is possible to show that alter the appearance of plastic slip lines developing from a corner point, this point remains 

a stress concentrator. To this end. it is sufficient to take advantage of the general provisions on the behavior of  the stresses 

near comer points of elastic bodies [7, 9]. Following the mentioned provisions, it is necessary to consider the respective 

homogeneous problem of the theory of elasticity for a wedge and two semiinfinite straight slip lines coming from its vertex. 

The secular equation of this problem has the form 

2 A 1 ( sin 2 p y -  p 2 sin 2 y ) + A2 ( sin 2 p y + p sin 2 y ) = 0, 

A 1 =cos 2 p  ( [ 3 - y ) - c o s  2 ( ] 3 - y ) ,  

A 2=sin 2p  ( ] 3 - y )  +P sin 2 ( 1 3 - y ) ,  

p = - X - 1 .  

An analysis of this equation shows that it has a unique root )~l on the interval ]-1; 0[. The values of)~l for the [3 given 

above and the 7 corresponding to them are presented below: 

[3 ~ 95 105 115 125 135 145 155 160 165 170 175 

-~'1 ~ 61- 10 -6 63- 10-6 64. 10 -6 65- 10-6 67 .10  -6 69. 10-6 339. 10 -6 0.000611 0.0392 0.1077 0.1587 

According to the general provisions on the behavior of stresses near comer points of elastic bodies, the stresses 

behave as r k~ as r ---r 0 in the problem of the theory of elasticity for slip lines coming from a corner point of  the boundary of 

a body (r, 0 is a polar coordinate system with its pole at the corner point). Hence, the corner point remains a stress concentrator 

with a power singularity. The degree of singularity of stresses increases with increase in the angle between the boundary lines. 

Thus, if the angle between the boundary lines of a body exceeds 320 ~ then in calculating the initial plastic zone near 

the corresponding comer point near which the boundary is free of stresses, it is expedient to use the "trident" model. If this 

angle is less than 320 ~ , then, since the singularity of the stresses is very weak, which is seen from the last table, it is expedient 

to use a model with two slip lines. 

When the legs of the comer are rigidly fastened and hinged (the tangential stress and the normal displacement are 

equal to zero), the corresponding secular equations are as follows: 

All 1r 1 -  2 ( l c s in2p  y + p  2 s i n 2 y ) ] - A 2 (  ~ : s i n 2 p y - p  s i n 2 y ) = 0 ,  

A t ( sin 2 p y + p sin 2 g ) + A2( cos 2 p Y -  cos 2 7) = 0, 

~g = (~ :+  1 )2/2,  1 r  

Each of these equations has a unique root on the interval ]-1; 0[. Some values of the angle y and the root )~2 of the 

secular equation corresponding to the corner point with rigidly fastened legs of the comer are as follows (v = 0.25): 
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~ 95 100 105 110 115 120 125 130 

T ~ 45 50 55 59 64 68 73 77 

- ~2 103 327 361 394 415 444 463 487 503 

The data in this table show that, in calculating the initial plastic zone near a comer point of the type being considered, 

it is expedient to use the "trident" model. 
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